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Abstract: Nowadays, tree-structured deep learning classifier models have been widely used in different applications 

to ensure effective feature representation and learning. Amongst, dimensional sentiment analysis is the most interactive 

research field, which intends to identify continuous numerical values in the valence-arousal (VA) space. To achieve 

this, a tree-structured regional convolutional neural network with long short-term memory (T-CNN-LSTM) model was 

developed, which predicts the VA ratings of the texts for sentiment analysis. In contrast, the effect of a low prediction 

rate and difficulty of feature learning in a small number of class samples was not analyzed. Hence, this manuscript 

proposes an adversarial T-CNN-LSTM (A-T-CNN-LSTM) model for predicting the VA to achieve more fine-grained 

sentiment analysis. This model develops a semantic-enabled frequency-aware generative adversarial network 

(SFGAN) to produce more adversarial samples using the generator network and decrease the spectral data loss of the 

discriminator. It embeds the frequency-aware categorizer (FAC) into the discriminator to determine the input veracity 

in the spatial and spectral domains. Besides, semantic restricted sampling is employed in SFGAN for synthesizing the 

image subject to a semantic mask. Further, the created samples are classified by the T-CNN-LSTM for predicting the 

VA scores of sentences. Finally, the experimental results exhibit that the A-T-CNN-LSTM on stanford sentiment 

Treebank (SST) and CIFAR-10 databases achieves 90.12% and 91% accuracy than the other tree-structured CNNs. 

Keywords: Dimensional sentiment analysis, Tree-structured deep learning, Valence arousal prediction, T-CNN-

LSTM, GAN, Semantic restricted sampling. 

 

 

1. Introduction 

Since deep neural models have gained popularity 

in a variety of applications, tree-based techniques like 

decision trees (DTs) and random forests (RFs) are 

usually the dominant premise class in learning 

difficulties requiring metadata. These techniques are 

typically the successful strategy in Kaggle problems 

since they have many notable advantages [1]: they 

can deal with a wide range of attribute classes, they 

are unaffected by data quantity and they conduct a 

simple kind of attribute extraction by comparing 

connectives of result trees. Such qualities are 

essential in the superiority of tree-based techniques 

over original information. 

Deep learning architectures such as DNN, CNN, 

recurrent neural network (RNN), and others have 

emerged as apparent choices when the input 

possesses a positional proximity characteristic (viz. 

text and multimedia data) [2]. In certain cases, such 

as image classification, by constraining the paradigm 

to use previous knowledge of spatial properties (e.g., 

interpretation and dimension invariance), these 

architectures may generate task-sensitive hypotheses 

that can completely remove the need for domain 

specialists. However, designing DNNs that operate 

with the tree-based techniques in the scenario of 

original data is sometimes incredibly challenging [3-

5]. The classic fully connected networks (FCNs) that 

lack any inductive bias toward raw high-dimensional 

data are generally unfair to tree-based techniques for 

raw data [6]. 

Some research is being conducted to develop 

NNs for raw data. Most of these systems rely on 

classic DT learning in their loops and there is still no 
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widely accepted neural design that can successfully 

adapt tree-based approaches. This issue makes it 

impossible or complicated to apply neural designs in 

several contexts and it highlights a gap in the 

knowledge of DNNs.  

To solve this problem, CNNs have emerged as the 

preferred architecture for large-scale image 

categorization in recent years. With the greater 

availability of massive volumes of labeled training 

data, supervised training has emerged as the 

fundamental concept for training CNNs to classify 

images [7]. The CNN is typically learned on a 

database comprising a vast number of annotated 

images. The network is learned to retrieve important 

characteristics from images and categorize them. 

This learned framework is then applied to identify 

specific unlabelled images [8]. During learning, 

every training sample is given to the network 

simultaneously. Nevertheless, each of these facts is 

not obtained concurrently nowadays and information 

is rather collected progressively over a period. This 

necessitates the development of frameworks capable 

of learning new data when it becomes accessible. 

