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Abstract: The penetration of electric vehicle (EV) loads in the electrical distribution system (EDS) is anticipated to 

increase dramatically over the next few years in response to rising global warming and fuel price scenarios. Planning 

for charging infrastructure and renewable energy sources (RES) is urgently required in this context. By carefully 

combining public charging stations (PCSs) backed by photovoltaic (PVs) systems and distribution static compensators 

(DSTATCOMs), this study proposes an optimisation strategy to reduce the adverse effects of EV load penetration in 

EDS. The proposed multi-objective function aims to reduce the voltage deviation index and distribution losses while 

considering various operational constraints. By combining the voltage stability index (VSI) and opposition-based 

learning (OBL) strategy with honey badger algorithm (HBA), the optimisation problem is resolved with a smaller 

search space for global minima. The effectiveness of the proposed technique on IEEE 33-bus EDS was evaluated in 

various situations. The real power losses are reduced to 242.35 kW, 75.32 kW and 41.76 kW from 350.25 kW by 

optimally integrating (i) PCSs alone, (ii) simultaneous PCSs and PVs and (iii) simultaneous PCSs, PVs and 

DSTATCOMs, respectively. Further, the VSI of the EDS is enhanced 0.7057, 0.8727, 0.9018 from 0.6104, 

respectively. The computational characteristics of HBA were also measured and compared with those of the COA and 

HBA. In terms of target and computational time, the outcomes produced by IHBA are very competitive with those of 

COA and superior to those of HBA. Additionally, even with a high EV load penetration, the suggested methodology 

produces reduced distribution losses and an appropriate voltage profile in EDS. 

Keywords: Electrical distribution system, Electric vehicles, Photovoltaic system, Distribution static compensator, 

IHBA optimizer, Voltage stability index, Opposition-based learning. 

 

 

1. Introduction 

The international energy agency (IEA) has 

warned that transportation contributes to one-third of 

end-use CO2 emissions, with global transport-related 

emissions expected to rise by 3-8 billion metric tons 

by 2022. On the other side, the energy sector is 

responsible for 73% of the global greenhouse gas 

(GHG) emissions [1]. To reduce emissions, urgent 

actions from the transportation and energy sectors are 

needed, including the integration of renewable 

energy sources (REs) and adoption of electric 

vehicles (EVs). Wind and solar power generation is 

expected to exceed electricity demand by 2023. 

However, managing potential challenges such as the 

impact of EVs on electrical systems is crucial for a 

successful low-carbon shift [2].  

Due to the intermittent nature of REs and the 

stochastic nature of EVs, optimization of EDS’s 

performance focuses primarily on loss reduction, 

voltage profile, voltage stability enhancement, 

loadability improvement, reliability improvement, 

and power quality issues mitigation—has recently 

gained popularity as a research area. For these two 

technologies to achieve their intended benefits, 

coordinated planning in EDS is essential [3].  
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The improvement of the electric distribution 

system (EDS) performance is covered in the literature 

using a variety of techniques. It is highly advised to 

allocate renewable energy (RE) based distribution 

generation (DG) efficiently, and a number of 

heuristic algorithms have been used to address this 

difficulty, as shown in references [4–8]. To obtain the 

best placement of REs, distribution-static 

synchronous compensators (D-STATCOM), and 

passive power filters (PPFs) within the EDS 

framework, reference [5] uses the artificial rabbit 

optimiser (ARO). The goal of this optimisation is to 

improve the power quality and performance. The 

ideal locations and sizes of various types of DGs were 

determined in [6] using a novel method employing 

the improved decomposition-based evolutionary 

algorithm (I-DBEA). The multi-objective function 

addressed by this method includes elements such as 

the power loss, voltage variation, and voltage 

stability. Similarly, [7] addressed the DG allocation 

problem in single- and multi-objective scenarios 

using the transient search optimisation (TSO) 

approach. It considers variables such as the voltage 

stability, voltage variation, and power loss. To 

address a variety of DG types and account for load 

increase, [8] suggested a novel method that combines 

weight-improved particle swarm optimisation 

(WIPSO) and gravitational search algorithm (GSA). 

These findings show that the strategic integration of 

RE-based DGs significantly improves the EDS 

performance. It is crucial to realize that these works 

do not address the difficulties caused by the emerging 

EV load trends in the electric sector, including their 

possible negative effects on EDS’s performance.     

EV load penetration and EV charging stations 

have been considered for solving the optimal 

allocation of REs problems in several publications 

[9–13]. The honey badger algorithm (HBA) was used 

in [9] to determine the best placement and size for 

photovoltaic systems (PV) to reduce the detrimental 

effects of high EV load penetration in the EDS. 

