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Abstract: The Internet of Things (IoT) has recently transformed many lives into comfort zones. The IoT concepts and 

their exponential growth are burning research issues that need more space for processing and monitoring. To meet the 

explosive growth of IoT data, edge and fog computing is being deployed for better data analysis with minimum 

computational complexity. The data can be gathered and analyzed at the fog or edge layer to maximize data utilization. 

This paper presents a novel prediction and resource allocation using Q-based deep extreme neural network learning 

algorithms suitable for smart healthcare applications. Resource allocation and effective prediction represent 

challenging missions involving various resources and IoT nodes to achieve effective computations, leading to real-

time computational complexity. The proposed system is composed of four modules: (1) the data collection unit (DCU), 

(2) the data processing unit (DPU), (3) the intelligent prediction module (IPM), and (4) the adaptive resource allocation 

module (ARAM). The proposed algorithm is trained using the medical training data, which consists of different heart 

arrhythmias, specifically heart attacks. The proposed algorithm will be tested using the user’s sensing data from the 

IoT layer to predict the probability of a heart attack and then decide accordingly. The system aims to achieve an 

improved quality of service (QoS) with less latency. Extensive experimentation results demonstrate that the proposed 

algorithm has outperformed real-time data monitoring with prediction and resource allocation. 

Keywords: Internet of things; fog; edge layers; Q-based deep extreme learning machines; quality of services.  

 

 

1. Introduction 

The IoT is made up of devices such as sensors, 

transducers, micron rollers, and transceivers that are 

able to communicate with one another in order to 

achieve that same task [1]. The IoT is a relatively 

recent invention in technology that offers a unified 

platform for the integration of a wide range of 

technologies in order to enable intelligent 

performance across all domains of activity. As a 

direct result of this, there has recently been a rise in 

the number of homes, mobile phones, and other 

embedded applications that are connected to the 

internet. Clouds are considered the standard 

infrastructure to gather data from IoT devices 

normally used for monitoring and analyzing [2]. This 

remote location has a negative impact on the response 

time, particularly for apps dealing with real-time 

healthcare information. In addition, IoT sources may 

be spread out over a wide geographic area and create 

a significant quantity of data that is then transferred 

to the cloud for processing, which can result in the 

cloud being overloaded. The computing resources 

located at the edge of an IoT system are able to 

address the issues that were discussed before [3, 4].  

Fog computing, also known as edge computing, 

is being implemented as a solution to this problem in 

the hopes of successfully implementing services at 

the network's edge. The FC is able to accomplish 

location awareness and significantly cuts down on 

latency [5]. The gadgets that create fog are known as 

fog nodes (FN). These fog nodes enable a widespread 

dispersion of services that can analyze data from 

Internet of Things devices close to their points of 

origin. To satisfy the QoS and resource needs of 

wide-standard IoT systems [6], fogs and clouds often 

cooperate with one another in an integrated way, as 

seen in Fig. 1. In FC, Resource Allocation, also 

known as RA, is a challenging job since it requires a 

number of different resources and fog nodes to do the 

calculations that are necessary [7]. 
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Figure. 1 General architecture for the fog-edge –IoT 

architecture 

 

In FC, resource allocation (RA), is a challenging 

task since it requires a number of different resources 

and fog nodes in order to complete the calculations 

that are necessary for IoT systems. In the past, 

relatively a few additional RA techniques, such as 

least connection (LC), round robin (RR), weighted 

round robin (WRR), and adaptive weighted round 

robin (AWRR). On the other hand, they have a 

number of drawbacks, the most notable of which are 

as follows: (i)they do not take into account the 

heterogeneity of the computing resources; and (ii) 

their poor performance is attributable to the migration 

of processes. Both of these drawbacks are highlighted 

in the following sentence: (iii) A much prolonged 

delay (iv) the lack of one universally accepted 

standard for FC [8] It is anticipated that the 

combination of fog, cloud, and a diverse collection of 

IoT devices would result in an increase complexity of 

RA concerns [9]. 

Recently, the advent of machine learning and 

deep learning algorithms has provided better insights 

to achieve better QoS between fog devices and cloud 

layers. Many algorithms exist, such as deep neural 

networks (DNN) [10], deep reinforcement networks 

(DRN) [11], probabilistic neural networks (PNN) 

[12], and deep belief networks (DBN) [13]. But these 

algorithms are designed to achieve high QoS 

performance but are not provided with computational 

complexity. The computational complexity of these 

algorithms will increase as the data grows that again 

affecting the performance of Fog devices in 

predicting the particular disease with high latency 

allocation of resources. 