The CNN integrates feature extraction and 

classification into a single coherent structure within 

that framework. Updating one segment of the feature 

space has an instantaneous impact on the entire 

framework. The other concern with iteratively 

learning the CNN is catastrophic forgetting. If a 

learned CNN is reprogrammed only on fresh data, 

prior characteristics learned from historical 

information are discarded. This requires that 

historical information be used while updating fresh 

data. To combat the catastrophic forgetting problem 

and handle the characteristics trained in the prior 

process, an adaptive hierarchical network design 

called tree-CNN (T-CNN) [9]. 

The T-CNN network is composed of CNNs that 

develop hierarchically because new labels are 

adopted. This network includes new labels such as 

new leaves to the hierarchical design. The branching 

depends on the similarity of features between new 

and previous labels. The initial nodes of this 

framework allocate the input into coarse super-

classes and better categorization is achieved because 

of approaching the leaves of the network. This 

framework facilitates leveraging the convolution 

layers trained before being utilized in the new larger 

network. But it was not able to learn the features 

extracted from the task-relevant sentences. From this 

perspective, the T-CNN-LSTM [10] was designed to 

execute more fine-grained sentiment analysis. This 

model predicted the VA scores of sentences by the 

regional CNN and LSTM. First, a portion of the 

sentence was taken as a region by the regional CNN 

that splits the given sentence into many regions to 

extract essential emotional data. The extracted data is 

weighted based on their influence on the prediction 

of VA. Then, the data from each region is combined 

by the LSTM for predicting VA. By merging these 

two networks, local data within texts and long-range 

correlations among texts are taken in the prediction 

task. Later, a region partition mechanism is applied 

to find task-related expressions and clauses to 

integrate organized data into the prediction of VA. 

But it does not analyze the impact of a low prediction 

rate and difficulty of feature learning in a small 

number of class varieties. 

Thus, the A-T-CNN-LSTM model is developed 

in this article to improve the VA prediction efficiency 

for sentiment analysis. In this model, a GAN is 

adopted to create the adversarial samples for the 

small number of classes in the database. However, the 

problem of high-frequencies loss in the discriminator 

of a standard GAN is not solved and the generator has 

insufficient reward received from the discriminator to 

train high-frequency data features, yielding 

considerable spectrum discrepancies between created 

and actual images. To solve this problem, the SFGAN 

is developed. This SFGAN is a modification of GAN, 

which reduces the loss of spectral data in the 

discriminator. In this SFGAN, the FAC is embedded 

into the discriminator to estimate the input’s veracity 

in the spatial and spectral domains. Also, a semantic 

restricted sampling is introduced in SFGAN to 

synthesize a picture related to a semantic mask. This 

process is achieved by formulating an optimization 

dilemma, which obtains the accurate latent vector for 

the GAN’s picture creation when concerning the 

person’s requirement. Thus, the SFGAN generates 

more samples to solve the data imbalance issue and 

predicts the VA using T-CNN-LSTM effectively. 

The rest of this paper is organized as follows: 

Section 2 covers a literature survey regarding the 

tree-based deep learning frameworks in different 

applications. Section 3 describes the A-T-CNN-

LSTM model, whilst section 4 demonstrates its 

performance. Section 5 abridges the entire article and 

gives upcoming works. 

2. Literature review 

The semantic visual concepts were presented [11] 

to analyze CNN predictions quantitatively and 

semantically. Also, a method was presented to train 

the DT without robust supervision for interpretations. 

In this method, the feature interpretations in high 

convolution layers were decomposed by the DT into 

elementary concepts of object parts for prediction. 

But it needs more training samples to increase the 
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accuracy. 

A boosting cascade deep forest (BCDForest) 

classifier framework [12] was developed to 

categorize the tumor subcategories from the gene 

expression data. A multi-class-grained analysis was 

adopted to support the variety of ensembles via 

various learning information. The forest’s 

characteristics for training were considered based on 

the sliding window. The out-of-bagging was utilized 

to measure the network loss and allocate a self-

reliance weight to all forests to get the proper 

outcomes. A variation-based method was developed 

to enrich significant characteristics in training forests 

at all levels of a cascade forest. But its robustness was 

less while using the high-dimensionality small-scale 

and class-imbalanced datasets. 