Particle swarm optimisation (PSO) and butterfly 

optimisation (BOA) were used in [10] to define and 

solve a weighted-sum multi-objective function that 

considers the network's EV fast-charging stations 

(FCSs) and distribution losses. However, these 

studies have not been optimised for FCS placement. 

To properly limit the effects of EV load penetration, 

the coyote optimisation algorithm (COA) was 

modified in [11] for the optimal integration of PV-

based DG into a multi-feeder distribution system. It 

also emphasises the necessity of battery energy 

storage systems (BESS) for dealing with islanding 

circumstances. In [12], various DG types were 

combined optimally using PSO while considering the 

EV impact in the form of either a vehicle-to-grid 

(V2G) or grid-to-vehicle (G2V) mode. [13] used 

demand response (DR) and smart 

charging/discharging of EV CSs to simultaneously 

focus on reliability enhancement, loss reduction, and 

voltage profile optimisation. Based on these 

investigations, it is possible to enhance EDS's 

functionality of EDS by precisely positioning or 

managing the EV CS. However, these studies did not 

address the combined effects of RE.  

However, several studies [14–18] concentrated 

on the best integration of EV charging stations (EV-

CSs). A balanced mayfly algorithm (BMA) was 

created in [14] to design and place EV-CSs in EDS in 

the best possible manner while taking loss reduction 

and operational cost into account. In [15], the issue of 

the best integration of EV CSs was resolved by 

considering various EV CS types and their charging 

rates, with an emphasis on loss, voltage profile, and 

investment and operating costs. In [16], the non-

dominated sorting genetic algorithm II (NSGA-II) 

with a Fuzzy set is used to correlate the distribution 

loss and EV CS usage factor to optimally integrate 

EV CSs. To optimally integrate capacitor banks 

(CBs) for reactive power control in the presence of a 

fluctuating EV load, advanced grey wolf optimiser-

particle swarm optimisation (AGWO-PSO) was 

proposed in [17]. The improvement of the EDS 

performance and reliability while considering the 

V2G and G2V scenarios is the focus of this study. In 

[18], hybrid grey wolf optimiser-particle swarm 

optimisation (GWO-PSO) was employed to address 

EV CS integration while lowering land and 

installation costs, as well as distribution losses. 

Notably, our studies have demonstrated how 

effectively integrating EVs into EDS while using 

intelligent charging and discharging scenarios may 

also significantly boost network performance. 

However, they do not work concurrently with the EV 

effect mitigation and RE-based DGs. 

However, some recent efforts [19–23] have also 

concentrated on the concurrent optimal integration of 

REs and EV charging stations (EV-CSs). In [19], the 

multi-objective red kite optimisation algorithm 

(MOROA) was used to simultaneously solve the 

optimal integration of REs and EV fast-charging 

stations (FCSs) while reducing loss and improving 

the voltage profile. In [20], a hybrid PSO-GA was 

developed and used to reduce the loss and voltage 

deviation while optimally integrating PVs with EV-

CSs. It uses PSO and a genetic algorithm (GA).  

When determining the best sites and sizes for PV, 

WTs, and EV-CSs in [21], numerous reliability 

indices were optimised while considering India's  
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Table 1. Comparison of literature and proposed methodology based on allocation problem 

References  

Type of allocation problem  

Only REs 

allocation 

Only REs allocation 

with EV penetration 

Only CSs 

allocation 

Simultaneous 

allocation of  

REs + CSs  

Simultaneous allocation  

of REs + CSs + 

DSTATCOMs 

[4-8] ✓ – – – – 

[9-13] – ✓ – – – 

[14-18] – – ✓ – – 

[19-23] – – – ✓ – 

Proposed ✓ ✓ ✓ ✓ ✓ 

 

weather patterns and EV demand increase into 

account. In [22], Harris hawks optimisation (HHO) 

was used to optimise the loss, voltage profile, 

placement based on EV density, and cost of the EV 

CS investment. The placement and dimensions of 

PV-based DGs were integrated to offset the demand 

for the EV CS load simultaneously. In [23], the 

performance of EDS was maximised by 

appropriately locating and sizing RE-based DGs 

concentrating on techno-environmental objectives 

using the CPLEX solver in the GAMS software. The 

benefits of EV CS operators are optimised in the first 

stage utilising the V2G and G2V scenarios. 

In Table 1, the literature works are compared with 

the proposed methodology based on the optimal 

allocation problem. The performance of EDS is 

improved by solving for (i) only REs allocation, (ii) 

REs allocation considering EV load penetration, (iii) 

allocation of only CSs, and (iv) simultaneous 

allocation of both REs and CSs. The major 

contributions of this study are as follows.  

