
Received: May 18, 2023. Revised: September 16, 2023. 108

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

Enhanced Index Based DNA Sequence Compression Algorithm

Arunachalaprabu Gurunathan1* Fathima Bibi Kaja Moideen1

1Department of Computer Science, Thanthai Periyar Government Arts and Science College (Autonomous),

Affiliated to Bharathidasan University, Tiruchirappalli, India

* Corresponding author’s Email: guruarun12@gmail.com

Abstract: Biological data analyses involve researchers from several fields. To store and manipulate the huge volume

of biological data obtained from different aspects is difficult. Compression algorithms considerably increase the

storage medium's capacity while reducing the number of bits required representing the sequence. The core concept

behind EIBDNASCA involves creating an optimized index file, which stores the non-repetitive bases (run length less

than 8). This index file plays a crucial role in swiftly retrieving and reconstructing specific segments of the DNA

sequence during the decompression process. In addition to the index file, EIBDNASCA incorporates a work file, which

stores the repetitive bases (run length above 8) and represented in binary form. This work file allows the algorithm to

perform various pre-processing and transformation tasks on the DNA sequence before generating the final compressed

output. Finally, an enhanced Huffman coding technique is applied to the symbols present in the index file, optimizing

the encoding process for more efficient compression. The proposed algorithm is examined using a variety of different

GenBank database sources. Compression ratio, compression gain, and time required to compress and decompress the

sequences are the metrics used to assess the performance. The experimental findings indicate that EIBDNASCA attains

an average compression ratio of 1.23 bpb (bits per base) with an average compression gain of 84.52%. The average

compression time is recorded at 0.590 seconds, and decompression is completed in 0.625 seconds.

Keywords: Compression ratio, Deoxyribonucleic acid, Huffman coding, Index file, Run length encoding.

1. Introduction

Three kinds of molecules are involved in the story

of genetic material namely proteins,

deoxyribonucleic acid (DNA) and Ribonucleic acid

(RNA). Proteins: a set of molecules whose behavior,

concentration and shape determine the cell’s

properties. The cells of hair, nerve or blood are

distinct because they are composed of different kinds

of proteins. DNA: another molecule that defines the

specific proteins and in turn depends on proteins to

become active. RNA: Its structure is similar to DNA.

The nucleus of a cell contains the genetic material

DNA that is transmitted from one generation to the

next.

The DNA molecule are chains of long strands

composed of four different kinds of bases Adenine

(A), Cytosine (C), Guanine (G), and Thymine (T).

Two strands are joined together as bases can bind to

each other (For example: Adenine – Thymine and

Cytosine – Guanine). A DNA sequence is a long

string that describes the accurate ordering of these

four bases.

Growth in bioinformatics allows fast collection

and interpretation of biological datasets. In the field

of data processing and interpretation, biologists

encountered similar type of information overload and

faced a lot of challenges. One of the important

challenges was to collect biological information of

individual DNA sequences and determine the order

of the sequences that make up human DNA. Recent

genome projects generate trillions of base pairs of

biological data at rapid rate constantly. The Release

254(February 2023) of GenBank contains

1731302248418 bases [1].

Table 1 shows the number of bases as a pointer of

the augmentation of GenBank database.

Received: May 18, 2023. Revised: September 16, 2023. 109

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

Table 1. Statistics of GenBank

(From February 2022 to February 2023)

Release
Month

Year

Number of

Bases
Sequences

248 02 / 2022 1173984081721 236338284

249 04 / 2022 1266154890918 237520318

250 06 / 2022 1395628631187 239017893

251 08 / 2022 1492800704497 239915786

252 10 / 2022 1562963366851 240539282

253 12 / 2022 1635594138493 241015745

254 02 / 2023 1731302248418 241830635

Storing large volume of DNA sequences will

effect in memory overflow. The amount of available

storage space is classically the bottleneck. Another

interesting and important setback is transmitting the

DNA sequences from one place to another. Network

traffic is generated when datasets are transferred

between databases. In such cases, accessing DNA

sequences is a difficult problem in many scientific

applications. As a result, several algorithms are

proposed to compress the size of sequences.

Compression is the task of minimizing the bits to

represent a base. Two types of compression

techniques are: Lossy and lossless. Data compressed

using lossy techniques cannot be recovered exactly.

The reconstructed data differs from original one.

DNA variant, called mutation occurs when (1) one

base being replaced incorrectly by another base (2)

addition of an incorrect base to the sequence (3)

deletion of a correct base from the sequence. In such

cases the sequence gets altered and lead to

malfunctioning. For this reason a lossy compression

technique is not usually applied to text compression,

specifically DNA sequence compression. A lossless

compression is the task to reduce the size of file and

restore the original data in decompression. Lossless

compression improves storage capacity and exchange

of data worldwide. The data is uploaded and

downloaded accurately and quickly at any instant.

