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Abstract: Artificial intelligence and machine learning, as intelligent systems, have a vital role to play in both the 

development and deployment of solutions for post-quantum cryptography. Post-quantum cryptography's (PQC's) most 

important aspect is cryptography based on isogeny (IBC). It is extensively used because of its compatibility and shorter 

key lengths. Point operations and isogeny computations are used as the basic building blocks in the implementation of 

the IBC. SIDH (supersingular isogeny diffie-hellman) and CSIDH (commutative supersingular isogeny diffie-hellman) 

finds application in isogeny-based cryptography for the provision of secure key exchange protocols and cryptographic 

primitives. The isogeny degree holds great significance in both SIDH and CSIDH schemes, serving as a critical 

parameter that profoundly impacts the security and efficiency of these cryptographic protocols built upon isogenies. 

In actual IBC implementations, where decreasing computational overhead can greatly enhance system performance. 

Montgomery curves are used in the literature because they can be used to carry out a specialised point operation. 

Methods for calculating 2, 3, and 4 isogenies on the Huff curve have been proposed in the current study. These 

techniques include changing an affine plane into a projective plane. In terms of computational cost, the study 

discovered that the suggested methods for computing isogenies on the Huff curve are more effective than those utilising 

the Edwards and Montgomery curves. 

Keywords: Velu’s formulae, Isogeny-based cryptography, Elliptic curves, Post-quantum cryptography. 

 

 

1. Introduction 

In the realm of post-quantum cryptography, 

intelligent systems have a pivotal role to play. They 

elevate the refinement, analysis, execution, and 

supervision of secure cryptographic algorithms and 

protocols, which are essential safeguards against the 

growing potential of quantum computing. Intelligent 

systems have a substantial impact on various 

dimensions of post-quantum cryptography, such as 

algorithm creativity, secure key management, threat 

recognition, and enabling quantum-safe 

infrastructures. Problems based on the discrete 

logarithm or integer factorization would no longer be 

viewed as intractably difficult if Shor's method were 

used sufficiently broadly in a quantum computer. The 

popularity of PQC is rising as a result of the advent 

of quantum computers. It is beneficial for binary-

digit-based cryptosystems and will continue to be 

secure against a quantum attacker. Because IBC 

employ very small keys and require less power, they 

are considered to be more effective than those that 

were previously in use. When De Feo and Jao [1] 

initially established the SIDH protocol, IBC began to 

gain popularity. The security of the SIDH protocol is 

based on how challenging it is to detect the isogeny. 

In actuality, the concept of isogeny under an ordinary 

curve was first presented by Couveignes [2], which 

Stolbunov [3] further reanalyzed. The algorithm was 

ineffective in practice in addition to being vulnerable 

to the sub-exponential attack by the quantum  
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Table. List of symbols used in this paper 

Symbol Description Symbol Description 

𝐹𝑝 Field with characteristics 𝑝 ℓ𝐴, ℓ𝐵 Prime numbers 

𝑒𝐴, 𝑒𝐵 Natural numbers ℓ𝑖 Prime numbers greater 

than 2 

�̃�(ℓ) Order in quaternion algebra 𝑤 Symbol for projective 

plane 

ℓ odd prime 𝑚𝐴, 𝑚𝐵 Two coprime natural 

numbers  

𝑞 Prime number 𝑓 Integer co-factor 

𝑚, 𝑒 𝑚 ∈ {𝑚𝐴, 𝑚𝐵}, 𝑒 ∈ {𝑒𝐴, 𝑒𝐵} 𝑃𝐴, 𝑄𝐴, 𝑃𝐵 , 𝑄𝐵 Points on elliptic curve 

ℓ𝐴, 𝑛𝐴 Random elements in ℤ/𝑚𝐴
𝑒𝐴ℤ 𝑅𝐴 A set span by the 

points  𝑃𝐴 , 𝑄𝐴 

Φ𝐴 An isogeny from E to 𝐸𝐴 𝐸𝐴 A curve 𝐸/< 𝑅𝐴 > 

Φ𝐴(𝑃𝐵), Φ𝐴(𝑄𝐵), 𝛷𝐵(𝑃𝐴), 𝛷𝐵(𝑄𝐴) Points on image curve 𝑅`𝐴 A set span by the 

points  

𝛷𝐵(𝑃𝐴), 𝛷𝐵(𝑄𝐴) 
𝐸𝐴𝐵 , 𝐸𝐵𝐴 Elliptic curves Θ imaginary-quadric 

order 

 ℰℓℓ𝑞(Θ) set of elliptic curves formed 

over field 𝐹 

𝐶𝑙(Θ) Class group action 

[𝔠] An ideal class in 𝐶𝑙(Θ) 𝑚𝑖 Odd primes 

𝐸𝑛𝑑𝑞(𝐸) Endomorphism ring of an 

elliptic curve 
𝐻𝑎,𝑏 Huff curve with curve 

coefficient 𝑎, 𝑏 

𝐺𝑎,𝑏 General Huff curve with curve 

coefficient 𝑎, 𝑏 

𝐻𝑐  Huff curve with curve 

coefficient 𝑐 

𝑟, 𝑠 Coordinates of curve �̇� Identity point 

𝑊𝐴,𝐵 Short Weierstrass curve with 

curve coefficient 𝐴, 𝐵 

𝐸𝑑 Edwards curve with 

curve coefficient 𝑑 

𝑀𝐷 Montgomery curve with curve 

coefficient 𝐷 

𝑟𝑚 , 𝑟𝑙 , 𝑟𝑛 

𝑠𝑚 , 𝑠𝑙 , 𝑠𝑛 

Coordinates of point 

𝐿,𝑀, 𝐿 + 𝑀 

𝑊𝛾,𝛿  Short Weierstrass curve with 

curve coefficient 𝛾, 𝛿 

𝑀𝐶,𝐷 Montgomery curve 

with curve coefficient 

𝐶, 𝐷 

𝐸1, 𝐸2 Two elliptic curves 𝑚 Isogeny degree 

Φ Isogeny between 𝐸1, 𝐸2 Φ̂ Dual isogeny of  Φ 

𝐾 Field 𝐸′ Where 𝐸′ = 𝐸/𝐺 

𝐺 Finite set of points on 𝐸 𝐾𝑒𝑟 Φ Kernel of an isogeny Φ 

𝑟𝑃 ,  𝑠𝑃 , 𝑟𝑄 , 𝑠𝑄 , 𝑟𝑃+𝑄 , 𝑠𝑃+𝑄 Co-ordinates points of 

𝑃, 𝑄, 𝑃 + 𝑄 

𝐺+, 𝐺− Two partitions of 𝐺 

𝑅, 𝑆, 𝑇, 𝑅′, 𝑆′, 𝑇′ Projective coordinates 𝑅𝑀, 𝑆𝑀 , 𝑇𝑀 , 𝑅0, 𝑆0, 𝑇0 Projective coordinates 