1) A multi-objective function focusing on techno-

economic-environmental objectives was 

formulated while solving the simultaneous 

allocation of PVs, public charging stations 

(PCSs), and DSTATCOMs.  

2) The objective function is solved using an 

improved honey badger algorithm (IHBA) with 

an opposition-based learning (OBL) strategy. 

3) Simulations were performed on the IEEE 33-bus 

test system for different EV load growth 

scenarios and compared with the literature.  

4) For different scenarios, the optimal allocation 

problem is solved with IHBA and compared its 

performance with basic HBA and COA 

The remainder of the paper is structured as follows: 

The mathematical modelling of relevant concepts, 

including voltage-dependent multi-type customer 

load modelling, PCS, PVs, and DSTATCOM, is 

explained in section 2. The equal and unequal 

constraints of the proposed multi-objective 

optimisation problem focusing on loss voltage 

deviation are described in section 3. The IHBA with 

OLB and voltage stability index (VSI) solution 

approaches are described in section 4. Numerous case 

studies on the IEEE 33-bus system are presented in 

section 5, utilising the suggested methodology. The 

overall contributions of this study are presented in 

detail in section 6.   

2. Modelling of concepts 

This section explains the mathematical modelling 

of the major keywords of this study, such as multi-

type consumers, public charging station loads, 

photovoltaic systems, and distribution static 

compensators.  

2.1 Multi-type consumer load modeling  

In reality, different types of consumers are 

usually associated with EDS, and their loads are 

periodically sensitive to changes in the voltage 

profile. Thus, this study used voltage-dependent load 

modelling for residential, industrial, commercial, and 

electric vehicles.  

 

�̅�𝑙𝑑,𝑘 = 𝑃𝑙𝑑,𝑘(𝑘𝑟𝑉𝑘
𝛼𝑟 + 𝑘𝑐𝑉𝑘

𝛼𝑐 + 𝑘𝑖𝑉𝑘
𝛼𝑖)          (1) 

 

�̅�𝑙𝑑,𝑘 = 𝑄𝑙𝑑,𝑘 (𝑘𝑟𝑉𝑘
𝛽𝑟 + 𝑘𝑐𝑉𝑘

𝛽𝑐 + 𝑘𝑖𝑉𝑘
𝛽𝑖)        (2) 

 

In this model, the substation bus or reference bus 

voltage is assumed to be constant irrespective of the 

load changes in the EDS.          

2.2 Public charging station modeling  

In specific, public charging stations (PCS) need 

to accommodate multiple vehicles for charging at a 

time. Thus, number of charging ports (CPs) and their 

power ratings define the total load demand of PCS, 

and it is given by;  

 

𝑃𝑝𝑐𝑠,𝑘 = 𝑛𝑐𝑝,𝑙1 × 𝑃𝑒𝑣,𝑙1 + 𝑛𝑐𝑝,𝑙2 × 𝑃𝑒𝑣,𝑙2         (3) 

 

𝑄𝑝𝑐𝑠,𝑘 = 𝑃𝑝𝑐𝑠,𝑘 × 𝑡𝑎𝑛(𝑐𝑜𝑠−1𝜑𝑐𝑠)                   (4) 

 

�̅�𝑙𝑑,𝑘 = 𝑃𝑙𝑑,𝑘 + 𝑃𝑝𝑐𝑠,𝑘 × (1 + 𝜌𝑒𝑣)𝑉𝑘
𝛼𝑒𝑣 (5) 
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�̅�𝑙𝑑,𝑘 = 𝑄𝑙𝑑,𝑘 + 𝑄𝑝𝑐𝑠,𝑘 × 𝑉𝑘
𝛽𝑒𝑣  (6) 

 

𝑛𝑝𝑐𝑠 = (∑ �̅�𝑙𝑑,𝑘
𝑛𝑏𝑢𝑠
𝑘=1 ) 𝑃𝑝𝑐𝑠⁄      (7) 

2.3 Photovoltaic system  

Photovoltaic systems (PVs) usually inject real 

power into the grid via their associated inverters 

while maintaining a unity power factor. Thus, PVs 

can be seen as real power compensator at its 

integrated bus, as given by,  

 

�̅�𝑙𝑑,𝑘 = 𝑃𝑙𝑑,𝑘 − 𝑃𝑝𝑣,𝑘    (8) 

2.4 Distribution static compensator   

A distribution static compensator (DSTATCOM) 

is used to compensate for the reactive power in the 

grid and thus maintain a good voltage profile. The 

corresponding modelling as reactive power 

compensation at its integrated bus, as given by,  

 

�̅�𝑙𝑑,𝑘 = 𝑄𝑙𝑑,𝑘 − 𝑄𝑑𝑠𝑡,𝑘    (9) 

3. Problem formulation  

By integrating the PCS, EDS can experience a 

low voltage profile, high distribution losses, and low 

voltage stability margin. Thus, the proposed multi-

objective is focused on optimizing these three 

operating goals simultaneously.    