Motivated by this above drawback, this paper 

proposes the Latency Aware Intelligent prediction 

and adaptive resource allocation method for an 

effective diagnosis of diseases and high-speed 

allocation. The form employs the novel Q-deep 

extreme learning machines (Q-DEM) to achieve a 

high prediction ratio with less time for computation. 

To the best of our knowledge, the proposed ensemble 

of Q-learning and deep-learning machines are the 

first to be deployed for fog devices that control IoT 

nodes and clouds. 

Contribution of the paper: The contribution of 

the paper is tri-folded which are as follows. The paper 

proposes the ensembled combination of Q-

reinforcement learning and deep ELM to achieve 

high performance and less latency to handle the large 

IoT and fog nodes. This paper proposes a new dataset 

collection unit (DCU) to generate larger IoT nodes 

that aid innovative healthcare applications. The 

generated datasets aim to predict heart diseases, 

specifically heart attacks. Finally, the paper proposes 

extensive evaluation methods in which various 

metrics such as latency, prediction accuracy, and 

mask pain analysis are calculated and compared with 

the other state-of-art algorithms. 

The remaining portions of the paper are 

structured as follows: section 2 presents a proposed 

methodology for the fog environment using real-time 

resource allocation and QDELM, with more details 

about each contribution. Additionally, the data 

collection unit and pre-processing data unit are 

detailed in section 2. Section 3 introduces the 

evaluation results and discussion. The conclusion 

with the future scope is discussed in Section 4. 

Pareek et al. [14] studied various computing 

systems, such as cloud, edge, and fog systems 

targeted for the healthcare industry. The significance 

of fog computing is reviewed with regard to its 

architecture, performance, and efficiency in 

healthcare monitoring, remote assistance, and 

tracking purposes over cloud computing. Fog 

architecture is positioned with a minimum number of 

nodes in between the cloud server and end-user 

devices, which extremely reduces the overall delay 

and response time and improves the transmission 

speed during data transfer with more protection. The 

fog nodes reduce bandwidth, latency, and power 

consumption, which is essential in the healthcare 

industry. The author concluded that the fog layer with 

minimal nodes suites better for healthcare functions 

compared to cloud and edge computing data centers 

in terms of processing, fast transmission, and security 

perspectives. 

Bhatia et al. [15] employed IoT technology to 

evaluate a person's real medical tracking during a 

warm-up exercise and evaluate them for illness 

intensity assessment. In this research, the Bayesian 

belief networks (BBN) technique is utilized to 

calculate the severity of illness as a probabilistic 

metric. Gia et al. [16] proposed a fog layer and 

resource edge devices for cost-effective patient 

monitoring. This strategy cuts healthcare costs while 

also improving the quality of life. The nRF protocol 

serves as the foundation for these energy-efficient 

Cloud Layer 

Edge/Fog Layer 

Smart Devices 
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sensor nodes. The system makes quick decisions and 

provides services that are needed right now. 

Elhadad et al. [17] developed a five-layer smart 

monitoring system with different fog layers to 

maintain the tracking efficiency of patients in real 

time. The proposed framework includes the “cloud, 

network, and edge computing layers and a sensor 

layer” in each Fog system. The sensor layer consists 

of many wearable devices to observe the temperature, 

systolic and diastolic pressure values, and heart rate 

from the sensors connected to patients, which have 

been transmitted to the fog layer in parallel 

processing.  The fog layer performs the data 

transmission in a distributed format with security, 

and the analyzed data is stored on a cloud server with 

notifications. The proposed 5-layer healthcare 

monitor achieved better results in throughput and 

overall response time. 

Kumari et al. [18] reviewed the real-time 

challenges of healthcare monitoring, tracking, and 

the difficulties of huge data transmission. The 

significance of fog computing in medical care 4.0 is 

detailed. The author detailed the healthcare services 

and challenges regarding delay, response time, data 

management, security and privacy, scalability, 

human interfaces, and interoperability. To address 

these issues, researchers are adopting the fog 

computing layers in monitoring, tracking, and 

improving remote assistance, especially for disabled 

patients in healthcare environment 4.0. The 

taxonomy of fog system combines the data collection, 

analysis, and network configurations (protocols and 

routers) which is finally communicated to end-users 

in a distributed format that enables the efficiency of 

remote monitoring and extends the lifetime of 

patients. 

