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Abstract: The firefly optimized Hybrid CNN-BILSTM architecture is a revolutionary AI-driven method proposed in 

this study for enhancing resource distribution and optimization, and it represents a significant advancement in the 

Internet of Things (IoT) network space. The importance of this research is in how it addresses the challenges of the 

utilization of resources in the rapidly growing IoT environment. Traditional distribution of resources methods usually 

struggle to capture complex chronological and spatial relationships in IoT networks. Convolutional neural networks 

(CNN) and bidirectional long short-term memory (BILSTM) systems are thus combined in a new Firefly Optimized 

Hybrid CNN-BILSTM technique to address these deficiencies. Furthermore, this hybrid structure enables excellent 

synchronous capture of the spatial patterns and temporal dynamics in the computer model by enabling extensive feature 

acquisition from IoT network information. The firefly optimisation technique is used to optimize the model's 

parameters, enhancing the model's effectiveness and resolution. Additionally, IoT networks may use an AI-driven 

strategy to allocate resources in a way that is intelligent and ecologically friendly, increasing resource usage, efficiency, 

and waste. By mimicking the seductive behaviour and recreating their illuminating patterns, the firefly optimization 

approach, which serves as the foundation for the algorithm's optimization process, makes it simpler to determine the 

most optimum resource allocation arrangement. The proposed AI-driven firefly optimised Hybrid CNN-BILSTM 

structure outperforms state-of-the-art approaches, as shown by the current study's deep evaluations with an accuracy 

of 99.88%. It also paves the way for more efficient and intelligent resource management in IoT networks and opens 

up new research directions for the field of AI-driven optimization for IoT applications. 

Keywords: IOT, Firefly optimization, Hybrid CNN-BILSTM, Convolutional neural networks, Bidirectional long 

short-term memory. 

 

 

1. Introduction 

Cloud computing covers any internet-based 

service delivery. Digital and email marketing are 

examples. Cloud computing also includes IT services 

like storage. Databases, software, communication, 

and analysis with adaptive assets. AI-Driven Firefly 

Optimized Hybrid CNN-BLSTM model improves 

IoT network resource allocation and optimization [1]. 

The revolutionary innovation of the IoT links smart 

devices and allows seamless interaction and 

information sharing. IoT devices complicate network 

administration, specifically resource allocation and 

management. To function reliably and sustainably, 

IoT networks must utilize connectivity, energy, and 

processing resources effectively [2]. To fix these 

issues, AI can improve IoT network management. 

Natural language processing, computer vision, and 

recommendation systems benefit from machine and 

deep learning. AI-enabled IoT networks may enhance 
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resource allocation and efficiency. In this article, the 

firefly optimized hybrid (CNN-BLSTM) model 

creates an AI-driven IoT resource allocation and 

management system. Based on real-time data insights, 

the recommended solution intelligently distributes 

resources to adapt to the ever-changing IoT 

environment [3]. For productivity, effectiveness, and 

performance, businesses must improve resource 

allocation and efficiency. A fast-changing, 

competitive sector requires resource efficiency for 

long-term success. Strategically arranging people, 

cash, time, gadgets, and property delivers goals [4]. 

Optimizing assets eliminates waste and enhances 

output. Optimising resource allocation is essential for 

enterprises to survive in an uncertain and complicated 

environment [5]. Real-time data analysis and 

informed decision-making have altered resource 

management using technologies, statistical analysis, 

and ML. Critical ideas and approaches for resource 

allocation and optimization across disciplines are 

examined in this research. Data, predictive modelling, 

continuous improvement, and automation are some 

ways organizations might enhance resource 

consumption [6]. Demand estimation, critical path 

analysis, and risk management are essential for 

informed resource allocation choices that match 

organizational goals, according to studies. To 

establish a cohesive and successful workforce, it 

fosters employee training and collaboration. To 

optimize processes and reduce inefficiencies, 

algorithmic optimization, Lean, and six sigma are 

investigated. We stress resilience and adaptation in 

resource allocation for unforeseen disturbances [7]. 

Fundamental resource allocation and optimization 

will enable long-term organizational success [8]. This 

innovative invention's full potential requires resource 

allocation and optimization as IoT networks increase 

[9]. 

The internet of things is a massive ecosystem of 

devices, actuators, sensors, and data processors. 

These dynamic networks are used for smart cities, 

factories, healthcare, agricultural, and transportation 

automation. However, the massive number and 

variety of IoT devices make regulating and supplying 

services difficult [10]. Management and resource 

allocation in IoT networks are examined in this 

research. Manage bandwidth, energy, compute, and 

memory in a distributed and resource-constrained 

environment. To ensure easy connection, lowest 

latency, and optimal performance for IoT 

applications, these resources must be appropriately 

allocated [11].  

Due to congestion, latency, and scalability issues, 

traditional focused resource management may not 

work. This article examines autonomous and edge 

computing models that move resource management 

closer to IoT devices, enhancing responsiveness and 

reducing cloud infrastructure reliance. IoT networks 

are constantly changing. Therefore, resource 

allocation systems must adapt to workloads and 

environmental circumstances. Data analytics and 

predictive modelling are essential for understanding 

IoT networks and allocating resources based on real-

time data [12]. 