3.1 Objective function 

3.1.1. Real power distribution loss 

The distribution system real power losses are 

dependent on current flow in each branch and their 

resistance, related by, 

 

𝑓1 = 𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑘
2𝑟𝑘

𝑛𝑏𝑟
𝑘=1               (10) 

3.1.2. Voltage deviation index 

The voltage levels at each bus must be maintained 

constant without significant deviation from the low 

and/or high permissible limits. Thus, voltage 

deviation index (VDI) is given by,  

 

𝑓2 = 𝑉𝐷𝐼 =
1

𝑛𝑏𝑢𝑠
∑ |𝑉𝑟 − 𝑉𝑖|2𝑛𝑏𝑢𝑠

𝑖=1             (11) 

3.1.3. Overall objective function 

The overall objective function minimises both 

individual objective functions simultaneously, and is 

given by, 

𝑂𝐹 =  𝑚𝑖𝑛(𝑓1 + 𝑓2)              (12) 

3.2 Constraints 

The objective functions defined in Eq. (12) is 

constrained by the following equal and unequal 

constraints, which must be addressed in the 

optimisation process.  

 

𝐼𝑘 ≤ 𝐼𝑘,𝑚𝑎𝑥               (13) 

 

𝑉𝑖,𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖,𝑚𝑎𝑥              (14) 

 

∑ 𝑃𝑝𝑣,𝑖
𝑛𝑝𝑣
𝑖=1 ≤ ∑ 𝑃𝑙𝑑,𝑖

𝑛𝑏𝑢𝑠
𝑖=1 + ∑ 𝑃𝑝𝑐𝑠,𝑘

𝑛𝑝𝑐𝑠
𝑘=1         (15) 

 

∑ 𝑄𝑑𝑠𝑡,𝑖
𝑛𝑑𝑠𝑡
𝑖=1 ≤ ∑ 𝑄𝑙𝑑,𝑖 + ∑ 𝑄𝑝𝑐𝑠,𝑘

𝑛𝑝𝑐𝑠
𝑘=1

𝑛𝑏𝑢𝑠
𝑖=1     (16) 

4. Solution methodology 

The solution methodology in this study was 

developed using a hybrid approach with a recent 

improved variant of honey badger algorithm (IHBA) 

with opposition based learning (OBL) and the voltage 

stability index (VSI). In the first stage, the search 

space in the optimisation process using IHBA is 

reduced by determining predefined candidate 

locations using VSI, and the sizes of PVs and 

DSTATCOMs are optimally tuned using IHBA. This 

section explains the mathematical concepts of IHBA 

and VSI and their application in solving the proposed 

multi-objective function.   

4.1 Honey badger algorithm 

Hashim et al. [24] developed the honey badger 

algorithm (HBA), like a general optimisation strategy 

by incorporating both the exploration and 

exploitation stages. The HBA stages are 

mathematically defined as follows: HBA begins by 

generating an initial population of N solutions (honey 

badgers) using Eq. (17). 

 

ℎ𝑝𝑞 = 𝐿𝑝𝑞 + 𝑟1 × (𝑈𝑝𝑞 − 𝐿𝑝𝑞)                    (17) 

 

where 𝑝 = 1, … , 𝑛 and 𝑞 = 1, … , 𝑑, 𝑈𝑝𝑞  and 𝐿𝑝𝑞 are 

the minimum and maximum limits of the variables of 

optimization problem, respectively; 𝑟1  is a 

randomised factor between 0 and 1, ℎ𝑝𝑞  is the 

location of pth honey badger in qth solution vector, n 

and d are the size of population and their dimensions, 

respectively.  