The outcome of these papers clearly states that 

fog-computing systems achieve the best results in 

providing healthcare services compared to a 

centralized cloud architecture from many 

perspectives, such as “security, power consumption, 

data transmission efficiency, reduced delay, latency, 

and high confidentiality,” and so on. Though there are 

many benefits in adopting the fog layers in the 

healthcare industry, there are still a few challenges 

called resource management, effective protocol 

selection, routers design, reducing the number of 

gateways, and real-time decision-making are need to 

be considered. The following section illustrates the 

various resource management approaches for fog 

computing systems. 

HeenaWadhwa et al. [19] created a new resource 

assignment model called TRAM, which includes 

different scheduling heuristics to improve the 

utilization of fog resources. Using the expectation 

maximization (EM) technique, this strategy is 

utilized to track the intensity level of existing 

workloads and assess the current resource status. A 

wireless system is used to handle all of the available 

resources. This work presents a resource grading 

scheduling technique for a fog computing 

environment. The performance of this technique was 

evaluated using the iFogSim simulator, and the 

results were compared to those of "SJF, FCFS, and 

MPSO." According to the simulated findings, TRAM 

analyzed the completion time, network and energy 

usage, as well as the average loop delay. The 

proposed TRAM approach is not effective for large 

structures and in-efficient for massive data 

transmission due to the sequential processing method. 

Basset et al. [20] suggested an energy-aware work 

scheduling method for marine predators. Using IoT 

devices, this technique was deployed in fog 

applications. In the pervasive computing 

environment, this solution tackled the issue of 

bandwidth utilization overhead. By adopting a 

modified marine predator’s method, the hurdles 

involved in fog computing work scheduling were 

removed. The ranking approach determined the 

consecutive iterations required to achieve a better 

position than the swarm-based optimizers. The 

limitation of this proposed model is high 

computational complexity due to finding global 

solutions with a high number of search iterations. An 

optimization problem was devised by Shudong et al. 

[21] with the goals of increasing resource utilization 

and maintaining load equilibrium on edge nodes in 

5G networks. They came up with the BSOM service 

offloading method so that they could make available 

computer resources on the network. They defend the 

privacy of individuals' sensitive data, and the privacy 

protection model that they use was developed by 

monitoring a variety of hostile relationships. 

Under the framework of the fog computing 

methodology, Wang et al. [22] proposed a task 

scheduling algorithm that was derived from a 

modified version of the firework algorithm. The roles 

of the devices that make up the Internet of Things 

were broken down into three categories: requests that 

are sensitive to the duration of time, storage needs, 

and bandwidth requirements. Fog devices and fog 

processors were thought to make up the fog layer. 

The tasks were grouped according to the 

classification kinds, and the fog's resources were also 

categorized. This method employed an updated 

fireworks algorithm to schedule tasks in the most 

efficient way possible. This model has been tested, 

and the findings show that scheduling using I-FASC 

leads to better-balanced execution time and device 

resource allocation. 
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Talaat et al. [23] created a novel prediction-based 

resource allocation technique for fog computing 

systems. EPRAM uses a real-time resource allocation 

and prediction method to accomplish effective 

resource management in a fog environment. The 

PNN and one or more predictors are used in 

conjunction with the EPM so that an accurate forecast 

of a target field may be made by the EPM. PNN is 

trained to detect the probability of having a heart 

attack by using the dataset that it was trained on as its 

main source of information. PNN will then be 

analyzed to forecast the potential of a heart attack 

using the user's sensory data acquired from the IoT 

layer, and in response to this prediction, the most 

proper measures will be done. EPRAM, unlike 

existing RA approaches, uses a novel deep 

reinforcement learning (RL) algorithm. The 

prediction algorithm is likewise based on the 

probabilistic neural network (PNN). Because deep 

RL and PNN were used, it was able to reach such 

acceptable results. 

2. Proposed method 

2.1 System overview 

The most important application that is directly 

connected to the IoT is the creation of an effective 

healthcare system. When it comes to healthcare 

systems, there are numerous considerations that need 

to be made, such as the passage of time, the protection 

of personal information, and the precision of 

diagnoses. It is important to take into consideration 

the dependability and credibility of the various 

healthcare systems. The system model that is 

presented in this research and is shown in Fig. 2 is 

derived from the parameters that were discussed 

previously. The suggested system is made up of three 

distinct levels, which include (1) Internet of Things 

layers, (2) fog-edge layers, and (3) cloud layers. In 

the first layer, IoT devices are equipped with 

healthcare sensors such as pulse sensors, ECG 

sensors, and positional sensors. The data from IoT 

layers is collected and preprocessed in fog-edge 

layers. The fog-edge layer is also considered for 

handling the request from the IoT devices and 

forwarding it to the suitable cloud layers. The cloud 

layers analyze the data and send it to the suitable 

healthcare systems. 