The TreeUNet framework [13] was designed 

using a dynamic method to improve pixel-level 

categorization efficiency. The T-CNN module with 

all nodes denoting a ResNext block was built 

dynamically according to the deep semantic 

framework structure. The T-CNN module integrates 

multiscale attributes and trains the framework's 

optimal weights while transmitting attribute 

mappings through merging connections. But the 

training samples were not adequate. 

A deep fuzzy tree (DFT) framework [14] was 

developed to resolve the large-scale hierarchical 

visual categorization with more classes via 

substituting the softmax function in the deep learner. 

Also, a novel dual fuzzy inter-class correlation 

measure was introduced to configure the tree learning 

and base classifiers. But the accuracy was degraded 

when the node number and tree depth were not 

chosen appropriately. 

A novel technique was presented to improve the 

usability of rule extraction for deep learners [15]. 

Initially, the CNN was decomposed into a feature 

extractor and a classifier. After that, the DT was 

extracted only from the classifier and various 

partitioned labeled images were leveraged to train the 

concepts of each feature. Moreover, the human-

readable DTs were extracted from the CNNs to 

construct CNN2DT and allow users to find the 

surrogate DTs. But the DT structures were vaguely 

unstable while using more training images.  

A tag-guided hyper-recursive neural network 

(TG-HRecNN) [16] was designed that adopts hyper-

networks into RecNNs to consider as part-of-speech 

(POS) labels of terms and create the lexical variables 

with dynamism. Also, the data merging unit was 

designed to integrate POS labels and lexical data at 

all nodes to direct the compilation task. But it cannot 

process high-level tasks since it needs encoded 

sentence embedding. 

The efficacy of using a deep learning-based DT 

model was analyzed to detect COVID-19 [17] in lung 

X-ray images. Three binary DTs were used in this 

model, which was trained by the CNN using the 

PyTorch package. The main DT can classify the X-

ray images of the lungs as normal or atypical. The 

second and third DTs can reveal unusual scans 

including TB and COVID-19 signs, respectively. But 

the outcomes were not reliable without using 

pathologically verified data and the number of 

training samples was not sufficient. An effective 

semantic partition of satellite images was presented 

[18]. Initially, artifacts were removed from the 

satellite images and the semantic representation 

based on T-CNN was applied to capture the semantic 

areas of downscaled images. Further, the deep forest 

classifier was utilized to find the possible areas. 

However, the training samples were not adequate. 

The new deep DT (DDT) classifier model [19] 

was designed to recognize the cyberbullying tests 

from the Twitter engine inside the smart city. In this 

model, the hidden layers of DNN were utilized as its 

tree node to analyze the input elements. But it was 

appropriate for small-scale databases. A tree-RNN 

framework [20] was developed to classify the 

network traffic. A binary tree was used to ensure that 

each classifier in the tree structure implements the 

small classification and the specific split rules were 

provided for the number of traffic classes. The RNN 

model was used to train the time-related 

characteristics of the data and the cosine similarity 

was used to estimate which classes were qualified to 

a similar node. But the accuracy was not high due to 

the imbalanced databases. 

A new model depending on CNN and XGBoost 

called ConvXGB [21] was designed to solve 

classification issues. It comprised many stacked 

convolutional layers to learn the input features, 

followed by the XGBoost in the final layer to predict 

the labels. But its accuracy was less since it cannot 

learn temporal correlation among given data. 

The RF-CNN with features (RF-CNN-F) [22] 

was developed to diagnose coronary artery disease 

depending on cardiac magnetic resonance. The high-

dimension images were transformed into low-

dimension ones, which were then given to the CNNs 

to capture the important features automatically. Such 

features were further used to create the DTs for 

classifying coronary artery disease based on the 

majority voting scheme. But the RF performance was 

influenced by the number of features utilized in the 

DTs. An attention-driven tree-structured convolution 

LSTM (ADT-ConvLSTM) model [23] was 

developed for high-dimensional data modeling. But 

its computational cost was high.  
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Figure. 1 Schematic representation of presented study 