The next stages of HBA are termed as digging and 

honey as similar to exploration and exploitation 

phases in regular meta-heuristic algorithms.  
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In digging phase (exploration), honey badger 

location is updated using smell intensity and changes 

in flying direction, as given by, 

 

ℎ𝑝𝑞
𝑘+1 = ℎ𝑝𝑞

𝑏,𝑘 + 𝑓𝑑 × 𝛾 × 𝑠𝑖 × ℎ𝑝𝑞
𝑏,𝑘 + 𝑓𝑑 × 𝑟2 × 𝛿 ×

𝑑𝑝 × |𝑐𝑜𝑠(2𝜋𝑟3) × [1 − 𝑐𝑜𝑠(2𝜋𝑟4)]|  (18) 

 

where ℎ𝑝𝑞
𝑘+1 is the new position of honey badger, 𝑟2, 

𝑟3 and 𝑟4 are the random numbers, 𝑑𝑝 is the distance 

of pth honey badger with best prey at kth iteration, 

ℎ𝑝𝑞
𝑏,𝑘

 , 𝛾 ≥ 1 and to define the ability of honey badger 

to explore the food and is set to 6, 𝛿 is a dynamic 

decreasing factor to tune exploration to exploitation,  

𝑠𝑖 and 𝑓𝑑 are the smell intensity and changes in flying 

direction, respectively. Mathematically,  

 

𝑠𝑖 = 𝑟5 ×
𝐶

4𝜋𝑑𝑝
2               (19) 

 

𝑓𝑑 = {
+1 𝑖𝑓 𝑟6 ≤ 0    
−1 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

              (20) 

 

𝛿 = 𝜏 × 𝑒(𝑘/𝐾), 𝜏 > 1              (21) 

 

where 𝐶 = (ℎ𝑝𝑞
𝑘 − ℎ𝑝𝑞

𝑘+1)
2

 is the prey strength of 

concentration and 𝑑𝑝 = (ℎ𝑝𝑞
𝑏,𝑘 − ℎ𝑝𝑞

𝑘 ) is the distance 

between best prey and present honey badger, 

respectively, 𝑟5  and 𝑟6  are the random numbers, k 

and K are the number to represent present and 

maximum iteration, respectively; 𝜏  is a constant 

equal to 2.  

In the honey phase (exploitation), the follower 

behaviour of honey badger to arrive a beehive by 

following a guide honey badger. Mathematically, this 

situation is formulated as, 

 

ℎ𝑝𝑞
𝑘+1 = ℎ𝑝𝑞

𝑏,𝑘 + 𝑓𝑑 × 𝑟7 × 𝛿 × 𝑑𝑝              (22) 

 

Based on spatial search information of 𝑑𝑝, Eq. 

(22) helps to surrounds nearly to best prey ℎ𝑝𝑞
𝑏,𝑘

. At 

this stage, the direction of search is influenced by 

dynamic behaviour 𝛿 and 𝑓𝑑.   

4.2 Opposition-based learning 

This paper improves the HBA algorithm by 

maintaining population diversity during the search 

process, resulting in better convergence towards the 

global optima. The proposed improved HBA (IHBA) 

uses the opposition-based learning (OBL) strategy to 

preserve candidate solutions' diversity and improve 

convergence [25], ensuring efficient searching of the 

entire search space. The OBL strategy calculates a 

solution in the opposite direction of a candidate 

solution to explore more promising regions. 

 

ℎ̅𝑝𝑞 = 𝑈𝑝𝑞 + 𝐿𝑝𝑞 − ℎ𝑝𝑞                        (23) 

 

where ℎ̅𝑝𝑞  is a population located in the opposite 

direction.  

4.3 Voltage stability index 

Further to OBL, voltage stability index (VSI) 

based candidate locations are determined to limit the 

search space in this paper. 

 

𝑉𝑆𝐼𝑗 =  𝑉𝑖
4 − 4(𝑥𝑖𝑗𝑃𝑗 − 𝑟𝑖𝑗𝑄𝑗)

2
−  

4(𝑟𝑖𝑗𝑃𝑗 + 𝑥𝑖𝑗𝑄𝑗)𝑉𝑖
2,     𝑉𝑆𝐼𝑗 ≥ 0, 𝑗 = 2: 𝑛𝑏𝑢𝑠  (24) 

 

In the stability concept, 𝑉𝑆𝐼𝑗 ≥ 0 ensures reliable 

functioning [26]. Once load flow has been completed, 

the VSI of each bus will be determined and rated in 

ascending order. Because the top-ranked places are 

more reliable for instable, they are the areas where 

PV systems and DSTACOMs should be integrated, 

respectively. The least stable sites, on the other hand, 

are very stable and are employed as the search space 

to integrate PCSs. By doing this, the search space is 

diversified to provide effective, reliable, and long-

lasting networks.  

5. Results and discussion 

Simulation results are performed on IEEE 33-bus 

test system for different case studies. The following 

are the major assumptions of this paper. In each PCS, 

there are 30 (𝑛𝑐𝑝,𝑙1) and 20 (𝑛𝑐𝑝,𝑙2) charging ports for 

level-1 and level-2 charging, respectively. The power 

ratings of level-1 and level-2 chargers are assumed to 

be 11 kW (𝑃𝑒𝑣,𝑙1) and 22 kW (𝑃𝑒𝑣,𝑙2), respectively. 