of points 𝑃, 2𝑃 

𝜄 An isomorphism from  

𝑀𝐴,𝐵 to 𝐸 

𝜓 An isogeny from 

image curve to 𝑀𝐴′,𝐵′ 

Φ1 Isogeny between 𝑀𝐴′,𝐵′  to 

𝑀𝐴′′,𝐵′′  

𝜓′ Isogeny between  

𝑀𝐴′′,𝐵′′  to 𝐻𝑎,𝑏 

𝛼𝑖 , 𝛽𝑖 Coordinates point on Huff 

curve 

𝑎′, 𝑏′ Image curve 

coefficients of Huff 

curve 

𝑠2, 𝑚2, 𝑎2 Field squaring, multiplication, 

and addition operations 

  

 

computer [4]. However, Childs et al. [5] presented a 

quantum sub-exponential assault, making their 

method susceptible, and the suggested solution 

makes use of the commutative property of 

endomorphism rings. The approach proposed in [5] 

could not work. SIKE (Super-singular Isogeny Key 
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Encapsulation) was a different method for the NIST 

standardisation effort in 2017 [5]. When compared to 

PQC primitives, which are distinct from isogeny-

based cryptosystems but still maintain the same level 

of security, an isogeny-based cryptosystem's key size 

is smaller. Its implementation, however, moves more 

slowly than that of any other option for the NIST 

programme. The key exchange process for SIDH was 

first introduced in 2016 by Azarderakhsh et al. [6, 7]. 

The most advanced computing method for SIKE is 

still that introduced by Costello et al. [8]. Seo et al. 

[9] developed a rapid modular arithmetic 

multiplication approach for the SIDH protocol and 

the SIKE protocol in 2018. The only curve on which 

faster point arithmetic and efficient isogeny 

enumeration can be performed is Montgomery curve.  

Until now we couldn’t find the elliptic curve 

model which is faster than the Montgomery curve. 

The CRS (couveignes, rostotsev, and stolbunov) 

scheme has been studied independently by De Feo et 

al. [10] and also Castryck et al. [11]. Castryck et al. 

[11] CRS scheme more modified. Super-singular 

elliptic curves built over 𝐹𝑝  were used in [11] to 

resolve the parameter selection problems in the CRS 

system. CSIDH is currently slower than SIDH, taking 

80ms on the 128-bit classically computer security 

level, but one of its primary advantages is that it may 

be used to build a reasonably strong digital signature 

[12]. CSI-FiSh [12] offered a workable digital 

signature that takes 390 ms to apply to a message. An 

isogeny degree in IBC is calculated using a prime. In 

the SIDH protocol, the form of the prime number p is 

here, and these are the prime numbers with a cofactor 

of 1. The values of and represent the degrees of the 

isogenies used in the protocol. Typically, 

implementations of IBC use isogenies of degrees 

three and four. In the CSIDH algorithm, the form of 

the prime number p is, where are primes greater than 

or equal to 3. The numerical value of relates to the 

magnitude of an isogeny that is utilised within the 

algorithm. The CSIDH scheme relies on isogenies of 

varying degrees, thus necessitating an efficient 

formula for odd-degree isogeny, particularly since 

the advent of the CSIDH algorithm. In the field of 

elliptic curve cryptography, finding an arbitrary odd-

prime degree isogeny on a Montgomery curve is a 

challenging task. However, Costello and Hisil [13] 

have developed an efficient method to overcome this 

challenge. In traditional methods, calculating ℓ -

isogeny requires �̃�(ℓ). But, by the using the square-

root Vélu formula introduced by Bernstein et al. [14], 

the computation complexity can be reduced to �̃�(√ℓ). 
An efficient method for finding isogenies of 

substantial odd-degree that is applicable to B-SIDH 

and CSIDH has also been proposed in a recent work 

[15]. Recent studies in quantum computing have 

shown that using isogenies of large numbers of odd-

degrees is critical to ensuring big-level security [16, 

17]. Therefore, the method proposed in [15] can 

significantly enhance the security of IBC. This is why 

most IBC implementations are based on Montgomery 

curves. Moreover, the current leading 

implementation in this domain, proposed in reference 

[18], also employs Montgomery curves as its basis. 

Twisted Edwards curves are one type of elliptic curve 

that are birationally equivalent to Montgomery 

curves and can be transformed from one curve to the 

other using projective coordinates. The pioneering 

work of Meyer et al. [19] involved using Edwards 

curves for isogeny computation while performing 

elliptic curve arithmetic using Montgomery curves. 

Using Montgomery and Edwards curves for elliptic 

curve arithmetic and isogeny calculation, 

respectively, the method was further refined in 

reference [18]. However, earlier studies [18, 19] and 

[20, 21] have shown that solely employing Edwards 

curves to develop SIDH-based techniques performs 

worse than those that merely use Montgomery curves. 

Conversely, the superiority of Edwards curves 

becomes more evident when deploying CSIDH-

based algorithms, which involve utilising a greater 

number of odd-degree isogenies compared to SIDH-

based algorithms.  

Although finding the image curve's coefficient on 

Montgomery curves might be challenging, it's much 

simpler on Edwards curves used by Meyer et al. in 

[22]. Furthermore, Kim et al. improved the isogeny 

technique for odd-degree isogenies by employing the 

Edwards curve's w-coordinate in reference [23]. By 

modifying the formula in [23], one can achieve faster 

Edwards-only CSIDH as compared to Montgomery-

CSIDH or hybrid-CSIDH. Some isogeny-based 

algorithms may perform better on a particular elliptic 

curve, according to reference [23].  

Recently, Broon et al. proposed an optimized 

formula for isogenies between Hessian model 

(twisted) of elliptic curves in [24]. In the 

Montgomery type of elliptic curve, B-SIDH speed is 

determined by using a new technique to enumerate  𝑙-
isogeny curve developed by Huang et al. [25]. Zhi hu 

et al. [26] proposed 𝑤-coordinate model, 2-isogeny 

and odd degree isogenies on Jacobi quartic 

(extended) curve. Dey et al. [27] constructed the first 

syncryption using IBC. Zheng Tao et al. [28] 

proposed a 𝑤-coordinate system on Twisted Hessian 

curve. 