 
Table 1. Lists of notations 

Notations Description 

𝐺  Generator network 

𝐷  Discriminator network 

𝑁  No. of layers in generator 

𝑚  No. of semantic categories 

𝑇𝑖   Linear conversion matrix 

𝑥𝑖  Feature maps in layer 𝑖 

𝑆  Semantic partition 

𝑥  Input image/text 

𝑧  Latent vector 

𝑢𝑖
↑  Upsampling output 

ℒ𝑒𝑛𝑝  Cross-entropy loss function 

𝑌𝑖𝑗   Semantic category at pixel (𝑖, 𝑗) 

𝑆𝑖𝑗[𝑘]  Unregularized logarithmic possibility for 

𝑘𝑡ℎ semantic category 

𝕊  Batch size 

𝐶  Spectral classifier 

𝑓(𝑚, 𝑛)  Discrete 2D signal 

ℱ  Discrete Fourier transform 

𝑘, 𝑙  Spectral coordinates 

𝜃  Polar coordinate 

𝑣  Reduced spectral interpretation vector 

𝑟  Radial distance 

ℒ𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙   Spectral categorization loss 

𝐶(𝜙(𝑥))  Spectral veracity of 𝑥 

𝑃𝑔  Generator’s distribution 

𝐷𝑆𝑆  Enhanced discriminator 

𝜆  Hyperparameter 

ℒ𝑎𝑑𝑣𝑙   Adversarial loss 

 

 

In [24], an optimized hierarchical T-CNN model 

with sheep flock optimization was developed to 

predict workload and increase power efficiency in 

cloud computing. But the complexity of this model 

was high and it was a non-convex problem. 

3. Proposed methodology 

This section briefly describes the A-T-CNN-

LSTM model. A schematic representation of the 

presented study is illustrated in Fig. 1. At first, the 

different open-source databases are collected and 

then the proposed SFGAN is applied to augment the 

training samples by creating more adversarial 

samples. The created and actual samples are further 

trained by the T-CNN-LSTM classifier. Moreover, 

the trained classifier is used to classify the test data 

into positive and negative or test images into different 

classes. Table 1 lists the notations used in this study. 

3.1 Design of SFGAN 

Typically, the GAN comprises learning the 

generator (𝐺)  and discriminator (𝐷)  networks, 

where 𝐺  trains to regenerate the target data 

distribution. But, it is complex to unambiguously 

define the semantics of created data samples. So, this 

SFGAN aims to efficiently define the GANs’ 

semantic interpretation so it allows semantic 

controller in 𝐺. In this network, a linear feature map 

conversion is performed to capture the created image 

semantics. Compared with the GAN’s nonlinear 

image creation task, the easiest linear conversion has 

an understandable geometric representation. Also, it 

applies semantic restricted sampling to handle the 

image creation by producing images regarding a 

person’s requirement of the target semantic pattern. 

3.1.1. Enhanced generator 

Construct a generator network (𝐺)  model 

comprising 𝑁  layers and creating images with 𝑚 

semantic categories. It aims to find the potential 

correlation between its feature maps and output 

image semantics. So, a linear conversion matrix (𝑇𝑖) 

is employed on all feature maps 𝑥𝑖  to estimate a 

semantic map of the layer 𝑖. By adding each map, a 

semantic partition (𝑆) of the GAN’s resultant image 

is predicted. The structure of an enhanced generator 

in the SFGAN model is shown in Fig. 2, which 

describes how synthesizing an input image/text (𝑥) 

from a latent vector 𝑧 , 𝐺  creates a sequence of 

internal 𝑥𝑖. 

To obtain an effective GAN model, the feature 

maps {𝑥𝑖}𝑖=1
𝑁−1  are decoded to retrieve the resultant 

image/text’s semantic partition 𝑆. This 𝑆 is a linear 

conversion of each 𝑥𝑖and is described as: 

 

𝑆 = ∑ 𝑢𝑖
↑(𝑇𝑖 ∙ 𝑥𝑖)𝑁−1

𝑖=1     (1) 

 

In Eq. (1), 𝑇𝑖 ∈ ℝ𝑚×𝑐𝑖 transforms 𝑥𝑖 ∈ ℝ𝑐𝑖×𝑤𝑖×ℎ𝑖 

into a semantic map 𝑇𝑖 ∙ 𝑥𝑖 ∈ ℝ𝑚×𝑤𝑖×ℎ𝑖  using a 

tensor reduction along the depth axis. After that, the 

output from all layers is upsampled (represented as 

𝑢𝑖
↑) to the resultant image resolution. 
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Figure. 2 Enhanced generator in SFGAN model 