Thus, the total power demand of PCS is 𝑃𝑝𝑐𝑠,𝑘 =770 

kW (i.e., 30×11 + 20×22) with an operating power 

factor 𝑐𝑜𝑠(𝜑𝑐𝑠) of 0.95 lagging. The voltage-

dependent load modelling power coefficients are 

taken from (𝛼𝑟, 𝛼𝑐 and 𝛼𝑖) and (𝛽𝑟, 𝛽𝑐 and 𝛽𝑖 ) [27]. 

The load scaling factors at each bus for different 

types of loads are considered as 𝑘𝑟=0.5, 𝑘𝑐=0.3 and 

𝑘𝑖 =0.2.  

In each system, the total EV load penetration is 

assumed to be 𝜌𝑒𝑣=50% to the total base case load of 

the system. Simulations are carried out for the 

following scenarios: (i) optimal integration of PCSs 

alone, (ii) optimal sizing of PVs at each PCS, and (iii) 

simultaneously optimal sizing of PVs and 

DSTATCOMs at each PCS, respectively. Each 

scenario is repeated using IHBA, COA and HBA. 
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The computational features of these algorithms are 

quantified based on 50 independent trails of each case. 

The number of iterations for all algorithms is 50. The 

simulation results of all case studies and comparisons 

are presented in Table 2.  

The base system with three types of consumers at 

each bus has real and reactive power loads of 

3558.408 kW and 2091.561 kVAr, respectively. The 

system is suffering by real and reactive power losses 

of 163.99 kW and 108.824 kVAr, respectively. 

Further, the lowest voltage magnitude of 0.9212 p.u 

is registered at bus-18 and overall VSI is determined 

equal to 0.7204, respectively. This operating state is 

treated as Case 0.  

By considering 𝜌𝑒𝑣 = 50% extra EV load 

penetration, the network performance is evaluated. 

The real and reactive power loads of the system are 

increased to 5057.833 kW and 3320.903 kVAr, 

respectively. The real and reactive power losses are 

increased to 350.2476 kW and 231.8228 kVAr, 

respectively. Further, the lowest voltage magnitude 

of 0.8839 p.u is registered at bus-18 and overall VSI 

is determined equal to 0.6104, respectively. This 

operating state is treated as case 1.  

From case 0, it can be seen that the losses are 

increased significantly and voltage profile and VSI 

are decreased drastically due to EV load penetration. 

5.1 Optimal allocation of PCSs  

In comparison to Case 0, the real power load due 

to 50% of EV penetration is increased by 1489.785 

kW. As per the designed capacity of 770 kW, only 

two PCSs are sufficient to meet this load. However, 

by considering ¼ of the day as non-working time of 

PCS, and 15% overlapping scenario, the number 

charging stations are determined as 3. The optimal 

locations for integrating PCSs are determined by 

IHBA as buses 2, 19 and 25.  

The real and reactive power loads of the system 

are increased to 5720.331 kW and 4147.856 kVAr, 

respectively. The real and reactive power losses are 

increased to 252.3468 kW and 157.7249 kVAr, 

respectively. Further, the lowest voltage magnitude 

of 0.9165 p.u. is registered at bus-18 and overall VSI 

is determined equal to 0.7057, respectively. This 

operating state is treated as case 2.  

In comparison to case 1, though the EV load is 

more in case 2, but the losses are decreased 

potentially and voltage profile and VSI are improved 

significantly due to optimal integration of PCSs, 

respectively.         

5.2 Optimal allocation of PVs in EDS with optimal 

PCSs 

In this case 3, it aimed to improve the 

performance of EDS with optimal PCSs by optimally 

integrating PVs. The best locations and sizes of PVs 

are determined by IHBA are buses 13, 25 and 30 and 

the corresponding sizes are 562 kW, 1589 kW, and 

1286 kW, respectively. By this, the net real and 

reactive power loadings on the system are decreased 

to 2538.31 kW and 4011.962 kVAr, respectively. The 

real and reactive power losses are decreased to 

75.317 kW and 50.849 kVAr, respectively. Further, 

the lowest voltage magnitude of 0.9665 p.u is 

registered at bus-18 and overall VSI is determined 

equal to 0.8727, respectively.  

In comparison to case 1 and case 2, in this case 3, 

the losses are decreased significantly and voltage 

profile and VSI are improved effectively due to 

optimal integration of PVs, respectively.   