Researchers believe that the quality of compression

largely depends on the repetitive and/or non-

repetitive bases within the DNA sequence. Therefore,

repetitive/non-repetitive bases have received a

considerable amount of attention in recent times. The

work addresses a solution to this problem with the

help of lossless compression. Several such lossless

DNA sequence compression algorithms have been

developed to reduce the need for large amounts of

storage and to increase transmission.

Some of the major compression algorithms are

BioCompress [2], BioCompress2 [3], Gen Compress

[4], DNACompress [5], Normalized Maximum

Likelihood (NML) [6], GeNML [7] and DNA

Sequence Compressor (DNASC) [8]. These

compression algorithms are suitable for more

repetitive similar DNA sequences but stand

infeasible for non-repetitive DNA sequences.

In bioinformatics, the invention of lossless

compression algorithms might be crucial to the

understanding and analysis of DNA sequences.

Improving storage device capacity and reducing

DNA sequence memory occupancy are two specific

objectives of the research work. In order to compress

DNA sequences, an EIBDNASCA based on run

length encoding and improved huffman coding

methods is introduced in the work. On both repetitive

and non-repetitive bases, the basic RLE method is

used. Non-repetitive bases take up more storage

space and reduce the storage medium's capacity.

Thus, the improved huffman coding method is used

after moving the non-repetitive bases to an index file.

The proposed approach seems to be a promising way

to compress DNA sequences, even in high

throughput situations. The paper is organized into

five sections and the general information of each

section is given as follows. Section 2 reviews the

recent studies made in DNA compression.

Performance Metrics are defined in section 3. Section

4 describes the working of EIBDNASCA and section

5 gives the experimental results. To conclude,

Section 6 briefs the view of the proposed work.

2. Related works

Although compression methods for DNA

sequences in bioinformatics are relatively a novel

development, the field is strongly associated with

various other fields. The following section discusses

the literature review for latest DNA compression

algorithms, its experimental methodology and results.

Krishnamoorthy and Karthikeyan, (2022)

proposed a novel hybrid streamlining of

hospitalization–subordinate DNA pressure

(HOARDNAComp) compression technique based on

auto regression and firefly algorithm. The technique

utilizes an even mode factual strategy associated with

auto regression. Modified firefly computation set the

model boundary values and addresses the issue

during presentation of computation in a particular

cycle. Experiments have showed that an average

compression ratio of 1.39 bpb was obtained. The

performance of HOARDNAComp when compared

with DNA compression using particle swarm

optimization (DCPSO) [9] resulted in minimum

compression ratio [10].

Rosario Gilmary and Murugesan (2021)

described a bit reduction method to compress the

DNA sequence. The method consists of three stages,

namely, a) reduce the number bits of DNA sequences

Received: May 18, 2023. Revised: September 16, 2023. 110

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

b) encode binary format to hexadecimal c) apply

Huffman coding to hexadecimal values. This study

was also compared with existing algorithms. The

result showed better compression ratio and high

saving storage. Multiple transformations and

conversions applied to the DNA sequence, leads to

increased complexity in compression [11].

Mansouri et al., (2020) used a DNA compression

algorithm with single-block encoding (DNAC-SBE).

In One-Bit Method, the location of bases with high

frequencies is substituted by 1s and others by 0s. The

SBE encodes the streams produced. Each block is

assigned a short codeword dynamically. DNAC-SBE

discovers the unidentified bases. The proposed

algorithm achieved high saving percentage when

compared with other algorithms The drawback of

DNAC-SEB is its rigid use of fixed block size (seven

bits) for encoding, which lead to average

compression results against diverse genomic data.

[12].

Murugesan, (2020) designed a codon based

compression algorithm (CBCA) to compress the

DNA sequences [13]. It compresses and

decompresses the data without using dictionary

which reduces the requirement of additional memory.

The method resulted with an improved compression

ratio of 1.59 bpb when compared to existing

algorithms. Experimental results have shown that

0.18 seconds is required to compress the sequences.

The drawback pertains to utilizing fixed-length

binary values (1 bit, 2 bits, 4 bits, 5 bits, or 6 bits) for

the encoding process.

Hui Chen, (2020) developed a context modeling

tool named entropy coding technique (ECT) for

compressing the genomic data. The input sequence is

alienated into coding sequence, intron, RNA and

residual clusters. It amalgamates the features of

entropy coding technique. Initially, all sets will be

arranged associated to the specific sequence features

and ECT will encode these sequences. The ECT

achieved an average of 1.72 bpb compression ratio.

Disadvantage: it needs long computation time [14].

3. Performance metrics

The following are the metrics to measure the

efficiency of a compression algorithm:

3.1 Compression ratio (CR)

Compression ratio binds the size of original file

to the size of reduced file. It is articulated in bits per

base (bpb) or bits per character (bpc).