 

The summation ranges over each internal layer, 

exclusive of the final layer 𝑁 that yields the resultant 

image. The output 𝑆 ∈ ℝ𝑚×𝑤×ℎ  contains a similar 

spatial resolution 𝑤 × ℎ as the resultant image. All 

pixels 𝑆𝑖𝑗  is a 𝑚 × 1  vector, defining the pixel’s 

unregularized logarithmic possibilities and denoting 

every 𝑚 semantic class. This strategy is known as a 

linear semantic extractor. 

The learning task of this strategy is supervised via 

pixel-level labeling of semantics. But, it is unfeasible 

to physically label the huge amount of created images. 

So, off-the-shelf pre-trained segmentation 

frameworks are used for semantic labeling. To learn 

this mechanism and construct a well-learned SFGAN 

model, its latent space is randomly sampled to create 

a collection 𝕊 of created images. While creating all 

images in 𝕊, the model’s feature maps {𝑥𝑖}𝑖=1
𝑁−1  are 

also captured. Such 𝑥𝑖 are linearly converted by Eq. 

(1) to estimate the images’ semantic mask, which is 

evaluated by the output from the pre-trained semantic 

segmentation model to determine the classical cross-

entropy loss value as: 

 

ℒ𝑒𝑛𝑝 =
1

𝑤∙ℎ
∑ [log (∑ 𝑒(𝑆𝑖𝑗[𝑘])𝑚

𝑘=1 ) 𝑆𝑖𝑗[𝑌𝑖𝑗]]1≤𝑖≤𝑤
1≤𝑗≤ℎ

 (2) 

 

In Eq. (2), 𝑌𝑖𝑗 indicates the semantic category at 

pixel (𝑖, 𝑗)  and 𝑆𝑖𝑗[𝑘]  indicates the respective 

unregularized logarithmic possibility for 𝑘𝑡ℎ 

semantic category estimated using the linear 

semantic extractor. Moreover, 𝑇𝑖  are adjusted by 

reducing the estimated loss (determined by 

considering the mean loss over image batches in 𝕊). 

Accordingly, 𝐺 of the SFGAN can create adversarial 

samples and extract their semantics. 

3.1.2. Enhanced discriminator 

Initially, a spectral classifier 𝐶  is introduced to 

identify frequency spectrum divergence between 

actual and created images. After that, 𝐶 is integrated 

into 𝐷  of GANs to improve its capability in the 

spectral domain and minimize the spectrum 

divergence. Fig. 3 shows the structure of an enhanced 

discriminator in the SFGAN model. 

To solve the problem of high-frequency loss in 𝐷,  

 

 
Figure. 3 Enhanced discriminator in SFGAN model 

 

a simple method is to distinguish in the frequency 

domain instead of the spatial domain. For a discrete 

2D signal 𝑓(𝑚, 𝑛) defining an image of dimension 

𝑀 × 𝑁, its discrete fourier transform ℱ is calculated 

in Eq. (3): 

 

ℱ(𝑘, 𝑙) = ∑ ∑ 𝑓(𝑚, 𝑛)𝑒−2𝜋𝑖
𝑘𝑚

𝑀 𝑒−2𝜋𝑖
𝑙𝑛

𝑁𝑁−1
𝑛=0

𝑀−1
𝑚=0    (3) 

 

For the spectral coordinates 𝑘 = 0, … , 𝑀 − 1 and 

𝑙 = 0, … , 𝑁 − 1 . After that, it is converted from 

Cartesian coordinates 𝑘 and 𝑙 to polar coordinates 𝑟 

and 𝜃 to signify the frequencies of various spectrums 

in Eq. (4), 

 

ℱ(𝑟, 𝜃) = ℱ(𝑘, 𝑙) ∶ 𝑟 = √𝑘2 + 𝑙2, 𝜃 = 𝑎𝑡𝑎𝑛2(𝑙, 𝑘) 