5.3 Optimal allocation of PVs, DSTATCOMs and 

PCSs 

In this case 4, it aimed to improve the 

performance of EDS with optimal PCSs and PVs by 

optimally integrating DSTATCOMs. The best 

locations and sizes of DSTATCOMs are determined 

by IHBA are buses 2, 7 and 24 and the corresponding 

sizes are 2045.936 kVAr, 739.333 kVAr, and 

1556.122 kVAr, respectively. By this, the net real and 

reactive power loadings on the system are decreased 

to 2550.96 kW and 1450.141 kVAr, respectively. The 

real and reactive power losses are decreased to 

41.763 kW and 30.181 kVAr, respectively. Further, 

the lowest voltage magnitude of 0.9745 p.u is 

registered at bus-18 and overall VSI is determined 

equal to 0.9018, respectively.  

In comparison to case 1, case 2 and case 3, in this 

case 4, the losses are decreased significantly and 

voltage profile and VSI are improved effectively due 

to simultaneous optimal integration of PCSs, PVs and 

DSTATCOMs, respectively. The comparison of all 

these case studies is given in Table 2. Further, the 

voltage profile of the system is compared in Fig. 1. 

 

5.4 Comparative study 

A comparative study was conducted in Table 3 

using standard IEEE 33-bus test system data with 

constant power load modelling. The actual loading of 

the test system without EV load penetration was 3715 

kW and 2300 kVAr. The losses were 202.667 kW and 

134.896 kV Ar, respectively. The lowest voltage was  
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Table 2. Comparison of system performance for different case studies  

Case # Pload (kW) Qload (kW) Ploss (kW) Qloss (kW) Vmin in p.u. (bus #) VSI 

0 3558.05 2091.56 163.99 108.82 0.9213 (18) 0.7204 

1 5047.83 3320.90 350.25 231.82 0.8839 (18) 0.6104 

2 5720.33 4147.86 242.35 157.72 0.9165 (18) 0.7057 

3 2538.31 4011.96 75.32 50.85 0.9665 (18) 0.8727 

4 2550.96 1450.14 41.76 30.18 0.9745 (18) 0.9018 

 
Table 3. Comparison of IHBA with literature works and other algorithms   

Ref/ Method PV in kW (bus #) 
 Ploss (kW) 

Time (s) 
Best Worst Mean  Median SD 

Base – – – – – – – 

ARO [5] 759 (14), 1076 (24), 1069 (30) 71.464 75.303 72.450 72.255 0.810 18.541 

I-DBEA [6] 1098 (13), 1097 (24), 1715 (30) 94.8514 – – – – – 

TSO [7] 772 (14), 1104 (24), 1065 (30) 72.79 – – – – – 

WIPSO-GSA [8] 755 (14), 1100 (24), 1072 (30) 71.3 – – – – – 

COA  757(14), 1087 (24), 1084 (30) 70.517 76.882 71.341 71.170 1.625 18.562 

HBA 1094 (30), 749 (14), 1087 (24) 70.521 94.409 72.731 71.170 4.717 18.673 

IHBA 1086 (24), 756 (14), 1085 (30) 70.517 79.710 71.689 70.825 2.324 18.426 

 
Table 4. Comparison of system performance with optimal PV systems   

Case # Pload (kW) Qload (kW) Ploss (kW) Qloss (kW) Vmin in p.u. (bus #) VSI 

Base  3715 2300 202.667 134.896 0.9132 (18) 0.6953 

COA  3715 2300 70.517 48.79 0.9698 (33) 0.8845 

HBA 3715 2300 70.521 48.801 0.97 (33) 0.884 

IHBA 3715 2300 70.517 48.78 0.9698 (33) 0.8852 

 

  
Figure. 1 Comparison of voltage profile for different 

case studies 

Figure. 2 Convergence characteristics of compared 

algorithms for best case 

 

0.9132 p.u. on bus -18 and the overall VSI was 

0.6953. Considering loss reduction as a major 

objective function, three PV DGs units were 

optimally integrated in this comparative study.  

At the best locations (buses 14, 24, and 30) and 

corresponding optimal sizes (1086, 756, and 1085 

kW), the losses are reduced to 70.517 kW. Compared 

to ARO [5], I-DBEA [6], TSO [7], and WIPSO-GSA 

[8], the proposed IHBA provides better results. In 

addition, the COA becomes highly competitive with 

the best objective function. 