CR = Compressed file size / Original file size

3.2 Compression factor (CF)

Compression factor depicts the ratio of original

file size to the compressed file size. The compression

factor is defined as

CF = Original file size / Compressed file size

3.3 Saving percentage (SP)

Saving percentage depends on the value of

original file size minus compressed file and the

original file size. It is expressed in terms of

percentage.

SP = (Original file size -Compressed file size) /

Original file size

3.4 Compression time

Compression time is the time needed to compress

a file.

3.5 Decompression time

The time needed to rebuild the file to its original

is termed as decompression. Compression and

decompression time are formally expressed in

seconds.

4. Proposed algorithm

Current DNA sequencing technologies generate

large volume of genomic data (DNA Sequences).

Rapid growth of these sequences has become

extremely high. They are readily available for

sequence mining, homology searches and modeling.

Effective and scalable storage medium that analyze

and store these genomic datasets is required.

Among the issues faced by the researchers of

bioinformatics community, few of them stand out.

i) Increase in DNA sequences led to tremendous

need of disk storage capacity.

ii) Transferring genomic data from one point to

another was generally difficult and took more time.

iii) DNA sequences contain repetitive and non-

repetitive bases. It is known that non-repetitive

bases occupy more space in compression.

Inference of novel pathway needs lossless

compression algorithms to compress such

genomic data.

Some of the major goals associated with these issues

are:

i) A novel compression algorithm is required to

reduce the size of the genomic data and achieve

better compression ratio specifically in DNA

Received: May 18, 2023. Revised: September 16, 2023. 111

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

sequences containing both repetitive and non-

repetitive bases.

ii) The algorithm must provide an efficient way to

store the vast amount of genomic data without

affecting the effectiveness of the storage medium.

The compression algorithm must increase the

capacity of storage medium.

iii) The algorithm should be scalable and able to work

well for various sizes.

iv) The algorithm must be capable of transferring the

genomic dataset from one node to another as fast

as possible and also reduce network traffic.

The need for lossless algorithms to compress the data

is highly essential. In this research work, a novel

algorithm has been proposed that achieves good

compression gain, better compression ratio and

reduced time taken for compression as well as

decompression. In particular, the EIBDNASCA

compresses both repetitive R and non-repetitive NR

bases in a sequence. The EIBDNASCA combines

both the features of RLE and improved Huffman

coding methods. At first, apply basic RLE method to

find repetitive R and non-repetitive NR bases in a

sequence D. Now, read the repetitive segment R (r,

b1; r, bn) and write the base(s) with run length > 5 in

work file. At the work file R(r, b1; r, bn-1), the

repetitive bases are represented in binary form while

R(r, bn) alone represented uniquely. Then, read the

non-repetitive bases NR (r, b1; r, bn) and write the

base(s) with run length ≤ 5 in index file. Here, the

non-repetitive bases NR (r, b1; r, bn-1) are written to

the index file as symbols and NR(r, bn) alone

represented by unique symbol. Now apply improved

Huffman coding to the symbols in index file. Usually

compression algorithms use a flag bit to transfer the

base pair (runlength, base) into index file. That is, a

flag bit set in work file (to reconstruct the data) and

pair (runlength, base) written in index file. However,

such algorithms have a major drawback: if the work

file has n number of flag bits, it needs (n x s) bits to

represent the flag bits where s is length of flag bit.

This can occupy more storage space. To overcome

this issue, the EIBDNASCA transfers a base pair to

another file by representing the last base with a

unique symbol instead of flag bit. Another important

advantage is that the algorithm compresses the file

based on the bases in the DNA sequence, not the file

size. This resolves the scalability issue.

4.1 Run length encoding (RLE) method

The RLE method counts the occurrences k of the

base b from the input sequence D and writes

(runlength, base) – kb. The resulting k consecutive

occurrence of a base is called runlength and is

normally referred to as Run Length Encoding or RLE.

The given sequence D has n bytes (30bases)

‘TTTTAAGCTTTTTTTTTTTTTTTTTTTTTG’

taken from HUMGPRTB dataset. The runlength k of

the sequence is computed by applying RLE and

replacing k occurrences with the pair kb, ‘4T 2A 1G

1C 21T 1G’ (length 12 bytes). The highlight about

RLE is that, the method is easy to implement and

requires less amount of processing power. Drawback:

for more non-repetitive NR bases the method might

not be appropriate.