In the work of Meyer et al. [18], the 2-isogeny 

formula was first introduced for the Montgomery 

curve, with an associated computational expense 
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noted as 2𝑠2 + 4𝑚2 + 5𝑎2 building on this, Costello 

and Smith presented a more generalized 3-isogeny 

formula for the Montgomery curve in their research 

[19], with a corresponding computational cost 

referred to as 5𝑠2 + 6𝑚2 + 14𝑎2. Azarderakhsh et al. 

contributed to this area by outlining a distinct 2-

isogeny formula for the Edwards curve, tied to a 

computational cost denoted as 3𝑠2 + 31𝑚2 in their 

publication [29]. In a similar vein, Kim et al. put forth 

a generalized 3-isogeny formula for the Edwards 

curve, with a designated computational cost 6𝑚2 +
5𝑠2 + 11𝑎2 in their study [30]. In the context of our 

current study, we have conducted optimizations on 

the general formulas for 2, 3, and 4-isogenies, 

focusing specifically on Huff curves. Additionally, 

our analysis encompasses a comprehensive 

comparison of formula expenses across the 

Montgomery, Edwards, and Huff curve variations. In 

terms of computational efficiency, the study's 

findings demonstrate that the proposed methods for 

computing isogenies on the Huff curve exhibit 

superior effectiveness compared to those utilised for 

the Edwards and Montgomery curves. 

In this research, we utilize various methods 

including birational transformation, homomorphism 

properties, and affine-to-projective transformation to 

enable the computation of two, three, and four 

isogenies, as well as the evaluation of coefficients. 

Our findings, supported by a comparative bar chart, 

demonstrate that the operational cost of the huff curve 

is comparable to that of the Montgomery curve, while 

offering improved operational cost compared to the 

Edwards curve. 

This paper is structured as follows. Section 2 

offers a comprehensive review of the huff curves, 

SIDH-CSIDH scheme, and Velu's formula to provide 

background context. In section 3, we introduce the w-

coordinate system and present enhancements to the 

two, three, and four isogeny. The algorithm and cost 

of computing the isogeny computation and 

coefficient evaluation are described in section 4. We 

also include a bar chart comparison in this section. 

Finally, section 5 concludes the paper and outlines 

future prospects. 

2. Preliminaries 

The purpose of this part is to give an overview of 

certain key ideas that are necessary to understand the 

suggested scheme. Firstly, we introduce the two 

primary streams of IBC, namely SIDH and CSIDH. 

SIDH is a PQC scheme that relies on the isogeny 

problem. 

2.1 IBC 

This paragraph briefly introduces the topic of 

key-exchange protocols for SIDH and CSIDH and 

mentions two cited sources, [10, 11], which provide 

a detailed study of these protocols.  

2.1.1. SIDH scheme 

To establish a key exchange protocol, it is 

necessary to choose two fixed coprime numbers, 

denoted as 𝑚𝐴  and 𝑚𝐵 . Let 𝑒𝐴  and 𝑒𝐵  be positive 

integers such that 𝑚𝐴
𝑒𝐴  is approximately equal to 

𝑚𝐵
𝑒𝐵. It is decided to choose a prime number q here 

𝑞 = 𝑚𝐴
𝑒𝐴𝑚𝐵

𝑒𝐵𝑓 ± 1, here f is an integer co-factor. 

An order (𝑚𝐴
𝑒𝐴𝑚𝐵

𝑒𝐵𝑓)2 over the finite field 𝔽𝑞2 is 

then created. For each 𝑚 ∈ {𝑚𝐴,𝑚𝐵} and each 𝑒 ∈
{𝑒𝐴, 𝑒𝐵}, we obtain a complete set of all point of  𝑚𝑒-
torsion on 𝐸  upon 𝔽𝑞2 . Two bases {𝑃𝐴, 𝑄𝐴}  and 

{𝑃𝐵, 𝑄𝐵}, are chosen for the set of all point of 𝑚𝐴
𝑒𝐴  

and 𝑚𝐵
𝑒𝐵-torsion, respectively. 

Assuming that Alic and Bibi want to interchange 

private keys and their chosen bases are {𝑃𝐴, 𝑄𝐴} and 

{𝑃𝐵, 𝑄𝐵}, respectively. Alic selects random elements 

𝑙𝐴, 𝑛𝐴 ∈ ℤ/𝑚𝐴
𝑒𝐴ℤ that cannot both be divided by 𝑚𝐴, 

computes the set < 𝑅𝐴 >= < [𝑙𝐴]𝑃𝐴 + [𝑛𝐴]𝑄𝐴 > for 

key generation. Using Vélu's formula (VLF), Alic 

calculates a curve 𝐸𝐴 = 𝐸/< 𝑅𝐴 >  and an isogeny 

Φ𝐴: 𝐸 → 𝐸𝐴  of degree 𝑚𝐴
𝑒𝐴 , where 𝑘𝑒𝑟Φ𝐴 =<

𝑅𝐴 >. Alic and Bibi perform the same calculation to 

establish a shared secret key. Alic sends Bibi the 

values (𝐸𝐴, Φ𝐴(𝑃𝐵), Φ𝐴(𝑄𝐵)), and Bibi sends Alic 

the values (𝐸𝐵, Φ𝐵(𝑃𝐴), Φ𝐵(𝑄𝐴)). To establish the 

key, Alic calculates the subgroup < 𝑅`𝐴 >= <
[𝑙𝐴]Φ𝐵(𝑃𝐴) + [𝑛𝐴]Φ𝐵(𝑄𝐴) >  and then calculates a 

curve 𝐸𝐴𝐵 = 𝐸𝐵/< 𝑅`𝐴 >  using VLF. Similarly, 

Bibi calculates the curve 𝐸𝐵𝐴 = 𝐸𝐴/< 𝑅`𝐵 > using 

the same method as Alic. The j-invariants of the curve 

𝐸𝐵𝐴, 𝐸𝐴𝐵  are equivalent that provides the shared-

secret key between Bibi and Alic. 