The firefly optimized hybrid CNN-BLSTM 

model combines two robust deep learning 

architectures. CNNs collect spatial patterns and 

characteristics from IoT sensory input, enabling 

feature extraction. BLSTM captures temporal 

dependency and context well, making it excellent for 

IoT sequence data processing. These two models are 

integrated to dynamically improve IoT network 

resource allocation using AI. Firefly optimization 

optimizes model parameters for convergence and 

performance. [13].   

The key contributions are, 

 

• Introducing an innovative optimization technique 

based on the behaviour of fireflies to improve 

resource allocation in IoT networks. Firefly 

optimization is a nature-inspired algorithm used 

to optimize complex problems. 

• Proposing a unique combination of CNN and 

BILSTM to address the specific challenges of 

resource allocation and optimization in IoT 

networks. 

• Addressing the critical issue of resource 

allocation in IoT networks, which involves 

allocating resources efficiently to IoT devices 

and applications based on varying demands and 

priorities. 

• Demonstrating improved performance compared 

to existing resource allocation and optimization 

methods in IoT networks through utilizing the 

proposed AI-driven firefly optimized hybrid 

CNN-BILSTM model. of the proposed AI-driven 

Firefly Optimized Hybrid CNN-BILSTM 

model.   
 

The approached paper's manuscript is organized 

as follows: Section 2 examines several related works. 

Section 3 contains information about the problem 

statement. The suggested approach is discussed in 

section 4. Section 5 presents and discusses the 

outcomes of the experiments, as well as a 

comprehensive comparison of the suggested 

approach to current best practices. The paper's 

conclusion is offered in section 6. 
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2. Related works 

Vimal et al. [14] mobile edge computing (MEC) 

[5] controls the virtual resource with peripheral 

interaction among computing devices and processing 

in the network heart when densely loaded. 

Conquering all the client wants is a better method to 

arrange an operation using a cognitive agent. 

Merging user data with a behavioural approach 

completes each IIOT good or service type. 

Forecasting provides caching and storage, which 

delays task execution. Swarm-based and supervised 

learning approaches provide neural caching for 

memory. MEC may converge to suitable solutions 

slower than single-objective optimization methods. 

Time-critical IIoT applications that need real-time 

decision-making may not benefit from the MEC 

algorithm. 

Li et al. [15] innovations like IoT link objects to 

the Internet to make them smarter. Overuse of power, 

mass connectivity, and data processing hinder IoT 

growth. This article proposes a novel ECIoT 

architecture to address these issues. ECIoT radio 

capacity and computational administration are 

researched to improve system efficiency. The paper 

examines ECIoT-based admission control, 

computational resource allocation, and power 

management. ECIoT efficiency is optimized by 

Lyapunov random optimization for cross-layer 

dynamically probabilistic network optimization. IIoT 

objectives and constraints change often. MOACO's 

adaptability and resilience under changing conditions 

are problems. 

Pham et al. [16] claimed that IoT is crucial to the 

digital shift to enhance medical care, home 

automation, and intelligent transportation. Data from 

many devices in an IoT system might reduce 

efficiency. Edge cloud-based computing and NFV 

virtualization may improve resource utilization and 

response service capacity in IoT systems. This 

research examines the optimization of doorway 

location and multichip relaying in the IoT layer of an 

NFV-enabled IoT system using edge cloud 

computing (Niota). The ideal gateway installation, 

resource efficiency for service operations, and 

routing in a NIoT system, given a cost function and 

performance constraint, may be determined by three 

optimization frameworks suggested in this paper. 

Virtualized network services may be difficult to 

administer over distant infrastructure. It's difficult to 

coordinate processing, storage, and networking 

resources while optimizing resource use. 

Wang et al. [17] non-orthogonal multiple access 

technique improves spectral efficiency but uses a lot 

of energy. This study examines intermittent 

connectivity networks' energy utilization. Multi-

carrier northbound NOMA telephone uses the digital 

expenditure electricity model. The information 

exchange rate matters. Using GPE effectiveness 

energy-related needs, the combined technique for 

optimizing channel products and electromagnetic 

assets is investigated, reducing network estimate 

detail. By building a reciprocal comparative model 

between clients and sub-channels, unified scheduling 

is used to simplify channel consumption. Add 

customer service demands to the optimization 

problem to avoid information quality from being 

reduced owing to energy consumption reductions. 

Non-orthogonal resource allocation in NOMA may 

increase user interference. Controlling interference is 

crucial to providing every user with the service they 

want. 

Haibeh et al. [18] presented a list of studies 

relevant to MEC facilities execution phases, 

including development and measurement, 

virtualization using networking function 

virtualization (NFV) for fluid system organization, 

resource administration programs, and infrastructure 

MEC supply optimization strategies. This study will 

evaluate the components required to develop an auto-

scaled and proactive MEC-NFV architecture to meet 

mobile network operators' variable and diversified 

mobile user demand. Compared to specialist 

equipment, software virtualization on regular servers 

might slow network operations. Further resource 

abstraction and collaboration may affect networking 

service response time and throughput, especially for 

high-performance or latency-sensitive applications. 