4.2 Work file – bit representation for bases

Table 2 shows bit representation of the

EIBDNASCA. Let D = {b1, b2, b3 … bm} be a DNA

sequence, where bi ∈ A, and A is the set of all bases

in the file. Read the repetitive segment R (r, b1; r, bn)

where r ≥ 6. Set bit representation and base value for

R (r, b1; r, bn-1) using Table 2 and for (r, bn) uniquely

from Table 3. Table 2 offers a comprehensive and

novel representation of bases in the work file using a

four-bit encoding scheme. Notably, the first bit of this

representation, denoted as "1" serves a dual purpose:

it signifies that the control is encoding the current

base while simultaneously transitioning to the next

base within the work file. However, it is crucial to

emphasize that this control is not transferred to the

index file. The significance of this table lies in its

provision of detailed bit patterns for representing

bases, covering a run length ranging from 9 to 16. For

instance, when dealing with a run length of 9 and the

base "A," the Bit Representation (BR) corresponds to

000, while the base value is represented as 00. Table

3 presents a comprehensive and detailed

representation of the last base of the segment in the

work file, utilizing a four-bit encoding scheme. In this

encoding scheme, the first bit, indicated as "0" serves

as a crucial control signal that signifies the current

base is encoded and subsequently transferred to the

Index file. Importantly, this transfer ensures that the

next base in the work file is not processed. The table

covers a range of run lengths from 9 to 16, offering

specific Bit Representation (BR) patterns for each

base (A, C, G, T). For instance, when dealing with a

run length of 10 and the base "G" the corresponding

Bit Representation is denoted as 001, while the base

value is represented as 10.

4.3 Huffman coding method

David Huffman designed a lossless compression

method that reduces the size of the file. The idea is

Received: May 18, 2023. Revised: September 16, 2023. 112

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

that codes using this method are referred as Huffman

codes [15].

Algorithm

1. Sort the bases based on their frequency in

descending order.

2. Make each base as a leaf node. In the beginning,

the least frequency base is taken.

3. Two minimum frequency nodes are extracted to

construct a new node. Make the minimum

frequency base as left node and second minimum

frequency base as right node. The new node is the

sum of the left and right nodes frequencies.

4. Now the new node is inserted to tree.

5. Repeat steps (3) & (4) until reaches the root.

6. Assign left edge ← 0 and right edge ← 1 for non-

leaf node.

7. Now, determine codeword by traversing the tree.

4.4 Improved huffman coding method

The key concept of improved Huffman coding

method is substituting a unique symbol to the bases

contained in index file. This method can be used to

further reduce memory space and time. For instance,

consider a DNA sequence D = {b1, b2, b3 …bm}

where bi ∈ A, A is the set of all bases in file. Read

the non-repetitive segment NR (r, b1; r, bn) where r

≤ 5. Set the symbol representation for NR (r, b1; r,

bn-1) and uniquely for (r, bn) from Table 4. The

Improved Huffman coding method is used in symbols

and not to bases.

The first part of the Table 4 is structured as an 8 x

8 matrix, with each cell containing a symbol that

represents a specific control code. This control code

is responsible for encoding the current base, and then

the encoded information is transferred to the work file.

The rows of the matrix correspond to different run

lengths, ranging from 1 to 8. At run length 1, denoted

by the symbol "!", the control code encodes the

current base as 'A' and subsequently transfers it to the

work file. Similarly, for run lengths 2 to 8, the

symbols represent the bases 'C', 'G', and 'T',

respectively, and their corresponding control codes

facilitate encoding and transfer. In table 4, the

printable ASCII values are assigned to the bases in a

systematic manner. For instance, the ASCII value 33

is assigned to position a11 of the matrix,

corresponding to the symbol "!". Similarly, ASCII

value 34 is assigned to position a12, representing the

symbol '"'. This pattern continues for the entire matrix,

enabling a consistent and reliable mapping of

symbols to their respective ASCII representations.

The encoding scheme is based on an 8 x 8 matrix

(second portion of Table 4), where each row

Table 2. Work file – bit representation for bases

Run

Length

Bit Representation (BR) – Base

BR A C G T

9 1000 00 01 10 11

10 1001 00 01 10 11

11 1010 00 01 10 11

12 1011 00 01 10 11

13 1100 00 01 10 11

14 1101 00 01 10 11

15 1110 00 01 10 11

16 1111 00 01 10 11

Table 3. Work file – bit representation for last base

Run

Length

Bit Representation (BR)– Base

BR A C G T

9 0000 00 01 10 11

10 0001 00 01 10 11

11 0010 00 01 10 11

12 0011 00 01 10 11

13 0100 00 01 10 11

14 0101 00 01 10 11

15 0110 00 01 10 11

16 0111 00 01 10 11

Table 4. Symbols for bases in index file

Run

Length

Symbol

(Last base)

Symbol

(Base)

A C G T A C G T

1 !) 1 9 A I Q Y

2 " * 2 : B J R Z

3 # + 3 ; C K S [

4 $, 4 < D L T \

5 % - 5 = E M U]

6 & . 6 > F N V ^

7 ' / 7 ? G O W _

8 (0 8 @ H P X `

corresponds to a specific run length (ranging from 1

to 8), and each column represents one of the four

DNA bases (A, C, G, T). The main objective of this

encoding is to transform long DNA sequences into

more compact symbols, facilitating the storage and

analysis of vast genetic data. The encoding process

involves controlling the current base and then

encoding the subsequent base directly within the

index file and not transfers to work file. For instance,

for run length 2, the symbols assigned to the bases are

'B' for A, 'J' for C, 'R' for G, and 'Z' for T. Moreover,

the ASCII values are employed to assign specific

numerical values to the bases in the matrix,

streamlining the encoding process further.