2.1.2. CSIDH scheme 

In the CSIDH protocol, super-singular elliptic 

type curves (SEC) are subjected to a commutative-

group action over a finite field 𝔽𝑞 . The imaginary-

quadric order is denoted by Θ, and ℰℓℓ𝑞(Θ) is the set 

of elliptic curves formed over 𝔽𝑞  with an 

endomorphism ring. An open and transitive class 

group on ℰℓℓ𝑞(Θ) is notified by 𝐶𝑙(Θ). The group 

action or CM-action of an ideal class [𝔠] ∈ 𝐶𝑙(Θ) on 

an elliptic curve 𝐸 ∈ ℰℓℓ𝑝(Θ) is denoted by [𝔠]𝐸. To 

generate a prime, small separate odd primes 

𝑚1,𝑚2,𝑚3, … . ,𝑚𝑛  are used, such that 𝑞 =
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4𝑚1𝑚2𝑚3𝑚4… . . .𝑚𝑛 − 1. The endomorphism ring 

𝐸𝑛𝑑𝑞(𝐸) of an SEC 𝐸 is equal to ℤ[𝜋]. It should be 

noted that the quaternion order 𝐸𝑛𝑑(𝐸) subring in 

𝐸𝑛𝑑𝑞(𝐸) is commutative. When the Frobenius trace 

is zero, it results in 𝐸(𝔽𝑞) = 𝑞 + 1. The ideal 𝑚𝑖(Θ) 

splits into 𝔩𝑖𝔩�̅� because of 𝜋2 − 1 = 0 𝑚𝑜𝑑 𝑚𝑖, where 

𝔩𝑖 = (𝑚𝑖, 𝜋 − 1) and 𝔩�̅� = (𝑚𝑖 , 𝜋 + 1). By using the 

Velu’s Formula, the group action [𝔩𝑖]𝐸 (𝑟𝑒𝑠𝑝. [𝔩�̅�]𝐸) 
can be calculated through isogeny Φ𝔩𝑖 over 𝔽𝑞 (resp. 

Φ𝔩�̅�). Take the scenario where Bibi and Alic wish to 

transfer a secret key. Alic selects an element (vector) 
(𝑒1, 𝑒2, … . , 𝑒𝑛) ∈ ℤ

𝑛, where 𝑒𝑖 ∈ [−𝑙, 𝑙] for a natural 

number 𝑙. This vector denotes an isogeny connected 

by the group action of the ideal class [𝔠] =
[𝔩1
𝑒1 … . 𝔩𝑛

𝑒𝑛] , where 𝔩𝑖 = (𝑚𝑖, 𝜋 − 1) . After Alic 

calculates the public key 𝐸𝐴 ≔ [𝔠]𝐸, Bibi receives 𝐸𝐴. 

Using his own private ideal b, Bibi executes a similar 

process and transmits Alic the resultant public key, 

𝐸𝐵 ≔ [𝔟]𝐸. As soon as Bibi's public key is received, 

Alic calculates [𝔠]𝐸𝐵 , while Bibi calculates [𝔟]𝐸𝐴 . 

Since [𝔠]𝐸𝐵  and [𝔟]𝐸𝐴  are isomorphic by reason of 

commutativity, the elliptic curves can be used to 

access the shared secret data. 

 

The Huff curves' arithmetic 

In IBC, Montgomery curves have been widely 

used due to their computational efficiency. One such 

type is the Huff curve, which has shown promising 

results in terms of arithmetic computations and can 

be a strong contender compared to Montgomery 

curves. 

2.1.3. Huff curves 

Joye et al. introduced and elucidated the concept 

of Huff models for elliptic curves in their paper [31]. 

Tate pairings were calculated using a group law and 

a formula published in that publication. The Huff 

representation of an elliptic curve is described by: 

 

𝐻𝑎,𝑏; 𝑎𝑟(𝑠
2 − 1) = 𝑏𝑠(𝑟2 − 1)         (1) 

 

With properties 𝑎2 ≠ 𝑏2, a and b are non-zero, 

and the point �̇� = (0,0)  is the identity element, 

−(𝑟, 𝑠) = (−𝑟,−𝑠). Also, K is a finite field with a 

characteristic greater than 2. It is noteworthy that 

each Huff curve have three points of order two 

located at infinity. One viable method of simplifying 

the Huff curve 𝐻𝑎,𝑏 is by using the following 

approach: 

 

𝐻𝑐; 𝑐𝑟(𝑠
2 − 1) = 𝑠(𝑟2 − 1)                        (2)     

 

Where 𝑐 =
𝑎

𝑏
, 𝑐 ≠ ±1. Reference [32] introduces 

the concept of generalized Huff curves, which 

encompasses the Huff form of elliptic curves and can 

be defined by the following equation: 

 

    𝐺𝑎,𝑏; 𝑟(𝑎𝑠
2 − 1) = 𝑠(𝑏𝑟2 − 1)           (3) 

 

where 𝑎 ≠ 𝑏  and 𝑎, 𝑏 ≠ 0.The point �̇� = (0,0) 
is the identity element, −(𝑟, 𝑠) = (−𝑟,−𝑠) . The 

𝑗 −invariant of the curve 𝐺𝑎,𝑏 is 

 

𝑗𝐺𝑎,𝑏 =
28(𝑎2 − 𝑎𝑏 + 𝑏2)3

𝑎4𝑏4(𝑎 − 𝑏)2
 , 

 

and the curve 𝐻𝑎,𝑏`s 𝑗 −invariant is  

 

𝑗𝐻𝑎,𝑏 =
28(𝑎4−𝑎2𝑏2+𝑏4)3

𝑎4𝑏4(𝑎2−𝑏2)2
. 

2.1.4. Isomorphism 

The curve 𝐻𝑎,𝑏 can be transformed into different 

types of elliptic curves that are well-studied in 

cryptography. For instance, 𝐻𝑎,𝑏 is isomorphic to a 

Weierstrass curve of the form  

 

𝑊𝐴,𝐵: 𝑠
2 = 𝑟3 + 𝐴𝑟2 + 𝐵𝑟  (4) 

 

where 𝐴 = (𝑎2 + 𝑏2)  and 𝐵 = 𝑎2𝑏2 . It is also 

isomorphic to an Edwards curve of the form  

 

𝐸𝑑: 𝑟
2 + 𝑠2 = 1 + 𝑑𝑟2𝑠2      (5) 

 

where 𝑑 = ((𝑎 − 𝑏)/(𝑎 + 𝑏))2 . Finally, 𝐻𝑎,𝑏  is 

isomorphic to a Montgomery curve of the form  

 

                 𝑀𝐷;  𝑠
2 = 𝑟3 + 𝐷𝑟2 + 𝑟                (6) 

 

where 𝐷 = (𝑎2 + 𝑏2)/𝑎𝑏. 

2.1.5. Arithmetic on Huff curves  

The addition of two points 𝐿 +𝑀 =
(𝑟𝑛, 𝑠𝑛) (𝑤ℎ𝑒𝑟𝑒 𝐿 = (𝑟𝑚, 𝑠𝑚) 𝑎𝑛𝑑 𝑀 = (𝑟𝑙 , 𝑠𝑙))  on 

the Huff curve 𝐻𝑎,𝑏 can be computed using a specific 

formula, as given below. Moreover, the same formula 

can be used to double a point on the curve. 