(4) 

 

The reduced spectral interpretation 𝑣 is obtained 

by azimuthally averaging over 𝜃 as: 

 

𝑣(𝑟) =
1

2𝜋
∫ |ℱ(𝑟, 𝜃)|𝑑𝜃

2𝜋

0
   (5) 

 

Eq. (5) defines the average intensity of the signal 

relating to the radial distance 𝑟. The shrunk spectral 

interpretation can smooth the spectrum variations at 

high frequencies. For a given image 𝑥, the grayscale 

element is utilized to obtain its spectral vector 𝑣 and 

the function is defined as 𝑣 = 𝜙(𝑥) . The spectral 

categorization loss is defined as: 

 

ℒ𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐶(𝜙(𝑥))] +  

𝔼𝑥~𝑃𝑔(𝑥) [𝑙𝑜𝑔 (1 − 𝐶(𝜙(𝑥)))] (6) 

 

In Eq. (6), 𝐶(𝜙(𝑥))  determines the spectral 

veracity of 𝑥 and 𝑃𝑔 is 𝐺’s distribution. Because 𝑥 is 

realistic when it is accurate in the spatial and 

frequency domains, the veracity of 𝑥 is determined 

with the mixture of spatial and spectral veracity. 

In this SFGAN, 𝐶 is integrated into 𝐷 of GANs 

to support 𝐺 , which learns the high-frequency and 

semantics of the image. This enhanced discriminator 

(𝐷𝑆𝑆) has 2 units: a vanilla discriminator (𝐷) that 

estimates the spatial veracity and 𝐶. So, 𝐷𝑆𝑆 is used 
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to determine the input veracity in the spatial and 

spectral domain. Also, the complete veracity of 𝑥 is 

denoted by 

 

𝐷𝑆𝑆(𝑥) = 𝜆𝐷(𝑥) + (1 − 𝜆)𝐶(𝜙(𝑥))  (7) 

 

In Eq. (7), 𝜆 denotes the hyperparameter, which 

regulates the virtual significance of the spatial and 

spectral veracity. The models’ adversarial loss is 

represented by 

 

ℒ𝑎𝑑𝑣𝑙 = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log 𝐷𝑆𝑆(𝑥)] +

                               𝔼𝑥~𝑃𝑔(𝑥)[𝑙𝑜𝑔(1 − 𝐷𝑆𝑆(𝑥))]  (8) 

 

In Eq. (8), 𝑃𝑔 is 𝐺’s distribution. To train this 𝐷 

network, 𝐶, 𝐷 and 𝐺 are fine-tuned using the below 

gradients in Eqs. (9a) to (9c). 

 

𝜃𝑐 ← −∇𝜃𝑐
ℒ𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙               (9a) 

 

𝜃𝑑 ← −∇𝜃𝑑
ℒ𝑎𝑑𝑣𝑙               (9b) 

 

𝜃𝑔 ← −∇𝜃𝑔
ℒ𝑒𝑛𝑝               (9c) 

 

Because less information of 𝑥 is removed in the 

spectral vector 𝜙(𝑥), it is observed that it is not able 

to give a useful gradient for adversarial learning, 

which influences the model efficiency. Therefore, 

consider that the backpropagation procedure of Eq. 

(8) didn’t pass via 𝐶 and 𝐶(𝜙(𝑥)) acts as a spectral 

modulating parameter to ℒ𝑎𝑑𝑣𝑙 . Moreover, the 

gradients of 𝐷 and 𝐺 are given in Eqs. (10) & (11): 

 

𝜃𝑑 ←
1

1−𝐷(𝑥)+
1−𝜆

𝜆
(1−𝐶(𝜙(𝑥)))

∇𝜃𝑑
𝐷(𝑥)            (10) 

 

𝜃𝑔 ← −
1

𝐷(𝑥)+
1−𝜆

𝜆
𝐶(𝜙(𝑥))

∇𝑥𝐷(𝑥)𝐽𝜃𝑔
𝐺(𝑧)        (11) 

 

From the abovementioned gradients, it is noticed 

that this SFGAN executes a hard sample extraction, 

wherein hard is represented in the frequency domain. 