Cui et al. [19] claimed that variable satellite 

payload investigates radio resource allocation for 

multibeam satellite forward linkages. Satellite-

ground Internet of Things is suggested to fulfil the 

needed communication rate, and beaming power is 

maximized via non-orthogonal multiple access. Joint 

beam creation design and resource use for terrestrial-

satellite collaboration systems. Deep learning-based 

permanent power distribution in SAT-IoT networks 

is examined. These papers broadly discuss 

communications resource management, ignoring 

cooperative computing, which impacts SAT-IoT 

network latency and QoS. 

Ahsan et al. [7] investigated about artificial neural 

networks (ANNs), which are modeled after the neural 

network of the human brain and are a crucial idea in 

machine learning and artificial intelligence. 

Interconnected "neurons" or nodes make up ANNs. 

These layers include an input layer, hidden layers, 

and an output layer. They have applications in 

various fields, from image and speech recognition to 

natural language processing, and they are excellent at  
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Table 1. A summary of related works 

References Algorithm Year Limitations 

[14] Genetic Algorithm 2020 GAs may be computationally expensive, particularly when 

working with expansive search horizons or intricate fitness 

evaluative functions. They may be impractical for some 

problems because of the necessity to weigh a large number of 

potential answers. 

[15] Fuzzy based 

Classification 

2018 Domain specialists are frequently needed to manually define 

membership functions and fuzzy rules for fuzzy systems. It can 

be difficult to obtain and accurately represent this domain 

knowledge, which has a significant impact on the accuracy and 

efficacy of the model. 

[16] Genetic Algorithm 2020 There is no certainty that GAs will locate a problem's global 

optimum. Depending on the original population and genetic 

operators employed, they may converge to local optima. In some 

situations, this absence of global optimality assurance may be a 

drawback. 

[17] Consensus Approach 2021 The consensus approach's effectiveness frequently depends on 

the presumption that the sources or models being integrated have 

a variety of biases or inaccuracies. The consensus technique may 

not increase decision-making accuracy if the sources have a 

strong correlation or similar flaws. 

[18] Fuzzy based 

Classification 

2022 Fuzzy-based classifiers may yield complicated and challenging 

rule sets, which could make it more difficult to comprehend and 

have confidence in the model's conclusions. When used in 

situations where interpretability is important, this lack of 

transparency may be a drawback. 

[19] K-means Clustering 2020 K-means makes the assumption that clusters are spherical in 

shape and nearly equal in size. It performs poorly when dealing 

with clusters that have varied sizes, densities, or unusual shapes. 

[20] Genetic Algorithm 2021 Constraint handling in GAs can be difficult. Additional 

procedures might be needed to ensure that the algorithm's output 

satisfies problem-specific criteria, adding to the algorithm's 

complexity. 

[21] Consensus Approach 2010 Including information from numerous sources or models in a 

consensus decision can make it more difficult to reach a 

conclusion. It might necessitate more computer power and raise 

the possibility of implementation mistakes. 

[22] Consensus Approach 2020 The consensus approach presupposes the availability of multiple 

sources or models for integration. Sometimes, it may be difficult 

or expensive to get a variety of information sources or models. 

[23] Genetic Algorithm 2018 The adjustment of many parameters, including population size, 

mutation rate, and crossover rate, is necessary for genetic 

algorithms. Finding the ideal set of criteria for a given issue can 

be difficult and time-consuming. 

[24] Fuzzy based 

Classification 

2020 Particularly for large datasets and intricate fuzzy rule bases, the 

computation of fuzzy sets, fuzzy rule evaluations, and the 

inference process can be computationally demanding. The 

scalability of fuzzy-based classifiers may be constrained by this 

complexity. 

[25] Consensus Approach 2021 Conflict resolution, addressing missing data, and working with 

diverse formats may all be necessary when integrating forecasts 

or opinions from several sources. It might take a lot of time and 

be error-prone to manage these intricacies. 

[26] Genetic Algorithm 2022 GAs must choose between exploration and exploitation. It can 

be difficult to strike a balance between investigating novel ideas 

and using those that show promise, which can have an impact on 

how well an algorithm performs. 
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Figure. 1 Proposed diagram 

 
learning complex patterns. ANNs are capable of 

making predictions, classifying data, and completing 

a variety of tasks because they learn by changing the 

strengths of connections (weights) between neurons 

during training. 

Cui et al. [11] studied extreme gradient boosting, 

also known as XGBoost, a robust and popular 

machine learning method that excels at various 

predictive modeling applications. It is a member of 

the ensemble learning family and integrates the 

results of various decision trees' predictions to obtain 

exact and reliable outcomes. The strengths of 

XGBoost include its capacity to work with tabular 

and structured data, efficiently handle missing values, 

and guard against overfitting by using methods like 

regularization. Because of how quickly and 

efficiently it produces cutting-edge answers for 

structured data issues like classification and 

regression, it has gained popularity in academics and 

industry. 