Adding of two points on 𝐻𝑎,𝑏 is determine by the 

following formula  

 

  𝑟𝑛 =
(𝑟𝑚+𝑟𝑙)(1+𝑠𝑚𝑠𝑙)

(1+𝑟𝑚𝑟𝑙)(1−𝑠𝑚𝑠𝑙)
  (7) 

 

  𝑠𝑛 =
(𝑠𝑚+𝑠𝑙)(1+𝑟𝑚𝑟𝑙)

(1+𝑠𝑚𝑠𝑙)(1−𝑟𝑚𝑟𝑙)
  (8) 



Received:  July 24, 2023.     Revised: September 3, 2023.                                                                                                450 

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023           DOI: 10.22266/ijies2023.1231.37 

 

The formula used for addition in the Huff curve 

𝐻𝑐  is same. The general Huff curve 𝐺𝑎,𝑏  follows a 

similar process to compute the unified sum. 

 

    𝑟𝑛 =
(𝑟𝑚+𝑟𝑙)(𝑎𝑠𝑚𝑠𝑙+1)

(𝑏𝑟𝑚𝑟𝑙+1)(𝑎𝑠𝑚𝑠𝑙−1)
    (9) 

  

    𝑠𝑛 =
(𝑠𝑚+𝑠𝑙)(𝑏𝑟𝑚𝑟𝑙+1)

(𝑎𝑠𝑚𝑠𝑙+1)(𝑏𝑟𝑚𝑟𝑙−1)
                 (10) 

 

Where 𝐿 = (𝑟𝑚, 𝑠𝑚) 𝑎𝑛𝑑 𝑀 = (𝑟𝑙 , 𝑠𝑙)  are the 

points on 𝐺𝑎,𝑏 and 𝐿 +𝑀 = (𝑟𝑛, 𝑠𝑛). 
Theorem [33]. Every elliptic curve with three 

points of order Two is isomorphic to a general Huff 

curve. 

2.2 Designs for the elliptic curve 

The riemann-roch theorem states that an elliptic 

curve can be represented by a polynomial equation in 

a pair of variables having a degree equal to three and 

a field with characteristic K greater than 3. One such 

representation of an elliptic curve is through a short 

Weierstrass equation.                   

 

     𝑊𝛾,𝛿:  𝑠
2 = 𝑟3 + 𝛾𝑟 + 𝛿                    (11) 

4𝛾3 + 27𝛿2 ≠ 0 

 

or by a Montgomery curve equation 

 

        𝑀𝐶,𝐷:  𝐷𝑠
2 = 𝑟3 + 𝐶𝑟2 + 𝑟             (12) 

𝐷(𝐶2 − 4)  ≠ 0 

 

The 𝑗-invariants are notified as 𝑗(𝑊𝛾,𝛿) = 1728 ∙
4𝛾3

(4𝛾3+27𝛿2)
 and 𝑗(𝑀𝐶,𝐷) = 256

(𝐶2−3)3

(𝐶2−4)
. Weierstrass 

equation or the Montgomery equation can be used to 

depict an elliptic curve; the former is known as the 

weierstrass model. Both models are required to use 

elliptic curves for cryptographic purposes. The points 

of order four or three points of order two can be found 

in 𝑀𝐶,𝐷 (possibly both), as mentioned in [34, 35]. 

A curve represented in the 𝐻𝑎,𝑏  form can be 

transformed into the Weierstrass form through a 

direct and uncomplicated birational transformation, 

as stated in [36]. This transformation is described by 

the map 

 

  (𝑟, 𝑠) = (
𝑏𝑟−𝑎𝑠

𝑠−𝑟
,
𝑏−𝑎

𝑠−𝑟
)             (13) 

 

And the resulting curve equation is 𝑠2 = 𝑟3 +
(𝑎 + 𝑏)𝑟2 + 𝑎𝑏𝑟 in the weierstrass form. Conversely, 

to obtain the 𝐻𝑎,𝑏 form from the weierstrass form, the 

inverse transformation formula is  

  (𝑟, 𝑠) = (
𝑟+𝑎

𝑠
,
𝑟+𝑏

𝑠
)             (15) 

 

Similarly, a curve represented in the 𝑀𝐶,𝐷  form 

can be transformed into the weierstrass form using a 

straightforward birational transformation, as 

mentioned in [34]. The transformation is given by the 

map 

 

       (𝑟, 𝑠) = (
𝑟

𝐷
,
𝑠

𝐷
)             (16) 

 

And the resulting curve equation is 𝑠2 = 𝑟3 +
𝐶

𝐷
𝑟2 +

1

𝐷2
𝑟  in the Weierstrass form. To obtain the 

𝑀𝐶,𝐷  form from the Weierstrass form, the inverse 

transformation formula is also available. 

 

  (𝑟, 𝑠) = (
𝑟

√𝑏
,
𝑠

√𝑏
)             (17) 

2.3 Calculations by isogeny and Velu’s formulae 

An isogeny defines a group morphism with a 

finite number of kernel members that translates 𝐸1 

onto 𝐸2 . If there exists an isogeny between two 

elliptic curves 𝐸1 and 𝐸2, both are isogenous. If the 

degree of the isogeny equals the kernel of Φ's 

cardinality, the isogeny is referred to as separable. An 

𝑚 −isogeny is an isogeny having a degree of 𝑚. In 

this article, unless explicitly stated, 𝑚 -isogeny 

implies separable. 

If an isogeny Φ̂: 𝐸2 → 𝐸1 exist such that for every 

isogeny Φ:𝐸1 → 𝐸2. 
 

Φ ∘ Φ̂ = [degΦ] 
 

The symbol for the dual isogeny is Φ̂ , and it 

establishes an equivalence relation between isogenies. 

𝐸1(𝐾)and 𝐸2(𝐾) have identical numbers of elements 

if and only if 𝐸1  and 𝐸2  are isogenous over 𝐾. If a 

degree-one isogeny Φ is separable, then it is an 

isomorphism. The 𝑗-invariant characterizes a binary 

class of elliptic curves that possess a unique 

isomorphism. If and only if the 𝑗 −invariant values of 

two elliptic type curves are same, they are said to be 

isomorphic over K. 

In addition, the length of the kernel of an isogeny 

is non-infinite. When a finite subset(subgroup) 𝐺 of 

𝐸  is defined, an elliptic curve 𝐸′ = 𝐸/𝐺  and a 

separable isogeny Φ:𝐸 → 𝐸′  with 𝑘𝑒𝑟 Φ = 𝐺  are 

produced. There are two techniques for creating 

isogenies between elliptic curves. Using a specific 

shape of the elliptic curve and a finite collection of 

subgroups relating to the kernel, accurate formulae 

for creating an isogeny provided by Velu. 
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Subsequently, Kohel [36] suggested using the kernel 

polynomial for computing isogenies. This work 

focuses primarily on Velu's formula for computing 

isogenies, which is based on the transformation 

described in Velu's methods. 