2.2 IoT layers 

This section introduces the IoT layers for 

collecting healthcare data from medical sensors. To  

 

 

Figure. 2 Overall architecture for the proposed resource 

allocation and effective prediction 

 
Table 1. Sample datasets collected from the iFogSim 

environment 

Patient 

Data 

Puls

e 

rate 

ECG_Da

ta 

Accelerati

on Data 

(Motion 

detection) 

Location 

ID 

Patient

_1 

72 88 167 36.56, 

144.29 

Patient

_2 

65 92 145 36.78,135.

89 

Patient

_3 

76 88 167 35.90,125.

90 

Patient

_4 

74 102 182 35.80,115.

90 

Patient

_5 

68 90 190 36.90.129.

90 

Patient

_6 

70 104 120 37.89,113,

40 

 

collect the experimental data, the IFogSim simulator 

is used to deploy the nodes in the IFogSim simulator, 

as shown in Fig. 3. Additionally, the proposed 

research employs the mHealth datasets for training, 

testing, and validation. Using the iFogSim simulator, 

50 nodes are created in which the 15000 medical data 

with five attributes are collected for 45 days. Each 

IoT node has a pulse sensor, an ECG sensor, and a 

motion detector. The sample datasets collected from 

the IFogSim are presented in Table 1. 

In the meantime, research uses the mHealth 

(Mobile Health) dataset, which comprises body 

motion and vital heart sign recordings for ten 

volunteers of diverse profiles while they were  
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Table 2. Sample mHealth dataset used for training, testing 

and validation 

Patient 

Data 

Puls

e 

rate 

ECG_Da

ta 

Accelerati

on 

Data(Moti

on 

detection) 

Location 

ID 

Patient

_1 

72 88 167 36.56,144.

29 

Patient

_2 

65 92 145 36.78,135.

89 

Patient

_3 

76 88 167 35.90,125.

90 

Patient

_4 

74 102 182 35.80,115.

90 

Patient

_5 

68 90 190 36.90.129.

90 

Patient

_6 

70 104 120 37.89,113,

40 

 

engaging in physical activities. This was done in 

order to demonstrate that the proposed algorithm is 

superior to existing alternatives. The sensors that are 

placed on the chest are based on readings from a two-

lead electrocardiogram, which may be utilized for 

monitoring the patient's heart rate as well as testing 

for various of arrhythmias. These datasets were 

collected from three sensor nodes and ten volunteers. 

Table 2 presents the sample datasets used for 

validating the proposed system. 

2.3. Fog-edge layers 

2.3.1. Data Collection and Pre-Processing Unit: 

The information that is gathered from Internet of 

Things devices is saved in fog edge nodes, which are 

also the locations where the data is preprocessed for 

the purposes of resource allocation and the 

forecasting of heart attacks. Nearly 15000 data are 

collected from the IFogSim simulators, and data are 

preprocessed for further applications. The data 

preprocessing is carried out in three stages: the 

sampling stage, the splitting stage, and the balancing 

stage. During the sampling stage (SS), data are 

selected for sampling based on the location and 

nature of the data. The data can be classified as 

critical and non-critical data, as shown in Table 3.  

The critical data demands a higher response time 

which needs the feedback and control system to save  

 

Table 3. Data splitting process deployed for training and 

testing 

Patie

nt 

Data 

Pul

se 

rat

e 

ECG_

Data 

Accelar

ation 

Data 

(Motion 

detectio

n) 

Locatio

n ID 

Labe

led 

Data 

Patie

nt_1 
72 88 167 

36.56,1

44.29 

0 

(Not 

critic

al) 

Patie

nt_2 

10

1 
120 145 

36.78,1

35.89 

1 

(criti

cal) 

Patie

nt_3 
76 88 167 

35.90,1

25.90 
0 

Patie

nt_4 

10

2 
112 182 

35.80,1

15.90 
1 

Patie

nt_5 
68 90 190 

36.90.1

29.90 
0 

Patie

nt_6 

10

5 
194 120 

37.89,1

13,40 
1 

 

the life of the patients. After classifying the data, 

collected data are split into three categories such as 

training data, testing, and validating data. However, 

the testing data can refine the model's performance, 

which the model can rebuild using a training sample 

regarding the testing performance. The validation 

data, which, unlike the training and testing sets, did 

not contribute in any way to the development of the 

final model, are used to evaluate the performance of 

the model in comparison to data that it has not 

before seen. This is in comparison to the testing sets, 

which did contribute in some way to the development 

of the final model. Table 3 presents the splitting of 

the data structure. 