Tang et al. [10] A straightforward yet effective 

machine learning approach called K-nearest 

neighbors (KNN) is used for classification and 

regression problems. Based on the majority class or 

mean of a data point's k nearest neighbors in the 

feature space, it determines the class or value to be 

assigned to it. Because of its adaptability and 

simplicity, KNN is a well-liked option for both 

novices and specialists. However, depending on the 

distance metric and "k" parameter selection, its 

performance may not be as good in high-dimensional 

or unbalanced datasets. 

3. Problem statement 

Due As the Internet of Things grows, networked 

devices and sensors create massive volumes of data 

and automate numerous sectors. IoT resource 

management and efficiency are important problems. 

The issue is IoT network resource efficiency. Device 

heterogeneity, scalability, real-time data 

interpretation, energy conservation, security, and 

adaptive resource management are addressed. These 

issues need complex algorithms that quickly 

distribute resources, minimize power usage, protect 

sensitive data, and adapt to network changes. The 

fundamental aim is a robust and adaptable framework 

that optimizes resource utilization, network 

efficiency, and IoT technology adoption across 

several applications and sectors [27]. 

4. Proposed AI-Driven firefly optimized 

hybrid CNN-BiLSTM model in resource 

allocation and optimization in IoT 

networks 

Fig. 1 represents the overall architecture of the 

proposed "Enhancing Resource Allocation and 

Optimization in IoT Networks Using AI-Driven 

Firefly Optimized Hybrid CNN-BiLSTM Model,” 

which outlines a thorough technique to enhance  
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Figure. 2 Proposed Ai-driven firefly optimized hybrid CNN-BiLSTM model in resource allocation and optimization 

in IoT networks  

 

resource allocation and optimization inside IoT 

networks.   

The process includes input data normalization, 

fuzzy C-means clustering for data segmentation, 

PCA for feature extraction, DECS paired with a 

hybrid CNN-BiLSTM model for resource allocation 

enhancement, and Firefly Optimization Algorithm 

for final classification. The study presents a 

comprehensive method for optimal network 

performance and integrates multiple strategies to 

optimize IoT network resource allocation and 

categorization. In Fig. 2, AI-driven firefly optimized 

hybrid CNN-BiLSTM solving IoT resource 

allocation and optimization problems is novel. 

Cutting-edge neural networks, nature-inspired 

optimization, and intelligent decision-making will 

improve IoT ecosystem efficiency, responsiveness, 

and performance, creating a more sustainable and 

linked world.  

4.1 Dataset   

The MNIST dataset, which contains handwritten 

digit images, is often used for image categorization. 

The MNIST dataset is good for testing and 

developing machine-learning models. However, it 

may not match IoT network data. Thus, MNIST 

performance must be translated into real-world IoT 

data. IoT networks are diverse, with devices of varied 

capabilities and resource restrictions. Allocating 

resources for activities and devices while considering 

energy efficiency and real-time needs is tough [28].  

4.2 Pre-processing by data normalization 

In normalization, pre-processing is critical for 

improving the distribution of resources and 

efficiency in IoT networks utilizing an AI-driven 

firefly optimized hybrid CNN-BLSTM model. 

Normalization guarantees that the features have 

comparable values by reducing the input information 

to a common range, often [0, 1] or [-1, 1], resulting in 

quicker convergence throughout model training. This 

approach prevents bigger amplitude features from 

dominating the process of acquisition and ensures a 

balanced gradient flow during return propagation, 

resulting in improved stability and effective training. 

The normalization method also helps the AI-driven 

model generalize to previously unseen data from 

diverse IoT networks or surroundings [29]. 

Normalization also reduces memory and processing 

demands during retraining and deduction, making the 

model more suitable for resource-limited linked 

devices. Proper normalization, a crucial step in the 

data pre-processing pipeline, allows the firefly 

optimized hybrid CNN-BLSTM model to fully 

leverage IoT data for resource allocation and 

networking optimization, improving IoT network 

efficiency and effectiveness. Eq. (1) 
 

                  𝑅 =
(𝑣−𝑣𝑚𝑖𝑛)(𝑚𝑎𝑥−𝑚𝑖𝑛)

(𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛)+𝑚𝑖𝑛
                (1) 

 

where (max-min) is the specified range of input 

variables, (vmax-vmin) is the initial range of values of 
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input variables, and p is the converted input value 

[30].   

4.2 Segmentation using fuzzy C-means clustering  

In IoT networks, segmentation is essential for 

improving resource allocation and optimization, 

particularly when using AI-driven techniques like the 

Firefly-Optimized Hybrid CNN-BILSTM model. 