 

(𝑟𝑃 , 𝑠𝑃) → (𝑟𝑃 + ∑ (𝑟𝑃+𝑄 − 𝑟𝑄),𝑄∈𝐺\{�̇�} 𝑠𝑃 +

∑ (𝑠𝑃+𝑄 − 𝑠𝑄)𝑄∈𝐺\{�̇�} )     (18)                 

 

The translation of the equation by the points in the 

kernel 𝐺  has no effect on the equation itself. It is 

possible to partition a finite subgroup 𝐺  into two 

independent sets 𝐺+ 𝑎𝑛𝑑 𝐺− , such that 𝐺\{�̇�} =
𝐺+ ∪ 𝐺− and 𝑄 ∈ 𝐺+𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 − 𝑄 ∈ 𝐺−, For 

every 𝑄 = (𝑟𝑄, 𝑠𝑄) ∈ 𝐺, the Kohel [37] defined the 

following terms:   

 

     𝑔𝑄
𝑟 = 3𝑟𝑄

2 + 𝑎, 𝑔𝑄
𝑠 = −2𝑠𝑄                 (19) 

 

                 𝑣𝑄 = 2𝑔𝑄
𝑟 ,  𝑢𝑄 = (𝑔𝑄

𝑠 )
2
             (20) 

 

𝑣 =  ∑ 𝑣𝑄 ,   𝑤 = ∑ 𝑢𝑄 + 𝑟𝑄𝑣𝑄𝑄∈𝐺+𝑄∈𝐺+       (21) 

 

Using Eqs. (19), (20), and (21) isogeny is given 

by 

 

Φ(𝑟, 𝑠) → (𝑟 + ∑
𝑣𝑄

𝑟−𝑟𝑄
−

𝑢𝑄

(𝑟−𝑟𝑄)
2𝑄∈𝐺+ , 𝑠 −

         ∑
2𝑢𝑄𝑠

(𝑠−𝑠𝑄)
3 +𝑄∈𝐺+ 𝑣𝑄

𝑠−𝑠𝑄−𝑔𝑄
𝑟𝑔𝑄

𝑠

(𝑟−𝑟𝑄)
2 )             (22) 

 

The isogeny order equals with the order of the 

subgroup 𝐺′ . Following is an expression for the 

image curve equation: 

 

 𝐸′: 𝑠2 = 𝑟3 + (𝛼 − 5𝑣)𝑟 + (𝛽 − 7𝑤)   (23) 

2.4 Velu’s formula for 𝑴𝑨,𝑩 

In this subsection, we discuss the use of 

Montgomery curves for generating isogenies of equal 

degrees. Jao and De Feo initially proposed this 

method, and then Costello et al. [4] refined it. In this 

work, we show a method to derive a four-isogeny 

from projective coordinates. Allow 𝑀𝐴,𝐵 to be a 

Montgomery curve defined over a quadric extension, 

with order 2 point 𝑃2 = (0,0) and order 4 point 𝑃4 =

(1,√(𝐴 + 2/𝐵)) , for example, [2]𝑃4  =  𝑃2 . We 

characterize the isogeny of degree 2, which maps 

𝑃4to (0, 0). 
 

Φ:𝑀𝐴,𝐵 → 𝐹 

 (𝑅: 𝑆: 𝑇) → (𝑅(𝑅 − 𝑇)2: 𝑆(𝑅2 − 𝑇2): 𝑅2𝑇)   (24) 

 

where 𝑟 =
𝑅

𝑇
 𝑎𝑛𝑑 𝑠 =

𝑆

𝑇
 for (𝑟, 𝑠) ∈ 𝑀𝐴,𝐵 . The 

given corresponding image curve is  

 

𝐹: 𝐵𝑠2 = 𝑟3 + (𝐴 + 6)𝑟2 + 4(2 + 𝐴)𝑟      (25) 

 

To transform the imaged curve back to 

Montgomery form, it is essential to compute square 

roots. To address this issue, one can utilize the 

isogeny 𝜓, which has a kernel 〈(0, 0)〉. 
 

𝜓: F → 𝑀𝐴′,𝐵′ 

                       (𝑅: 𝑆: 𝑇) → (𝑅′, 𝑆′, 𝑇′)            (26) 

 

In the Eq. (25), where 𝑅′ = −𝑅(𝐴𝑇 + 𝑅 +
2𝑇)(𝑅 + 4𝑇), 𝑆′ = 𝑆(4𝐴𝑇2 − 𝑅2 + 8𝑇2), and 𝑇′ =
(𝐴 − 2)𝑅2𝑇 . Here, in the form of Montgomery 

curves, is the equation for the image curve: 

 

 𝑀𝐴′,𝐵′ : 
𝐵

(2−𝐴)
𝑠2 = 𝑟3 − 2

𝐴+6

(2−𝐴)
𝑟2 + 𝑟       (27) 

 

We can compute a degree four isogeny Φ1 = 𝜓 ∘
Φ from 𝑀𝐴,𝐵  to 𝑀𝐴′,𝐵′ = 𝑀𝐴,𝐵/〈𝑃4〉, but we cannot 

simply apply this formula twice. To obtain a degree 

42 isogeny, we cannot simply apply the formula for 

computing the degree 4 isogeny twice. Instead, an 

isomorphism of Montgomery curves that assigns the 

four-torsion point to a fixed point in space is required 

in conjunction with the degree-4 isogeny. This allows 

us to apply the four-isogeny recursively to obtain a 

4𝑚-isogeny. The reason for this is that the formula 

for computing Φ depends on the choice of the point 

𝑃4, which has a specific form. Specifically, given a 

Four-order point 𝑃 ≠ ±𝑃4 on the Montgomery curve 

𝑀𝐴,𝐵 , let 𝑃 = (𝑅𝑀: 𝑆𝑀: 𝑇𝑀)and [2]𝑃 = (𝑅0: 𝑆0: 𝑇0) 
be the projective coordinates of 𝑃  and [2]𝑃 , 

respectively. To accomplish this, we can use an 

isomorphism 𝜄 that maps [2]𝑃 to (0,0) and P to the 

point of a certain form (1, ...). 