In the third stage, classified and labeled data are 

balanced by discarding (reducing) highly frequent 

records in the data, which boosts the performance of 

the trained model. 

2.3.2. Q- based resource allocation module (Q-ram) 

The Q-learning method is used significantly in 

the construction of the resource allocation module. Q-

based reinforcement learning is selected despite the 

many limitations of the other algorithms that are now 

available. With the assistance of the Q-learning 

model, it is much simpler to learn traits that connect 

to various changes in the environment. As a direct 
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result of this, the Markov decision processor (MDP) 

may now be seen as Q-learning, which is an approach 

to reinforcement learning. With the purpose of 

amassing rewards for it, the reinforcement agent 

engages in activities inside an environment. The 

agent performs action after receiving the state of the 

present environment and doing so in accordance with 

the state. The action causes a shift in the state of the 

environment, which is followed by the agent 

receiving feedback on the shift in the form of a 

reward. This MDP determines the parameters, such 

as the state action, the reward, and the chance that the 

event will take place. Let the current state be 

represented by, and the future state with an action 

value be represented by Eq. (1). The reward function 

for state z and z' is given as Rztzt+1
a . t.and the existing 

state's total reward function may be described as Eq. 

(2), Let Qω(z, a) be the utility function with a policy 

variable ω that is diplayed in Eq. (3). Here, γ denotes 

the reduction factor that ranging from [0,1] and 

practically γ values are mostly [0.5,0.99] and it is 

displayed in Eq. (4) below. 

 

𝑃
𝑧𝑧1
𝑎 = 𝑃𝑟 𝑜 𝑏{𝑧𝑖+1 = 𝑧1 |𝑧𝑡 = 𝑧, 𝑎𝑡 = 𝑎}      (1) 

 

𝑅𝑡 = ∑ 𝑃𝑠𝑡𝑠𝑡+1
𝑎𝑡

𝑧𝑡+1∈𝑍 𝑅𝑧𝑡𝑧𝑡+1|𝑧𝑡=𝑧,𝑎𝑡=𝑎
𝑎𝑡      (2) 

 

𝑄𝜔(𝑧, 𝑎) = {𝑅𝑡 + 𝛾∑𝑧𝑡+1 ∈ 𝑧𝑃𝑧𝑧𝑡+1
𝑎𝑡 𝑄𝜔(𝑧𝑡 , 𝑎)}  (3) 

 

𝑄 ∗ (𝑧, 𝑎) = 𝑚𝑎𝑥{𝑄𝜔(𝑧, 𝑎)} 

= {𝑅𝑡 + 𝛾∑ 𝑃𝑧𝑡𝑧𝑡+1
𝑎𝑡

𝑧𝑡+1∈𝑍 𝑚𝑎𝑥{𝑄𝜔(𝑧𝑡+1, 𝑎)}}|𝑍𝑡 =

𝑧, 𝑎𝑡 = 𝑎  

= {𝑅𝑡 + 𝛾∑𝑧𝑡+1 ∈ 𝑍 𝑃𝑧𝑡𝑧𝑡+1
𝑎𝑡 𝑄 ∗ (𝑧𝑡+1, 𝑎)}|𝑧𝑡 =

𝑧, 𝑎𝑡 = 𝑎           

(4) 
 

The agent will be notified of the change in the 

state of the environment via a reward once the reward 

function has been calculated using Eqs. (3) and (4). 

The calculation of the reward function relies on the 

change in the state of the environment. Algorithm 1 

provides a visual representation of the operational 

mechanism of the Q-based RAM. Table 4 explains an 

algorithm-1for Proposed Q- based RAM 

In the Algorithm-1, the reward function presents 

in reinforcement learning algorithm. Learning is set 

to low latency, which produces a faster response for 

allocating the data to the different resources. The 

Random Access Memory (RAM) is trained to 

identify the most appropriate nodes to carry out the 

incoming request. 