Fuzzy C-means clustering is one of the most utilized 

classification approaches in this setting. A data 

clustering procedure called fuzzy C-means clustering 

seeks to group related data points depending on how 

similar they are to one another. Fuzzy C-means 

permit the information to have partial involvement in 

many clusters, in contrast to conventional hard 

clustering algorithms, where an informational point 

rigidly conforms to a single cluster. This soft 

assignment of data points to clusters makes it 

particularly useful in the context of resource 

allocation and optimization in IoT networks. In the 

context of IoT networks, the vast amount of data 

generated by various connected devices presents a 

significant challenge for efficient resource allocation 

[31]. The AI-driven Firefly-Optimized Hybrid CNN-

BILSTM model, which combines CNN and BILSTM 

networks, serves as a powerful tool to process and 

analyse this data, which is represented in Eq. (2)  

 

                         𝑐𝑗 =
∑ 𝑢𝑝𝑞

𝑠𝑛
𝑞=1

∑ 𝑢𝑝𝑞
𝑠𝑛

𝑞=1
𝑥𝑝                                (2) 

 

Where 𝑑𝑝𝑞   indicates the distance among the data 

points  𝑥𝑝  and 𝑞𝑡ℎ  cluster centre and 𝑑𝑘𝑞
∗  is the 

distance between 𝑘𝑡ℎ  cluster center and 𝑞𝑡ℎ  cluster 

centre. The procedure is an iterative clustering 

approach that generates the best c split by minimizing 

the proportional within-group sum of the squared 

error of the objective function. 𝐾𝑀𝑁𝑂 is represented 

in Eq. (3)  

 

        𝐾𝑀𝑁𝑂 = ∑ ∑ (𝑝𝑖𝑘)ℎ𝑙
𝑘=1

𝑢
𝑖=1 𝑦2(𝑔𝑘, 𝑓𝑖)            (3)  

 

Where,  

• N is the number of information items; O is 

the quantity of collections with 2 ≤n<o 

•   𝑝𝑖𝑘 is the index of affiliation of 𝑔𝑘in the i th 

cluster, h is a balance magnitude on each 

fuzzy registration 

• 𝑓𝑖 is the initial configuration of the centre of 

cluster i 

• 𝑦2(𝑔𝑘, 𝑓𝑖)  is a measure of the distance 

between object 𝑔𝑘 and cluster centre 𝑔𝑘. 

4.3 Feature extraction using PCA 

Feature extraction by principal component 

analysis (PCA) plays a vital role in enhancing 

resource allocation and optimization in IoT networks 

using an AI-driven firefly optimized hybrid CNN-

BLSTM model. PCA is a dimensionality reduction 

technique that identifies the most significant patterns 

and relationships within the input data, allowing the 

model to focus on the most informative features while 

discarding less relevant or redundant ones. By 

reducing the dimensionality of the data, PCA not only 

speeds up the training process of the AI-driven model 

but also helps mitigate the curse of dimensionality, 

which can be particularly crucial in resource-

constrained IoT environments. Through PCA, the AI-

driven model gains a more compact representation of 

the IoT network data, allowing for efficient 

utilization of computational resources during training 

and inference. Moreover, the reduced feature set 

obtained by PCA enables the model to generalize 

better to unseen data and enhances its ability to 

optimize resource allocation in diverse IoT network 

scenarios. Overall, incorporating PCA-based feature 

extraction empowers the Firefly Optimized Hybrid 

CNN-BLSTM model to make more informed and 

efficient decisions for enhancing resource allocation 

and optimization, contributing to the overall 

performance and effectiveness of IoT networks.  

It can also be viewed as a revolution of the axes 

of the variables that were initially used to an 

additional set of perpendicular axes (principal axes), 

ensuring the resulting set of dimensions comprises 

the path of the largest variability of those basic values. 

PCA is used in numerous domains, including facial 

recognition, image decrease, genetic testing, and 

many others. The first fundamental axes have as 

many information discrepancies as possible; the next 

element has the most residual adjustments, and so on. 

PCA necessitates the use of normalization. The 

following data effects are caused by PCA 

implementation: 

 

• PCA orthogonalizes the starting vectors, 

resulting in vectors that are independent of each 

other.  

• It sorts the generated components so that the 

component with the most variance is at the top; 

• It also excludes the vectors with the fewest 

variances in the data set  

 

Principal component analysis (PCA), which 

preserves almost all of the data from the bigger set, 

divides a large number of variables into smaller ones. 

Using the mathematical method of PCA, a group of 
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closely connected variables is reduced into fewer 

unrelated variables known as Principal Components. 

The PCA dataset contains a detailed description of a 

thorough selection of the available data [32]. The 

work is primarily concerned with datasets, sometimes 

known as "data samples." There are numerous ways 

to statistically express a collection of data using 

variance, standard deviation, mean, and covariance, 

and one among them is represented in Eq.  (4) 

 

                  𝑃𝑢𝑣 = ∑ 𝑥𝑧 −
(∑ 𝑧)(∑ 𝑥)

𝑛
                         (4)  

 

where  

 

• n is the amount of data documentation, x 

denotes the corresponding PC 

• z denotes the quantity of data records that 

must be lowered.  

 

The greater the result, the more connected this PC is 

to this component. The first step in doing PCA on a 

two-dimensional data set is to standardize the data. 

This is performed by deleting the respective means 

form each of the information set's classifications, 

leading to a data set containing a zero average. In the 

second phase, the variability matrix is computed. The 

Eigen characteristics and vector values for the 

covariance matrices are then calculated. The 

Eigenvalues are then ranked descending to indicate 

the order of relevance for the components, and the 

dimension is reduced by selecting the first set of 

Evaluation values and disregarding the remainder. To 

produce a feature vector, an array of vectors is formed. 