 

𝜄 ∶  𝑀𝐴,𝐵 → 𝐸 

(𝑅: 𝑆: 𝑇) → (𝑇𝑀(𝑅𝑇0 − 𝑇𝑅0): 𝑆𝑇𝑀𝑇0: 𝑇(𝑅𝑀𝑇0 −

𝑇𝑀𝑅0)) (29) 

 

The corresponding equation for the curve is given 

below: 

 

  𝐸:
𝐵𝑇𝑀𝑇0

𝑅𝑀𝑇0−𝑇𝑀𝑅0
𝑠2 = 𝑟3 +

𝑇𝑀(3𝑅0+𝐴𝑇0)

𝑅𝑀𝑇0−𝑇𝑀𝑅0
𝑟2 + 𝑟   (30) 

 

Four-isogenies can be computed iteratively by 

combining Φ1 and 𝜄. 
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2.5 Velu’s formula for 𝑯𝒂,𝒃 

There exist birational maps that convert the Huff 

curve 𝐻𝑎,𝑏  to Weierstrass curves. 𝜓  represents the 

mapping from the function 𝐻𝑎,𝑏  to the weierstrass 

curve 𝑊 . Similarly, demonstrates the isogeny 

between curves 𝑊  and 𝑊′  is shown by Φ . 𝜓−1 

shows a Weierstrass curve 𝑊 transformed into a 𝐻𝑎,𝑏 

curve. Combining these maps allows one to 

determine the isogeny between Huff curves. The 

process of transforming Weierstrass curves into Huff 

curves can be tricky if the final curve takes on a 

complex shape. 

 

𝑠2 = 𝑟3 + (𝑎 + 𝑏)𝑟2 + 𝑎𝑏𝑟              (31) 

 

Moody and Shumow [38] first presented the 

formula for finding the isogeny of two Huff curves 

with a kernel size of odd length. On Huff curves, the 

isogeny of order ‘𝑚 = 2𝑠1 + 1’ may be computed 

using the following theorem: 

Theorem [38]. Assume 𝐺 is a finite subgroup of 

the Huff curves 𝐻𝑎,𝑏 with an odd number of elements 

‘ 𝑚 = 2𝑠 + 1 ’and set of points 𝐺 =
{(0,1), (𝛼1, 𝛽1), (−𝛼1, −𝛽1)…… , (𝛼𝑠, 𝛽𝑠)} . Then a 

normalized 𝑚-isogeny from 𝐻𝑎,𝑏 to 𝐻�̂�,�̂�, where �̂� =

𝑎ℓ𝐵4  and �̂� = 𝑏ℓ𝐴4 , with 𝐴 = ∏ 𝛼𝑖
𝑠
𝑖=1 , 𝐵 =

∏ 𝛽𝑖
𝑠
𝑖=1 , is given by 

 

Ψ(𝑟, 𝑠) =

(𝑟∏
𝑟2−𝛼𝑖

2

𝛼𝑖
2(1−𝑏2𝛼𝑖

2
𝑟2)

𝑠
𝑖=1 , 𝑠 ∏

𝑠2−𝛽𝑖
2

𝛽𝑖
2(1−𝑎2𝛽𝑖

2
𝑠2)

𝑠
𝑖=1 )  (32) 

 

The idea behind the above formula was 

influenced by the observation that the mapping: 

 

(𝑟𝑃 , 𝑠𝑃) ⟼ (𝑟𝑃∏
𝑟𝑃+𝑄

𝑟𝑄
𝑄≠(0,0)∈𝐹 , 𝑠𝑃∏

𝑠𝑃+𝑄

𝑠𝑄
𝑄≠(0,0)∈𝐹 )  

(33) 

 

It is important to note that this theory doesn't 

cover even-degree isogenies. 

3. The proposed Huff curve isogeny 

calculations 

On Huff curves, which are frequently used in IBC, 

we provide optimized formulae for 2-, 3-isogeny, and 

4-isogeny. An affine-to-projective transformation is 

used for the 2- and 3-isogeny formulae to improve 

their performance. Inspired by the work of Moody 

and Shumow [38], our approach employs a bi-

rational mapping between 𝐻𝑎,𝑏 and 𝑀𝐴,𝐵 to produce 

more accurate equations for calculating even-degree 

isogenies. In addition, the 4-isogeny formula for 

𝐻𝑎,𝑏 has been obtained by combine the isogeny 

formula for Montgomery curves with the birational 

map between 𝐻𝑎,𝑏 and 𝑀𝐴,𝐵. 

3.1 Two-isogeny on 𝑯𝒂,𝒃 

Suppose there is a two-torsion point 𝑃 = (𝛼, 𝛽) 
on the Huff curve 𝐻𝑎,𝑏. Let Φ be a two-isogeny with 

kernel 〈𝑃〉, which transforms 𝐻𝑎,𝑏 to the Huff curve 

𝐻𝑎′,𝑏′  where 𝐻𝑎′,𝑏′ = 𝐻𝑎,𝑏/〈𝑃〉 . For this isogeny, 

Moody and Shumow [38] established the formula. 

Using this formula, we can express Φ as: 

Given the curve parameter 𝑎′ and 𝑏′ is  

 

𝑎′ = −(𝑎 + 2𝜂 + 𝑏) 
𝑏′ = −(𝑎 − 2𝜂 + 𝑏) 

 

where 𝜂2 = 𝑎𝑏 , to prevent inversions from 

occurring, we compute isogenies between Huff 

curves on the projective plane rather than the affine 

plane. Using projective coefficients for the values of 

𝑟 =
𝑅

𝑇
, 𝑦 =

𝑆

𝑇
, and curve coefficients 𝑎 =

𝐴

𝐶
 , 𝑏 =

𝐵

𝐶
. 

The following formula for the Two-isogeny is 

obtained by converting the curve from affine to 

projective form using projective curve coefficients 

and projective coordinates: 

 

(𝑅′: 𝑆′: 𝑇′) = ((𝐵𝑅 − 𝐴𝑆) ((𝐵𝑅 − 𝐴𝑆) +

√𝐴𝐵(𝑅 − 𝑆))
2
: (𝐵𝑅 − 𝐴𝑆) ((𝐵𝑅 − 𝐴𝑆) −

√𝐴𝐵(𝑅 − 𝑆))
2
: (𝐵 − 𝐴)2(𝐵𝑅2 − 𝐴𝑆2))              (34) 

 

and, 

 

(𝐴′: 𝐵′: 𝐶′) = (−(𝐴 + 2√𝐴𝐵 + 𝐵):−(𝐴 − 2√𝐴𝐵

+ 𝐵): 𝐶) 