 

 

Table 4. Algorithm-1for Proposed Q- based RAM 

 Algorithm-1  // Working Mechanism of the 

Proposed Q- based RAM 

01 Input : No of Input data 

02 Output :Balanced Resource with Low Latency 

and High performance 

03 For n=0 to Max_iteration 

04        Create the Q-table Containing the States and 

Actions  

05         Agent interacts with environment and 

updates the State-Action tables 

06         Agent uses the Q-tables and views all the 

possible solutions, finds the best resource  with 

the less latency  using the equation(3) and (4) 

07 Updates the values in  Q-tables using (1) and (2) 

08 Go to Step 03 

2.3.3. ELM prediction mechanism 

The proposed method makes use of ELMs, which 

are more often referred to as ELM, in order to provide 

predictions for a target field by using one or more 

predictors. In order for ELM to learn how to 

accurately forecast the chance of a heart attack 

occurring, it is trained using the training dataset. 

Following that, ELM will be analysed based on the 

sensory data supplied by the user through the IoT 

layer in order to calculate the likelihood of the user 

having a heart attack and choose the most appropriate 

next step. The next step is to create normalised 

versions of the sampled data, which are then input 

into extreme learning machines created by G.B. 

Huang [24]. In addition to their speed, velocity, and 

precision, these machines also have great degrees of 

speculation and exactness, and they have the ability 

to approximate universal functions. This method 

states that the "L" neurons of the hidden layer are 

connected with a constant activation function, despite 

the fact that the output layer is equated with being in 

line (for example, the sigmoid function). There is no 

need in ELMs for the individual tuning of the 

concealed layer. The weights of the concealed layer 

are determined by chance instead than being fixed 

(counting the bias loads). 

The model is equated before any of the training 

data is taken into account. The equation that describes 

the system yield for an ELM with a single hidden 

layer may be found here by Eq. (5). Where x  

 



Received:  September 20, 2023.     Revised: October 25, 2023.                                                                                       234 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.22 

 

Table 5. Hyper parameters used for Building the ELM 

network model 

Sl.no Hyper parameters Specification 

1 No of Hidden layers 200 

2 No of Epochs 100 

3 Learning Rate 0.001 

4 Batch Size  20 

 

represents an input, β denotes the Output weight 

vector, which is expressed as Eq. (6) and H(x) 

describe hidden layer output is defined as Eq. (7). 

 

𝑓𝐿(𝑥) = ∑ 𝛽𝑖ℎ𝑖(𝑥) = ℎ(𝑥)𝛽𝐿
𝑖=1        (5) 

 

𝛽 = [𝛽1, 𝛽2, . . . . . . . . . 𝛽𝐿]
𝑇                  (6) 

 

ℎ(𝑥) = [ℎ1(𝑥), ℎ2(𝑥), . . . . . . . . . ℎ𝐿(𝑥)     (7) 
 

The hidden layers are described by the Eq. (5), 

which is used for the estimate the O, which is the 

target vector. The ELM is built using the marginal 

non-linear property of the least square model, and its 

computes an Eq. (8). Where H∗ denotes the inverse 

of H is known as the Moore–Penrose generalized 

inverse can be reformulated as Eq. (9) and finally 

output function is estimated as Eq. (10).      

  

𝛽′ = 𝐻 ∗ 0 = 𝐻𝑡 (𝐻𝐻𝑇 )−10          (8)                                                                                                                   

 

β' = HT (
1

C
HHT )-10            (9)                                                                                                           

 

𝑓𝐿(𝑥) = ℎ(𝑥)𝛽 = ℎ(𝑥)𝐻𝑇 (
1

𝐶
𝐻𝐻𝑇 )−1𝑂   (10)                                                                                             

 

ELM makes use of the kernel function to achieve 

high levels of accuracy, which results in improved 

speed. The ELM has a number of benefits, the most 

important of which are reduced training errors and 

improved approximation. Applications in 

classification and prediction value analysis may be 

found for ELM due to its use of auto-tuning of the 

weight biases and non-zero activation functions. The 

training hyper parameters deployed for ELM 

prediction network is presented in the Table 5. 

3. Implementation and evaluation 

Applications are executed using the proposed 

technique in fog devices that are located between the  

 

Table 6. Software used for experimentation 

Sl.no     Software used  Source  

1 IFogSim https://github.com/harshi

tgupta1337/fogsim 

2 Eclipse IDE for 

JAVA Developers 

http://www. 

eclipse.org/downloads/pa

ckages/release/Mars/2 

3 Anaconda v 3.2 http://www.anaconda.org

/distribution/downloads 

4 TensorFlowv 2.6.0 https://www.tensorflow.o

rg 
5 Keras v2.56 

 

cloud and end devices. In order to investigate the 

advantages of using cloud computing and edge 

computing in terms of the distribution of data and the 

reduction of latency, an experimental setting has been 

established. The IoTs sensors are located at a lower 

layer in the paradigm, and it is their job to receive and 

send data to higher levels through gateways. This is 

performed in line with the paradigm. Each network 

application has its topology, which provides the 

filtering and analysis of medical data collected from 

the lower IoT layers. Table 6 expalins a Software 

used for experimentation. Table 8. Explains the 

mathematical expression for the calculating time 

based performance metrics. 