For 𝐷, if 𝐶(𝜙(𝑥)) → 1, the created image 𝑥 contains 

high-quality spectral features and is a hard sample to 

be categorized as bogus. For 𝐺 , 𝑥  refers to a hard 

sample, if 𝐶(𝜙(𝑥)) → 0. This defines that 𝑥 contains 

ineffective spectral veracity and requires further 

consideration from 𝐺. 

If 𝑥  refers to a hard sample in the frequency 

domain, the gradients of 𝐷  and 𝐺  are up-weighted, 

which encourages the model to train the spectral 

distribution of the actual image. Thus, this SFGAN 

can generate more adversarial data/images similar to 

the given input data/images for effective training of 

the T-CNN-LSTM model, which classifies the text’s 

sentiments or images appropriately. 

4. Experimental result 

This section presents the A-T-CNN-LSTM’s 

effectiveness by executing it in Python 3.7.8 using 2 

different databases: SST and CIFAR-10. In the SST 

database [24], there are 8,544 learning texts, 2,210 

test texts and 1,101 validation texts. All texts are 

graded on a particular axis (valence) that ranges from 

0 to 1. In contrast, the CIFAR-10 database [25] 

contains 60000 color images of dimension 32×32 in 

10 different categories, with 6000 images per 

category. Of these, 50000 images are used for 

learning and 10000 are used for testing. Each of the 

10000 images is divided into 5 learning batches and 

1 test batch. The test batch has 1000 images from all 

categories, picked randomly. The residual images are 

used in learning batches arbitrarily, but a few batches 

might comprise several images from a certain 

category compared to another. Amongst, the learning 

batches have 5000 images from all categories. To 

measure the performance of the proposed model, 

existing models including T-CNN-LSTM [10], T-

CNN [9], Tree-RNN [20], ConvXGB [21], RF-CNN-

F [22], and ADT-ConvLSTM [23] are also 

implemented and tested using the above-considered 

datasets. Table 2 lists parameter settings for the 

proposed A-T-CNN-LSTM and existing models. 

The metrics used for comparison analysis are 

defined as follows: 

• Accuracy: It defines a proper categorization of 

text’s sentiment or image class among the overall 

samples tested. 

 

𝐴𝑐𝑐 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
  (12) 

 

TP is the number of +ve texts that are correctly 

classified as +ve, TN is the number of +ve texts that 

are correctly classified as –ve, FP is the number of –

ve texts that are incorrectly classified as +ve and FN 

is the number of +ve texts that are incorrectly 

classified as –ve. 

• Precision: It is determined by 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (13) 

 

• Recall: It is calculated by 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (14) 
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Table 2. Parameter settings for existing and proposed A-

T-CNN-LSTM model 

Framework Parameters Range 

ConvXGB [21] 

No. of convolutional 

layer 
2 

Output depth of 

convolutional layer 
4 

Filter size 2× 

Stride of the filter 1 

No. of trees 10 

Tree depth 4 

No. of epoch 50 

Learning rate 0.001 

RF-CNN-F [22] 

No. of convolutional 

layer 
2 

No. of fully connected 

layer 
1 

No. of filters in each 

convolutional layer 
32 

Kernel size 3×3 

Stride size 2 

Activation function for 

hidden layers 
ReLU 

L2-regularization 

coefficient 
0.001 

Batch size 256 

No. of epochs 20 

Learning rate 0.001 

ADT-ConvLSTM 

[23] 

No. of LSTM units 64 

LSTM activation 

function 
tanh 

No. of filters 32 

Kernel size 3×3 

Stride size 1 

Learning rate 0.001 

Batch size 32 

No. of epochs 100 

Dropout 0.2 

T-CNN [9] 

Learning rate 0.1 

Batch size 64 

Epoch 200 

Weight decay 0.001 

Momentum 0.9 

Dropout 0.2 

Tree-RNN [20] 

Learning rate 0.001 

Batch size 64 

Epochs 100 

No. of hidden states 120 

T-CNN-LSTM 

[10] and proposed 

A-T-CNN-LSTM  

No. of filters 60 

Filters length 3 

Pool length 2 

No. of hidden states 120 

Optimizer Adam 

Learning rate 0.0001 

Batch size 32 

No. of epochs 50 

Dropout 0.25 

 