The key elements are created in the last phase by 

taking the translation of the vector of features and 

performing the left combination with the inversion of 

the reduced version of the information set. The 

dimension reduction in PCA promotes its application 

in the identification of faces, neural networks, and 

image compression. It also has a broad range of 

possibilities in pattern recognition of data with high 

dimensions in finance, mining data, bio-informatics, 

and sociology.   

4.4 Enhancement of resource allocation with 

DECS by hybrid CNN-BiLSTM method  

Decentralized control and energy saving (DECS) 

revamps IoT resource allocation and optimization 

using an AI-driven firefly optimized hybrid CNN-

BILSTM model. Distribution-based decision-making 

allows IoT devices to assign capacity based on real-

time data and interactions, improving network  

 

 
Figure. 3 Proposed DECS   

 

flexibility and efficacy. DECS uses energy-saving 

technologies and cooperative algorithms to 

effectively manage resource consumption in 

resource-constrained IoT devices throughout the 

operation and resting phase. The DECS-AI-driven 

firefly optimized hybrid CNN-BILSTM model is 

another cutting-edge invention. AI analyses 

complicated IoT data streams using BILSTM and 

CNN networks. It uses AI-driven analytics to predict 

resource demands and trends, enabling proactive 

resource changes. Inspired by firefly motions, firefly 

optimization optimizes model parameters.  

Fig. 3 DECS and the AI-driven model generate a 

wonderful synergy, enabling AI insights to steer 

decentralized decision-making and energy-efficient 

resource allocation. This comprehensive technique 

assures optimal resource allocation to meet urgent 

task demands while aggressively decreasing energy 

waste. IoT networks might improve resource 

management efficiency, sustainability, and flexibility 

using this technique. The AI-driven firefly-optimized 

hybrid CNN-BILSTM model utilizes the hybrid 

CNN-BILSTM technique to enhance resource 

allocation in connected devices. The model optimizes 

resource allocation using CNN and BiLSTM 

networks. The hybrid model's CNN component 

excels in extracting spatial patterns from IoT devices 

and sensor data. Identifying essential data streams is 

efficient. BiLSTM networks assist in understanding 

data evolution by capturing temporal linkages and 

trends. Combine these two powerful deep learning 

approaches to improve IoT resource allocation with 

firefly-optimized hybrid CNN-BILSTM. The model 

can identify patterns, correlations, and abnormalities 

in complex, dynamic IoT data. This analysis aids 

network resource distribution. CNN uses sparse 

interconnectivity and weight cooperation to extract 

more detail from input and simplify network design. 
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CNN can simultaneously recover latent spatially 

correlated properties from all Intrinsic Mode 

Functions, making it a powerful feature extraction 

tool. The Bi-LSTM module has backward and 

forward LSTM components. Unlike LSTM networks, 

the simulation may use past and future information. 

The equivalent calculations for Bi-LSTM are given 

the below Eqs. (5), (6), and (7)  

 

                        𝐷𝑝 = 𝑞(𝑉𝐾𝑔−1 + 𝑊𝑘𝑙)     (5) 

 

 

                       𝐵𝑞∗ = 𝑞(𝑉𝐾∗
𝑔+1 + 𝑊∗

𝑘𝑙)    (6) 

 

 

                           𝑛𝑞 = ℎ(𝑋𝐵𝑞 + 𝑋∗𝐵𝑞∗)     (7) 

 

Where q = 1, 2, 3….  

K∗ represents as the two-layer structure of LS 

K represents as the input layers of (k1, k2 … . kq) 

L represents as the output layers of (l1, l2 … . lq) 

The model captures geographical patterns and 

characteristics in IoT device data by using CNN. 

Optimizing bandwidth, energy, and processing 

capacity in a heterogeneous IoT environment. 

Furthermore, BiLSTM adds a time component to 

resource allocation. LSTM networks can forecast 

resource needs over time because they learn 

sequential dependencies in data. Requires geographic 

expertise. CNN-identified patterns assist resource 

allocation choices. These temporal understandings let 

the model dynamically adjust and allocate resources 

to changing network circumstances and workloads. 

The hybrid technique uses CNN and BiLSTM to fully 

allocate resources spatially and temporally. Thus, the 

model can make more precise and informed resource 

allocation choices, improving network performance, 

latency, energy efficiency, and resource usage. 

4.5 Classification using firefly optimization 

algorithm  

Firefly optimization is inspired by the behaviour 

of fireflies. Fireflies use bioluminescence to attract 

mates, and this behaviour has inspired the 

development of a powerful optimization algorithm. 