Received: May 18, 2023. Revised: September 16, 2023. 113

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

Illustration

The working principle of the EIBDNASCA is

demonstrated as follows:

A sequence D with size 41 bytes is taken.

D={AAAAACCCTTAAAAAAAACCCCCCGGGT

TTTTTTTTGGGGG}, | D | = 41.

After applying RLE to D

5A 3C 2T 8A 6C 3G 9T 5G

Work file

9T

0000-

11

Index file

5A 3C 2T 8A 6C 3G 5G

E K Z H N 3 5

Table 5 illustrates the bits required to represent the

bases after applying improved Huffman coding in

index file.

Required bits = 2 x Frequency (5A) + 2 x Frequency

(3C) + 3 x Frequency (2T) + 3 x Frequency (8A) + 3

x Frequency (6C) + 4 x Frequency (3G) + 4 x

Frequency (5G)

= 2 x 1 + 2 x 1 + 3 x 1 + 3 x 1+ 3 x 1 + 4 x 1+ 4 x 1

=2+2+3+3+3+4+ = 21 bits

Size after Compression = Work file + Index file

= 06 bits + 21 bits

= 27 bits

= 3.37 bytes

Compression ratio is given by

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑆𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
 𝑥 8

= (3.37 / 41) x 8

= 0.65 bpb

5. Results and discussion

5.1 Datasets

Six different standard benchmark datasets taken

from GenBank database are used to experiment the

proposed method. Table 6 gives the major

descriptions of these datasets. The EIBDNASCA is

implemented and executed in Java. Relationship

between size of file before compression and after

compression (original size and compressed size) is

needed to be considered.

Table 5. Improved Huffman coding method

Bases Symbols Frequency
Code

Word

Length

of

Codewo

rd

Number of

Bits

Required

5A E 1 00 2 2

3C K 1 01 2 2

2T Z 1 100 3 3

8A H 1 101 3 3

6C N 1 110 3 3

3G 3 1 1110 4 4

5G 5 1 1111 4 4

Required bits = 21 bits

EIBDNASCA

for all bases b of D do

Compute the runlength of b

for i = 0 to |D|

runlength ← 1

while i+1 < |D| && D.base(i) =

=D.base(i+1)

runlength ← runlength + 1

i ←i + 1

end while

append (runlength, base(i))

end for

Work file – Bit Representation

for all pairs P1 do

for g = 0 to | P1 |

while g+1 < | P1 | && P1.runlength(g) ≥

6

R ← runlength, base

g ←g + 1

end while

for j = 0 to | R | - 1 do

br ← set bit representation

end for

lastbase ← set unique bit representation

append (br, lastbase)

end for

Index file – Symbol representation

for all pairs P1 do

for g = 0 to | P1 |

while g+1 < | P1 | && P1.runlength(g) ≤

5

NR ← runlength, base

g ←g + 1

end while

for j = 0 to | NR | - 1 do

s ← symbol

end for

slastbase ← unique symbol

end for

for i to s

s.frequency++

codewords ← createTree(s.frequency)

append (codewords)

end for

Compute the run length of bases

Received: May 18, 2023. Revised: September 16, 2023. 114

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

Table 6. Description of standard bench mark datasets

Source of

Sequence

Name of the

Sequence

Length

(Bytes)

Size of File

(Kilobytes)

Chloroplast Chmpxx 121024 118.19

Human

Humdystrop 38770 37.86

Humhbb 73308 71.59

Humhprtb 56737 55.40

Mitochondria Mpomtcg 186609 182.23

Virus Vaccg 191737 187.24

This relationship is examined with three cases: the

best, average and worst. It also depends on the

number of repetitive and non-repetitive bases of

DNA sequences.

5.2 Best case

The best case is when compression ratio is good.

A sequence with several repetitive bases is taken for

best case.

A sequence D with size 40 bytes is taken.

D={AAAAAAAAAGGGGGGCCCCCCTTTTTCC

CCCCCCCTTTTT}, | D | = 40

After applying RLE to D

9A 6G 6C 5T 9C 5T

Work file

9A 9C

0000-00 0000-01

Index file

6G 6C 5T 5T

V N = =

Table 7 illustrates the bits required to represent

the bases after applying improved Huffman coding in

index file. Compression ratio for best case = 0.45 bpb.

5.3 Average case

A sequence D with merely average repetitive

bases of size 40 bytes is taken.