The simulation and modeling of FC environments 

is achieved through the use of IFogSim. It analyses 

the efficiency of different scheduling algorithms and 

methods of resource management inside the FC 

context. Its primary use is in the process of 

calculating a variety of variables, including operating 

cost, power consumption, delay, and network 

congestion. Additionally, Eclipse Modeling tools, 

Python 3.9 with Tensorflow, and Keras are used for 

modeling the proposed network. The complete 

algorithm is implemented in a PC workstation with 

an Intel I9 CPU, a 256GB SSD, 8GB RAM, and a 

16GB NVIDIA Tesla GPU. The data are recorded in 

CSV format and used for training and testing. The 

performance of the proposed model is calculated and 

analyzed using mathematical expressions listed in 

Table 7. 

In addition, the effectiveness of the suggested 

algorithm was evaluated and compared with that of 

other algorithms already in existing in terms of time-

related metrics such as TSR (Time Service Request), 

WT (Waiting Time), and ARU (Average Resource 

Utilization). Table 7 presents the mathematical 

phrase that was used for the purpose of computing  
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Table 7. Mathematical expression for performance 

metrics calculation 

SL.NO Performance 

Metrics 

Mathematical 

Expression 

01 Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

02 Sensitivity or 

recall 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

  

03 Precision 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

 
Table 8. Mathematical expression for the calculating time 

based performance metrics 

Sl.No Performance 

Metrics 

Mathematical Expression 

1 TSR(Time 

Service 

Request) 

CT-AT where CT is 

Completion time and AT is 

Arrival time 

2 WT(Waiting 

Time) 

TSR- BT where BT is Burst 

time for which the process 

requires for execution. 

3 Average 

Resource 

utilization  

LBL= BS*OVL/BS  where 

BS is Number of Balanced 

Nodes and OVL  is total 

overloaded number of nodes 

in network 

 

each metric. In order to demonstrate that the ELM 

prediction algorithm that has been suggested is 

superior, performance metrics are computed using 

the number of datasets and tasks that are present in 

the network. The effectiveness of the enhanced 

learning machine that was developed is evaluated and 

compared with that of other algorithms already in use, 

including PNN, support vector machines (SVM), 

decision trees (DT), random forest (RF), and K-

nearest neighborhood (KNN). 

The prediction accuracy of the different 

algorithms using real-time simulated data is shown in 

Fig. 3, whereas using mHealth datasets to predict 

heart attacks is shown in Fig. 4. In both cases, as 

testing data increases, the performance of the existing 

algorithm degrades gradually[23]. In contrast, the 

PNN and ELM have produced better performance 

when handling larger datasets. But the ELM has 

better stability than the PNN when testing samples 

are given in large numbers. ELM degrades only 0.5% 

of performance, whereas PNN degrades 2.5% as the  

 

 
Figure. 3 Performance of different models in predicting 

the heart attacks using the real time datasets 

 

 
Figure. 4 Performances of the different models in 

predicting the heart attacks using the mHealth datasets 

 

datasets increase. The auto-tuning property of ELM 

has produced a considerably better performance in 

handling a larger number of tasks. 

The precision and recall metrics of the different 

algorithms are presented in tables 9, 10,11, and 12.  

From the tables; it is clear that the proposed ELM has 

shown more promising performance for the increased 

number of samples than other algorithms, such as 

PNN, SVM, DT, RF, and KNN. The stability of the 

ELM remains constant and degrades only 0.45% for 

real-time simulated data and 0.5% for mHealth 

datasets. 

The experimentation has proven the proposed 

algorithm plays a vital role in predicting heart attacks, 

even though the number of tasks increases. Again, the 

performance of the proposed algorithm is compared 

with the other existing algorithms using the metrics 

mentioned in the table. In this evaluation, existing 

algorithms such as LC, RR, WRR, AWRR, and 

EPRAM are considered, as mentioned in Section-1. 