The improvement of IoT resource allocation 

networks is a critical aspect that can be achieved 

through the application of the AI-driven firefly-

optimized hybrid CNN-BILSTM model, specifically 

leveraging the hybrid CNN-BILSTM method. In the 

context of optimizing resource allocation, the model 

combines the strengths of CNN and BiLSTM 

networks. The hybrid model's CNN element excels at 

sifting through the massive amounts of data produced 

by IoT gadgets and sensors in order to find spatial 

features and patterns. This makes it possible to 

quickly find pertinent data inside the data streams. On 

the other hand, the BiLSTM networks capture the 

temporal dependencies and patterns in the data, 

enabling a deeper understanding of how the data 

evolves over time. By integrating these two powerful 

deep learning techniques, the firefly-optimized 

hybrid CNN-BILSTM model is capable of 

optimizing resource allocation in IoT networks more 

effectively [20]. The model can analyse complex and 

dynamic data from IoT devices, identifying patterns, 

correlations, and anomalies. Based on this analysis, 

the model can make informed decisions on how to 

allocate resources efficiently across the network, is 

represented in Eq.  (8).   
 

               𝑔𝑖 = 𝑔𝑖 + 𝑐0𝑒−𝑎𝑟2
𝑖𝑗

 

(𝑔𝑖 − 𝑔𝑗) + 𝑗𝑛𝑖  (8)  

Where 

 

• ‘ 𝑔𝑖  ’ and ‘ 𝑔𝑗  ’ are the necessities of 

Euclidean distance.  

• The association of i th firefly is attracted in 

the route of neighbouring firefly ‘j’. 

•  Where, 𝑛𝑖  is an arbitrary value deduced 

from the Gaussian distribution. Firefly 

Optimization is inspired by the behavior of 

fireflies.  

 

Fireflies use bioluminescence to attract mates, 

and this behaviour has inspired the development of a 

powerful optimization algorithm. The below 

derivation in Eqs. (9), (10), (11), (12), (13), and (14) 

are formulated to find the optimized solution.   

 

                               𝐽(𝑠) ∝ 𝑓𝑓(𝑠)                            (9) 

 

                                𝐽(𝑟) = 𝐽0𝑒−𝑎𝑟2
             (10) 

 

According to inverse square law,  𝑟 = 0  in  
𝐼

𝑟2. 

Therefore,  

 

                                  𝑐 ∝ 𝐽(𝑟)                              (11) 

 

                                𝑐 = 𝑐0𝑒−𝑎𝑟2
                          (12) 

 

        𝑟𝑖𝑗 = ‖𝑔𝑖 − 𝑔𝑗‖ = √∑ (𝑔𝑖𝑑 − 𝑠𝑗𝑑)2𝑑=𝑛
𝑑=1       (13) 

 

          𝑔𝑖 = 𝑔𝑖 + 𝑐0𝑒−𝑎𝑟2
𝑖𝑗

 

(𝑔𝑖 − 𝑔𝑗) + 𝑗𝑛𝑖         (14) 

 

Where, 
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• J is the intensity and s denote the solution, 

𝑓𝑓 fitness function,  

• c represents the attractiveness of the firefly,  

• J(r) denotes the light intensity. The intensity 

of light and the brightness of firefly is 

dependent on each other.  

• ‘r’ is denoted as the two fireflies’ distance  

• ‘ 𝑔𝑖  ’ and ‘ 𝑔𝑗  ’  are the necessities of 

Euclidean distance.  

• The association of i th firefly is attracted in 

the route of neighbouring firefly ‘j’. Where 

𝑛𝑖  is an arbitrary value deduced from the 

Gaussian distribution.  

5. Results and discussion 

Windows 10 datasets and MATLAB evaluated 

the method. My IoT resource allocation and 

optimization research was fascinating and disputed. 

Hybrid CNN-Bi-LSTM improved resource usage, 

energy efficiency, response speed, and network 

performance. CNN and BiLSTM's spatial and 

temporal insights enabled the model to dynamically 

allocate resources to devices. This optimized energy 

and resource use. Flexible and scalable, the strategy 

performed well in bigger IoT networks with more 

devices. Strong model security protects sensitive data 

and vital resources. Hybrid CNN-BiLSTM may 

improve resource allocation in IoT networks, making 

it an enticing solution for effectiveness, trust, and 

environmental sustainability. IoT-driven resource 

allocation techniques that account for network 

complexity and growth may be studied and 

developed.   

AI-driven analytics, DECS, and Firefly 

optimization can distribute IoT network resources. 

DECS' AI-driven methodology reduces resource 

waste, network overload, and latency. Network 

scalability increases for device density and activity 

fluctuations. Efficacy of DECS-enhanced firefly 

optimized hybrid CNN-BILSTM for IoT network 

resource allocation and use. This integrated technique 

may improve IoT operations with predictive analytics, 

distributed decision-making, and energy efficiency. 

The complexity and size of IoT networks may 

improve efficiency, adaptability, and energy 

efficiency. DeCS enhances the AI-driven paradigm. 

Decentralized decision-making lets IoT devices share 

energy using real-time data, dialogues, and AI 

insights. This collaborative approach prioritizes 

important processes and saves energy during 

downtime. Increasing IoT device battery life and 

decreasing energy use increases energy efficiency.   

5.1 Accuracy   

The model's total Precision reflects how well it 

operates across all areas.  It is the belief that each 

circumstance can be properly predicted. Eq. (15) 

represents the Accuracy. 