D={AAAAAAATCCCCCGGTTTCCCCCCCCCC

CCCCCAAA GGCC}, | D | = 40

After applying RLE to D

7A 1T 5C 2G 3T 15C 3A 2G 2C

Work file

15C

0110 - 01

Index file

7A 1T 5C 2G 3T 3A 2G 2C

G Y M R ; C R *

Table 7. Improved huffman coding (best case)

Bases

with

Runle

ngth

Symbol

Represen

tation

Symb

ol’s

Frequ

ency

Co

de-

Wo

rd

Size of

Code

word

Bits

Requ

ired

5T = 2 0 1 2

6G V 1 10 2 2

6C N 1 11 2 2

Total bits Required 6

Table 8. Improved huffman coding (average case)

Bases

with

Runle

ngth

Symbol

Represen

tation

Symb

ol’s

Frequ

ency

Co

de-

Wo

rd

Size of

Code

word

Bits

Requ

ired

2G R 2 00 2 4

7A G 1 01 2 2

1T Y 1 100 3 3

5C M 1 101 3 3

3T ; 1 110 3 3

3A C 1 111

0

4 4

2C * 1 111

1

4 4

Total bits Required

23

Table 8 illustrates the bits required to represent

the bases after applying improved Huffman coding in

index file. Compression ratio for average case = 0.72

bpb.

5.4 Worst case

A sequence D with less repetition is taken.

D={TAACGGGTCTCGGGGTTTTTCCCCACGT

CCCGGCTAAAGT}, | D | = 40

After applying RLE to D

1

T

2

A

1

C

3

G

1

T

1

C

1

T

1

C

4

G

5

T

4

C

1

A

1

C

1

G

1

T

3

C

2

G

1

C

1

T

3

A

1

G

1

T

Index file
1

T

2

A

1

C

3

G

1

T

1

C

1

T

1

C

4

G

5

T

4

C

1

A

1

C

1

G

1

T

3

C

2

G

1

C

1

T

3

A

1

G

1

T

Y B I S Y I Y I T] L A I Q Y K R I Y C Q Y

Table 9 illustrates the bits required to represent

the bases after applying improved Huffman coding in

index file. Compression ratio for worst case = 1.8 bpb.

5.5 Results of EIBDNASCA for standard datasets

To statistically compare the performance of the

Received: May 18, 2023. Revised: September 16, 2023. 115

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

Table 9. Improved huffman coding (worst case)

Bases

with

Runle

ngth

Symbol

Represe

ntation

Sym

bol’s

Freq

uenc

y

Code

Word

Size of

Code

Word

Bits

Req

uire

d

1T Y 6 00 2 12

1C I 5 01 2 10

1G Q 2 1000 4 8

2A B 1 1001 4 4

3G S 1 1010 4 4

4G T 1 1011 4 4

5T] 1 1100 4 4

4C L 1 1101 4 4

1A A 1 1110 4 4

3C K 1
11110

0
6 6

2G R 1
11110

1
6 6

3A C 1
11111

0
6 6

Total bits Required 72

Table 10. Standard datasets results of EIBDNASCA

DNA

Seque

nce

Actua

l Size

(Byte

s)

Reduce

d Size

(Bytes)

Com

pres

sion

Rati

o

(bps

)

Compr

ession

Gain %

Time Taken

(Seconds)

Com

press

ion

Deco

mpre

ssion

Chmp

xx

12102

4
17345 1.14 85.66 0.544 0.578

Humd

ystrop
38770 6186 1.27 84.04 0.513 0.562

Humh

bb
73308 11132 1.21 84.81 0.519 0.546

Humh

prtb
56737 8936 1.25 84.25 0.509 0.591

Mpo

mtcg

18660

9
30086 1.28 83.87 0.699 0.676

Vaccg
19173

7
29716 1.23 84.50 0.756 0.794

Average 1.23 84.52 0.590 0.625

algorithm to that of the standard algorithms and

existing compression algorithms the EIBDNASCA is

experimented with basic RLE method along with

improved Huffman coding method. Table 10

summarizes the results of EIBDNASCA.

Experimental results demonstrate that an average

compression ratio of 1.23 bpb and average

compression gain of 84.52% is achieved. The average

time taken for compression is 0.590 seconds and that

of decompression is 0.625 seconds.

Table 11. Comparison analysis of EIBDNASCA over

existing algorithms

DNA

Sequenc

e

DN

AC-

SB

E

[12]

CB

CA

[13

]

E

C

T

[1

4]

HOA

RDNA

Comp

[10]

Bit

Redu

ction

[11]

IBDN

ASCA

EIBDN

ASCA

Chmp

xx
1.60 -

1.

58
1.33 - 1.40 1.14

Humd

ystrop
1.72

1.5

5
- 1.39 1.64 1.53 1.27

Humh

bb
1.71

1.5

5

1.

83
1.44 1.65 1.50 1.21

Humh

prtb
1.72

1.5

4

1.

85
1.45 - 1.51 1.25

Mpom

tcg
1.72

1.5

5
- 1.40 1.62 1.57 1.28

Vaccg 1.67
1.5

7

1.

78
1.32 1.66 1.52 1.23

Avera

ge

Ratio

1.69
1.5

5

1.