 
Figure. 4 Performance analysis of different classification 

models on SST database 

 

 
Figure. 5 Performance analysis of different classification 

models on CIFAR-10 database 
 

• F-measure: It is determined by 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
            (15) 

 

 

Fig. 4 demonstrates the performance of different 

models applied on the SST database to classify the 

text’s sentiments, which clarifies the A-T-CNN-

LSTM attains better precision, recall, f-measure and 

accuracy compared to the other classifier models 

because of learning more adversarial samples 

generated by the SFGAN. The precision values 

obtained by the ConvXGB, RF-CNN-F, Tree-RNN, 

AT-ConvLSTM, T-CNN-LSTM and A-T-CNN-

LSTM are 78.96%, 80.29%, 81.62%, 83.05%, 

84.93% and 90.31%, correspondingly. The recall 

values determined by the ConvXGB, RF-CNN-F, 

Tree-RNN, AT-ConvLSTM, T-CNN-LSTM and A-

T-CNN-LSTM are 79.23%, 80.35%, 82.04%, 

83.68%, 85.31% and 89.93%, respectively. The f-

measure obtained by the ConvXGB, RF-CNN-F, 

Tree-RNN, AT-ConvLSTM, T-CNN-LSTM and A-

T-CNN-LSTM are 79.1%, 80.32%, 81.83%, 83.37%, 

85.31% and 90.12%, respectively.  

Also, the accuracy of the A-T-CNN-LSTM 

model is 13.54%, 11.34%, 9.76%, 7.61% and 5.64% 

greater than the ConvXGB, RF-CNN-F, Tree-RNN, 

AT-ConvLSTM, and T-CNN-LSTM for classifying 

the test’s sentiments effectively. 

In Fig. 5, the performance of different models 

tested on the CIFAR-10 database is shown, which 

signifies that the A-T-CNN-LSTM model 

accomplishes better efficiency compared to the other 
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models due to the extracting of image semantics and 

learning more adversarial samples generated by the 

SFGAN. The precision values obtained by the 

ConvXGB, RF-CNN-F, Tree-RNN, AT-ConvLSTM, 

T-CNN-LSTM and A-T-CNN-LSTM are 81.18%, 

82.36%, 83.51%, 84.25%, 86% and 91%, 

correspondingly. The recall values determined by the 

ConvXGB, RF-CNN-F, Tree-RNN, AT-ConvLSTM, 

T-CNN-LSTM and A-T-CNN-LSTM are 81.27%, 

82.52%, 83.86%, 84.31%, 86% and 91%, 

respectively. The f-measure obtained by the 

ConvXGB, RF-CNN-F, Tree-RNN, AT-ConvLSTM, 

T-CNN-LSTM and A-T-CNN-LSTM are 81.23%, 

82.44%, 83.69%, 84.5%, 86% and 91%, respectively. 

Also, the accuracy of the A-T-CNN-LSTM model is 

11.88%, 10.17%, 8.46%, 7.69% and 5.81% greater 

than the ConvXGB, RF-CNN-F, Tree-RNN, AT-

ConvLSTM, and T-CNN-LSTM for classifying the 

test’s sentiments effectively. 

5. Conclusion 

This paper developed the A-T-CNN-LSTM 

model to estimate the VA and analyze the sentiments 

from images/texts. In this model, the SFGAN was 

designed, which produces the number of adversarial 

samples by the generator network. This generator 

network can apply linear transformation and 

semantic restricted sampling to facilitate semantic 

control during the creation phase. By using this new 

generator, the created image semantics were captured 

by the linear transformation of feature maps. The 

FAC was embedded into the discriminator unit to 

evaluate the input veracity in the spatial and spectral 

spaces. Thus, this SFGAN can produce more 

adversarial samples, which were then classified by 

the T-CNN-LSTM model for sentiment analysis. 

Finally, the experimental results revealed that the A-

T-CNN-LSTM on SST and CIFAR-10 databases has 

an accuracy of 90.12% and 91%, respectively 

compared to the other models for sentiment 

analysis/image recognition. 
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