 

                    𝐴 =
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
           (15) 

5.2 Precision  

Accuracy is calculated by dividing the overall 

number of correct affirmative forecasts by the entire 

amount of correct positive forecasts. It counts the 

number of images that have been precisely merged. 

Eq. (16), which computes precision  

 

                             𝑃 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠
             (16) 

5.3 Recall   

The proportion of genuine positives and wrong 

negatives predicted is recall. The number of expected 

events is shown. Combining images from different 

modes. Recall is Eq. (17).  

  

                                𝑅 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                        (17) 

 

5.4 F1-Score  

Precision and recall are combined in the F1-Score 

calculation.  The F1-Score in Eq. (18) represents 

precision and recall, respectively. 

                      𝐹 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
             (18)  

5.5 Sensitivity  

It is a measurement of the percentage of true 

positives that were anticipated properly. The 

sensitivity is calculated using Eq.  (19),  

 

                          𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔
               (19) 

5.6 Specificity 

True negatives are precisely identified by degree 

gauges. Eq. (20) is used to compute the specificity 

value, which is as follows. 

 

                        𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑛𝑒𝑔

𝐹𝑝𝑜𝑠+𝑇𝑛𝑒𝑔
             (20)  
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Figure. 4 Performance evaluation of the proposed method 

 
Table 2. Comparative review 

Methods Accuracy Precision Recall Specificity 

ANN [7] 98.30 97 97.77 100 

XGBoost 

[11] 

91.45 95.49 84.79 95.96 

KNN [10] 97.40 94.68 94.58 92.58 

Proposed 

Work 

99.88 99.90 98.72 97.85 

 

 
Figure. 5 Comparative review 

 

Fig. 4 represents the Performance Metrics of the 

proposed System where the Accuracy is 99.8%, 

precision is 99.9%, F1-score is 99, Recall is 99.1%, 

Sensitivity is 98.14%, and specificity is 96.68%. 

In the provided Table 2, the efficiency of the 

proposed method is notably superior to the other 

machine learning techniques evaluated, including 

artificial neural networks (ANN), XGBoost, and K-

nearest neighbours (KNN). The "Proposed Work" 

demonstrates exceptional performance across 

multiple metrics. It achieves the highest accuracy 

(99.88%) among all methods, signifying its ability to  

 

 
Figure. 6 ROC curve  

 

correctly classify instances. Moreover, it achieves 

remarkable precision (99.90%), indicating a minimal 

rate of false positives, and a high recall (98.72%), 

demonstrating its proficiency in identifying relevant 

instances. Additionally, the proposed method 

maintains a substantial level of specificity (97.85%), 

showcasing its capability to accurately classify 

negative instances. These results collectively 

highlight the superior efficiency and effectiveness of 

the proposed method in comparison to the other 

models, making it a promising choice for the given 

classification task. It is depicted in Fig. 5. 

5.7 ROC curve  

Recommended system Fig. 6 shows the ROC 

Curve. Traditional procedures are inferior to the 

proposed ones. ROC curves demonstrate a binary 

classification system's threshold change detection. 

Because it examines model classification, the ROC 

curve cannot analyse multi-modal image fusion.  

5.8 Accuracy and loss for training and validation   

In Fig. 7, resource allocation's correctness is how 

well it integrates and preserves essential information 

from input images while eliminating noise, artifacts, 

and inconsistencies.  

It also shows the fused image's quality vs. the 

input photos. This shows how the fusion process 

causes artifacts, fails to safeguard important 

information, or decreases visual quality.  

5.9 Error rate comparison   

Root mean square error (RMSE) is a commonly 

used metric to quantify the accuracy of a predictive 

model by measuring the differences between 

predicted values and actual observed values. By 

comparing the proposed work with the existing work 

in Fig. 8, the proposed work has a lower error rate. 
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(a) 

(b) 
Figure. 7: (a) Model training and testing loss, and (b) 

Model training and testing accuracy  

 

 
Figure. 8 Error rate comparison  

6. Conclusion 

The incorporation of an AI-driven firefly 

optimized hybrid CNN-BiLSTM model for 

increasing resource allocation and efficiency in IoT 

networks has enormous promise for changing IoT 

system efficiency and performance. This novel 

solution uses AI, bio-inspired optimization, and 

advanced learning to dynamically assign network 

assets based on real-time demands, resulting in 

reduced congestion, increased energy efficiency, and 

improved overall network performance. The model 

can accurately evaluate complicated IoT data by 

combining the strengths of CNN and BiLSTM 

architectures, capturing both spatial and temporal 

correlations, making it well-suited for various IoT 

applications. Moreover, the adaptability of the 

proposed approach enables IoT networks to scale 

efficiently and handle a growing number of 

connected devices while maintaining optimal 

performance. While there are challenges in terms of 

complexity, training data, and real-time constraints, 

the potential benefits in terms of efficiency, 

scalability, and intelligent decision-making make it a 

promising solution for the continued advancement of 

IoT technology. To fully realize the benefits, future 

research and development efforts should focus on 

mitigating the drawbacks and optimizing the model 

for practical and widespread deployment in diverse 

IoT environments.  
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