76
1.38 1.64 1.51 1.23

Table 11 presents a comparison analysis of several

DNA sequence compression algorithms, including

ECT, DNAC-SBE, Bit Reduction, CBCA,

HOARDNA Comp, IBDNASCA, and the Enhanced

Index Based DNA Sequence Compression Algorithm

(EIBDNASCA). Among these algorithms,

EIBDNASCA stands out with an impressive

compression ratio of 1.23. This indicates that

EIBDNASCA can compress DNA sequences to

approximately 81.30% of their original size, making

it the most efficient algorithm in the study. In contrast,

other algorithms such as ECT, DNAC-SBE, Bit

Reduction, CBCA, HOARDNA Comp, and

IBDNASCA achieved compression ratios of 1.76,

1.69, 1.64, 1.55, 1.38, and 1.51, respectively,

resulting in percentage size reductions ranging from

56.81% to 66.22%. EIBDNASCA consistently

outperforms the other algorithms in terms of

percentage of size reduction. While

HOARDNAComp achieved the better compression

efficiency with a percentage size reduction of 72.46%,

EIBDNASCA managed to surpass it by a significant

margin, achieving an 81.30% reduction. On average,

EIBDNASCA achieved a reduction of 81.30%,

which is substantially higher than the average

reductions of the other algorithms, ranging from

56.81% to 66.22%. This data highlights

EIBDNASCA's exceptional ability to compress DNA

sequences more effectively than existing methods,

potentially leading to more efficient storage and

transmission of genetic data.

Received: May 18, 2023. Revised: September 16, 2023. 116

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

Table 12 presents a comprehensive comparison of

the EIBDNASCA with various standard algorithms

used for DNA sequence compression. The data

reveals that EIBDNASCA consistently outperforms

all other algorithms in terms of compression

efficiency. For instance, when considering the

average compression ratio, EIBDNASCA achieves

an impressive value of 1.23, which is significantly

better than the average ratios obtained by the standard

algorithms, ranging from 1.74 to 2.27. This indicates

that EIBDNASCA can compress DNA sequences to

a much smaller size compared to its counterparts. The

average percentage of size reduction further

underscores the exceptional performance of

EIBDNASCA, as it achieves an average reduction of

81.33%, while the standard algorithms achieve

reductions ranging from 44.05% to 57.47%. This

substantial difference in compression capabilities

positions EIBDNASCA as a cutting-edge solution for

DNA sequence compression, offering the potential

for more efficient storage and analysis of genetic data.

Analyzing the individual DNA sequences,

EIBDNASCA consistently exhibits superior

performance across all cases. For instance, for the

sequence "Chmpxx" EIBDNASCA achieves a

compression ratio of 1.14, whereas the standard

algorithms range from 1.50 to 2.25, resulting in

percentage size reductions of 44.05% to 54.94%.

Similarly, for the "Humdystrop" sequence,

EIBDNASCA attains a compression ratio of 1.27,

while the standard algorithms range from 1.89 to 2.37,

leading to percentage size reductions of 54.05% to

57.47%. These results demonstrate the consistent

superiority of EIBDNASCA in compressing DNA

sequences across diverse cases.

Fig. 1 depicts that the algorithm achieves good

compression ratio for the standard benchmark

datasets (Chmpxx, Humdystrop, Humhbb, Humhprtb,

Mpomtcg and Vaccg). Among these Chmpxx and

Humhbb produces higher compression ratio of 1.14

bpb and 1.21 bpb respectively.

Fig. 2 gives the comparison analysis over

existing algorithms. X-axis denotes the algorithms

and Y-axis denotes the average compression ratio

obtained. In almost all datasets the proposed work

resulted with notable performance when compared

with the existing works.

Fig. 3 describes the relation between

compression ratio achieved by the algorithm and

standard compression algorithms for the six standard

datasets. The various average compression ratios

2.27, 1.85, 1.82, 1.80, 1.79, 1.74 and 1.23 in terms of

bpb were acquired. Thus a major observation about

Figure. 1 Experimental results of EIBDNASCA for

standard datasets

Figure. 2 Average compression ratio of EIBDNASCA

over existing algorithms

Table 12. Comparison over standard algorithms

DNA

Seque

nce

Win

RA

R

Bio-

Com

pres2

[3]

Gen

Com

press

[4]

DNA

Com

press

[5]

Ge-

NM

L[7]

DN

AS

C

[8]

EIBD

NASC

A

Chmp

xx
2.25 1.68 1.67 1.67 1.66 1.50 1.14

Humd

ystrop
2.37 1.93 1.92 1.91 1.91 1.89 1.27

Humh

bb
2.22 1.88 1.82 1.79 - - 1.21

Humh

prtb
2.23 1.91 1.85 1.82 1.76 1.71 1.25

Mpom

tcg
2.30 1.94 1.91 1.89 1.88 1.88 1.28

Vaccg 2.23 1.76 1.76 1.76 1.76 1.70 1.23

Avera

ge

Ratio

2.27 1.85 1.82 1.80 1.79 1.74 1.23

Figure. 3 Average compression ratio of EIBDNASCA

over standard algorithms

Received: May 18, 2023. Revised: September 16, 2023. 117

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.11

the proposed work is that when comparing standard

algorithms and the EIBDNASCA results, one can see

that EIBDNASCA improved the compression ratio of

the previous works; however there is notable

difference among the saving percentage that is

achieved by the EIBDNASCA.