AUR analyses of the proposed algorithm using real-

time simulated and mHealth datasets are shown in 

Figs. 5 and 6, respectively.  
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Table 9. Precision analysis for the different algorithms 

using real time simulated data 

Data 

Samples 

Precision Analysis (%) 

RF DT SVM KNN PNN ELM 

80:20 89 80 86 87.5 90.5 97.3 

70:30 85.4 79 84.5 86.4 90.5 97.3 

60:40 82 76.5 79.5 84.5 88.4 96.4 

50:50 80 74.3 75.3 83.7 88.0 96.4 

40:60 74 70 69.5 79.5 84.5 95.6 

 

Table 10. Precision analysis for the different algorithms 

using mHealth dataset 

Data 

Samples 

Precision Analysis (%) 

RF DT SVM KNN PNN ELM 

80:20 88.4 82 86 87.3 90 97 

70:30 83.5 78.5 84.5 83.5 90 97 

60:40       

81.4 

75.7 78.5 84.5 88 96 

50:50 80 75.9 77.3 82.5 87.4 96 

40:60 74 68.5 69.5 78.4 85 95 

 

Table 11. Recall analysis for the different algorithms 

using real time simulated data 

Data 

Samples 

Recall Analysis (%) 

RF DT SVM KNN PNN ELM 

80:20 89 80 86 87.5 90.5 97.3 

70:30 85.4 79 84.5 86.4 90.5 97.3 

60:40 82 76.5 79.5 84.5 88.4 96.4 

50:50 80 74.3 75.3 83.7 88.0 96.4 

40:60 74 70 69.5 79.5 84.5 95.6 

 

It is clear from both Fig. 5 and Fig. 6 that the 

remarkable performance that the suggested algorithm 

has obtained is a direct result of its use of deep RL 

and ELM. The deep learning strategy that was 

suggested has shown some significant improvement 

in terms of resource allocation. Calculations are done 

on the makespan for the proposed method, and it is 

compared to existing algorithms. The comparative  

 

Table 12. Recall analysis for the different algorithms 

using mHealth dataset 

Data 

Samples 

Recall Analysis (%) 

RF DT SVM KNN PNN ELM 

80:20 88.4 82 86 87.3 90 97 

70:30 83.5 78.5 84.5 83.5 90 97 

60:40        

81.4 

75.7 78.5 84.5 88 96 

50:50 80 75.9 77.3 82.5 87.4 96 

40:60 74 68.5 69.5 78.4 85 95 

 

 
Figure. 5 AUR analysis for the different algorithms using 

real time simulated datasets 

 

 
Figure. 6 AUR analysis for the different algorithms using 

mHealth datasets 

 

results are shown in Fig. 7 (real-time simulated 

datasets) and Fig. 8 (mHealth datasets).  
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Figure. 7 Makespan analysis for the different algorithms 

using real-time simulated datasets 

 

 

Figure. 8 MakeSpan analysis for the different algorithms 

using mHealth datasets 

 

From Figs. 7 and 8, it is clear that the proposed 

model has shown better performance than the other 

existing algorithms. Since the RL deploys an agent 

that can allocate the task quickly and efficiently, 

Moreover, integration of ELM for predicting heart 

attacks takes lesser time than the other learning 

models, even for the larger datasets. 

4. Conclusion and future development 

This paper discusses the resource allocation 

technique in a fog-edge environment. The IoT layer 

is responsible for collecting the patients' data and 

forwarding it to the suitable fog-edge nodes. After 

collecting the data, fog-edge nodes deliver it to the 

cloud, which manages data transfers to appropriate 

resources and it provides an accurate prediction 

algorithm for heart diseases. In the proposed system, 

the DCU collects the data from the IoT layers and 

stores it in memory for further processing. DPU is 

responsible for sampling, categorizing, and balancing 

data into appropriate forms that can be used for 

additional training, testing, and validation. The 

intelligent prediction system uses ELMs to predict 

different heart attacks. Finally, ARAM comprises a 

deep Q-learning mechanism for reasonable resource 

allocation. It is estimated that around 15,000 datasets 

were created and used for the purposes of prediction 

and allocation. The proposed ELM has better stability 

than the PNN when testing samples are given in large 

numbers. ELM degrades only 0.5% of performance, 

whereas PNN degrades 2.5% as the datasets increase. 

The stability of the ELM remains constant and 

degrades only 0.45% for real-time simulated data and 

0.5% for mHealth datasets. The deep learning 

strategy that was suggested has shown some 

significant improvement in terms of resource 

allocation. Calculations are done on the makespan for 

the proposed method, and it is compared to existing 

algorithms The performance of the model is 

compared with several performance metrics to show 

that the proposed algorithm is better than other 

algorithms. The proposed model may improve 

security and load-balancing techniques in future.  
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