However, the mean, median, and standard 

deviation (SD) over 50 independent runs of the IHBA 

were better than those of the basic HBA and COA. In 

addition, the average computational time was low for 

the IHBA. The network performance in terms of 

active and reactive power losses, voltage profile and 

VSI is given in Table 4. In this regard, the combined 

approach of HBA with OBL and VSI outperformed 

the literature and compared works. 

6. Conclusion 

This paper proposes optimal integration of PVs, 

PCSs and DSTATCOMs for balancing both active 

and reactive power loads in the EDS and thus, the 
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overall performance proposed to optimize by 

reducing losses and voltage profile. The multi-

objective function is solved using IHBA and 

compared its performance with basic HBA and COA. 

The real power losses are reduced to 242.35 kW, 

75.32 kW and 41.76 kW from 350.25 kW by 

optimally integrating (i) PCSs alone, (ii) 

simultaneous PCSs and PVs and (iii) simultaneous 

PCSs, PVs and DSTATCOMs, respectively. Further, 

the VSI of the EDS is enhanced 0.7057, 0.8727, 

0.9018 from 0.6104, respectively. In addition, IHBA 

has outperformed than literature and basic HBA and 

COA in terms of global optima and computational 

time.  

Notations 

𝑃𝑙𝑑,𝑘 Nominal real power ratings of bus-

k, 
𝑄𝑙𝑑,𝑘 Nominal reactive power ratings of 

bus-k, 
�̅�𝑙𝑑,𝑘 Net real power ratings of bus after 

modifications 
�̅�𝑙𝑑,𝑘 Net reactive power ratings of bus-k 

after modifications 
𝑘𝑟, 𝑘𝑐, & 𝑘𝑖 Load scaling factors to represent 

residential, commercial and 

industrial type of loads at bus-k, 

respectively 
𝛼𝑟, 𝛼𝑐 & 𝛼𝑖 Coefficients of real power loads as 

per the voltage-dependent load 

modelling, respectively 
𝛽𝑟, 𝛽𝑐 & 𝛽𝑖 Coefficients of reactive power 

loads as per the voltage-dependent 

load modelling, respectively 
𝑉𝑘 Voltage magnitude of bus-k 
𝑉𝑖,𝑚𝑖𝑛 Minimum voltage limit 

𝑉𝑖,𝑚𝑎𝑥 Maximum voltage limit 

𝑃𝑝𝑐𝑠,𝑘 Total real power load demands of a 

PCS at bus-k 

𝑄𝑝𝑐𝑠,𝑘 Total reactive power load demands 

of a PCS at bus-k 

𝑐𝑜𝑠(𝜑𝑐𝑠) Operating power factor of the 

AC/DC converter at PCS 

𝑛𝑐𝑝,𝑙1 Number of level-1 charging ports 

in a PCS 

𝑛𝑐𝑝,𝑙2 Number of level-2 charging ports 

in a PCS 

𝑃𝑒𝑣,𝑙1 Power ratings of level-1 charging 

ports 

𝑃𝑒𝑣,𝑙2 Power ratings of level-2 charging 

ports 

𝛼𝑒𝑣 & 𝛽𝑒𝑣 Coefficients of EV’s real and 

reactive power loads as per the 

voltage-dependent load modelling 

𝜌𝑒𝑣  EV load growth scenario 

𝑛𝑏𝑢𝑠 Number of buses in EDS.   

𝑛𝑏𝑟 Number of branches in the EDS 

𝑛𝑝𝑣 Number of PVs 

𝑛𝑑𝑠𝑡 Number of DSTATCOMs 

𝑛𝑝𝑐𝑠 Number of PCSs 

𝑃𝑝𝑣,𝑘 Real power injection by PV system 

at bus-k. 

𝑄𝑑𝑠,𝑘 Reactive power injection by 

DSTATCOM at bus-k. 

𝑃𝑙𝑜𝑠𝑠 Total distribution real power loss 

𝐼𝑘 Current flow through branch-k 

𝐼𝑘,𝑚𝑎𝑥 Maximum current flow limit for  

branch-k 

𝑟𝑘=𝑟𝑖𝑗 Resistance of branch-k connected 

between buses i and j 

𝑥𝑘 = 𝑥𝑖𝑗  Reactance of branch-k connected 

between buses i and j 

𝑉𝐷𝐼 Voltage deviation index 

𝑉𝑟 Voltage magnitude of reference or 

substation bus 

𝑂𝐹 Overall objective function 

𝑓1 Objective function 1 for real power 

loss 

𝑓2 Objective function 2 for voltage 

deviation 

𝑉𝑆𝐼𝑗 Voltage stability index of bus-j, 

𝑃𝑗 Real power load of bus-j, 

𝑄𝑗 Reactive power load of bus-j, 
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