6. Conclusion

The work focused on lossless algorithm that

reduces the size of DNA sequence. The novel

algorithm exploits the features of basic RLE as well

as improved Huffman coding for the various datasets

to find the repetitive and non-repetitive bases. The

repetitive bases are represented in binary form. The

last base is uniquely represented in work file. The

non-repetitive bases are transferred to index file and

are represented by symbols. Here, the last base is

denoted by unique symbol (not flag bit). As a result,

the proposed algorithm achieves good compression

ratio of 1.23 bpb and also improves the capacity of

storage medium (84.52%). The time taken for

compression is 0.590 seconds and that of

decompression is 0.625 seconds. The illustration of

the work in the previous section evidently shows that

the EIBDNASCA can be useful in the reduction of

the size of DNA sequences. The results give

substantial development over the existing and state of

the art compression algorithms.

Conflicts of interest

 The authors declare no conflicts of interest.

Author contribution

Arunachalaprabu G assumed the responsibility of

overseeing the conceptualization, development of the

methodology, software implementation, meticulous

analysis, efficient resource management, data

collection, preparation of the original draft, thorough

review and editing of the manuscript, as well as the

thoughtful visualization of the paper. On the other

hand, Fathima Bibi K performed the critical tasks of

supervision and software administration.

References

[1] www.ncbi.nim.nih.gov/genbank/statistics

[2] S. Grumbach and F. Tahi, “Compression of

DNA Sequences”, In: Proc. of Conf. on Data

Compression, pp. 340-350, 1993.

[3] S. Grumbach and F. Tahi, “A new challenge for

compression algorithms: Genetic sequences”,

Information Processing and Management, Vol.

30, No. 6, pp. 875-886, 1994.

[4] X. Chen, Kwong and M. Li, “A Compression

algorithm for DNA sequences and its application

in genome comparison”, In: Proc. of the Tenth

Workshop on Genome and Informatics, Vol. 10,

pp. 51-61, 1999.

[5] X. Chen, M. Li, B. Ma, and J. Tromp,

“DNACompress: fast and effective DNA

sequence compression”, Bioinformatics, Vol. 18,

No. 12, pp. 1696-1698, 2002.

[6] I. Tabus, G. Korodi, and J. Rissanen, “DNA

sequence compression using the normalized

maximum likelihood model for discrete

regression”, In: Proc. of the Data Compression

Conf., pp. 253-262, 2003.

[7] G. Korodi and I. Tabus, “An efficient

Normalized Maximum Likelihood for DNA

Sequence Compression”, ACM Trans.,

Information Systems, Vol. 23 No. 1, pp. 3-34,

2005.

[8] K. N. Mishra, A. Agarwal, and E. Abdelhadi,

“An efficient Horizontal and Vertical method for

online DNA sequence compression”,

International Journal of Computer Applications,

Vol. 3, No. 1, pp. 39-46, 2010.

[9] M. Krishnamoorthy, and R. Karthikeyan,

“Classification Techniques for Medicinal

Databases using Auto-Regression and Firefly

Algorithm”, Journal of Algebraic Statistics, Vol.

13, No. 3, pp. 1130-1136, 2022.
[10] G. P. Arya and R. Bharti, “DNA Compression

using Particle Swarm Optimization”, Journal of

Advanced Research in Dynamical and Control

Systems, Vol. 05 (Special Issue), pp. 295-302,

2017.

[11] R. Gilmary and G. Murugesan, “Bit Reduction

based Compression Algorithm for DNA

Sequences”, International Journal of Scientific

Research in Science, Engineering and

Technology, Vol. 8, No. 5, pp. 270-277, 2021.

[12] D. Mansouri and X. Yuan, “One-Bit DNA

Compression Algorithm”, In: Proc. of

International Conf. on Neural Information

Processing, Cambodia, pp. 376-386, 2018.

[13] G. Murugesan, “Codon Based Compression

Algorithm for DNA Sequences with Two Bit

Encoding”, European Journal of Molecular and

Clinical Medicine, Vol. 07, No. 10, pp. 33-41,

2020.

[14] H. Chen, “Application of Genome Sequence

Based on Entropy Coding”, In: Proc. of

International Conf. on Intelligent Computing,

Automation and Systems, pp. 156-159, 2020.

[15] K. Sayood, “Introduction to Data Compression”,

Morgan Kaufmann Series, Fourth Edition,

Elsevier, 2007.

http://www.ncbi.nim.nih.gov/genbank/statistics