3.2 Three-isogeny for 𝑯𝒂,𝒃 

A Three-torsion point 𝑃 = (𝛼, 𝛽) is assumed to 

be on 𝐻𝑎,𝑏. Let Φ be a three-isogeny with kernel 〈𝑃〉, 
which transforms 𝐻𝑎,𝑏  to the Huff curve 𝐻𝑎′,𝑏′ 

where 𝐻𝑎′,𝑏′ = 𝐻𝑎,𝑏/〈𝑃〉. According to the isogeny 

formula introduced in Moody and Shumow [39], Φ is 

given by: 

 

𝜙(𝑟, 𝑠) = (𝑟
𝑟2−𝛼2

𝛼2(1−𝑏2𝛼2𝑟2)
, 𝑠

𝑠2−𝛽2

𝛽2(1−𝑎2𝛽2𝑠2)
)    (35) 

 

And curve parameter 𝑎′ and 𝑏′ is 
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                                  Φ(𝑟, 𝑠) = (
(𝑏𝑟−𝑎𝑠)

(𝑏−𝑎)2
((𝑏𝑟−𝑎𝑠)+𝜂(𝑟−𝑠))2

𝑏𝑟2−𝑎𝑠2
 ,
(𝑏𝑟−𝑎𝑠)

(𝑏−𝑎)2
((𝑏𝑟−𝑎𝑠)−𝜂(𝑟−𝑠))2

𝑏𝑟2−𝑎𝑠2
)    (37) 

 

𝑎′ = 𝑎3𝛽4 

𝑏′ = 𝑏3𝛼4 
 

Where 𝑦-coordinate is 

 

𝑠
𝑠2 − 𝛽2

𝛽2(1 − 𝑎2𝛽2𝑠2)
 

 

When calculating isogeny and curve coefficients, 

we used the projective plane rather than the affine 

plane to prevent inversions. Let 𝑃 = (𝑅3: 𝑆3: 𝑇3)  be 

the projective representation of point 𝑃 , with 𝛼 =
𝑅3/𝑇3  and 𝛽 = 𝑆3/𝑇3  as its only constraint. To 

illustrate, let (𝑆′: 𝑇′) corresponds to the (𝑆: 𝑇). The 

3-isogeny formula may be simplified by rewriting it 

such that the projective coordinates are in s-

coordinate. 

 

       
𝑆′

𝑇′
=

𝑆𝑇3
2(𝑆2𝑇3

2−𝑆2𝑇2)

𝑇𝑆3
2(𝑇3

2𝑇2−𝑎2𝑆2𝑆3
2)

                        (36) 

 

There are three infinite points with order 2 in 

𝐻𝑎,𝑏 : (1,0), (0,1) 𝑎𝑛𝑑 (𝑎, 𝑏). It is well known that 

(0,0) is the identity element. Isogeny states that the 

identity point (0,0) of 𝐻𝑎,𝑏 maps to the identity point 

(0,0) of 𝐻𝑎′,𝑏′ , the point (0,1) of 𝐻𝑎,𝑏maps to the 

point (0,1) of 𝐻𝑎′,𝑏′ , and so on. Therefore, we get 

𝑎2 =
2𝛽2−1

𝛽4
 and 𝑏2 =

2𝛼2−1

𝛼4
, and then we put in 𝑎 

value into Eq. (37), yielding: 

 

                
𝑆′

𝑇′
=

𝑆(𝑆2𝑇3
2−𝑆3

2𝑇2)

𝑇(𝑇3
2𝑆2−2𝑆3

2𝑆2+𝑇2𝑆3
2)

              (38) 

 

In summary, the projective version of the s-

coordinate of the 3-isogeny formula is obtained from 

the additional input (𝑆: 𝑇). 
 

(𝑆′: 𝑇′) = (𝑆(𝑆2𝑇3
2 − 𝑆3

2𝑇2): 𝑇(𝑇3
2𝑆2 −

         2𝑆3
2𝑆2 + 𝑇2𝑆3

2))               (39) 

 

Let's suppose 𝑎′  and 𝑏′  as the image curve’s 

curve coefficients. Substitute the values 𝑎2 =
2𝛽2−1

𝛽4
 

and 𝑏2 =
2𝛼2−1

𝛼4
 into 𝑎′ and 𝑏′, respectively.  

 

𝑎′ = 𝑎
2𝑌3

2 − 𝑍3
2

𝑍3
2  

𝑏′ = 𝑏
2𝑋3

2 − 𝑍3
2

𝑍3
2  

To ignore inversion, projective version of 𝑎′ and 

𝑏′ are  

 

𝐴′ = 𝐴(2𝑆3
2 − 𝑇3

2) 

𝐵′ = 𝐵(2𝑅3
2 − 𝑇3

2) 

𝐶′ = 𝐶𝑇3
2 

 

where 𝑎′ = 𝐴′/𝐶′  and 𝑏′ = 𝐵′/𝐶′  for 𝑎 = 𝐴/
𝐶 and 𝑏 = 𝐵/𝐶. 

3.3 Four isogeny on 𝑯𝒂,𝒃 

The first approach makes use of Velu's formula 

once the Huff curve has been transformed into its 

equivalent weierstrass form. However, converting 

from Weierstrass form to Huff form is not always a 

straightforward process and may include the use of 

square roots. Secondly, we may use the birational 

mapping. Four-isogeny can be computed on a 

Montgomery curve, and then the curve can be 

transformed back into a Weierstrass form curve and 

then into a Huff form curve. To do this, we have 

followed the steps outlined in [40]. Our chosen 

composition is briefly described here: 

 

𝐻𝑎,𝑏
𝜓
→𝑀𝐴,𝐵

𝜄
→𝑀𝐴′,𝐵′

Φ1
→ 𝑀𝐴′′,𝐵′′

𝜓′

→ 𝐻𝑎′,𝑏′     (40) 

 

In the Huff curve's projective coordinate form 

𝐻𝑎,𝑏, we take P (𝑅4: 𝑆4: 𝑇4) as a Four-torsion point 

since Φ1  is an isogeny identified by Velu and 𝜓 , 

𝜓′ are birational mappings. When mapping the Huff 

curve 𝐻𝑎,𝑏  to the Montgomery curve 𝑀𝐴,𝐵 , the 

birational map ψ maps P as follows: 

 

𝜓(𝑅4: 𝑆4) → (𝑅𝑀: 𝑇𝑀) = (𝑏𝑅4 − 𝑎𝑆4: √𝑎𝑏(𝑆4 −
𝑅4))  (41) 

 

where 𝐴 =
𝑎+𝑏

√𝑎𝑏
 , 𝐵 =

1

√𝑎𝑏
. 

Suppose 𝑃′  stands in for the effective Four-

torsion point on  𝑀𝐴,𝐵. The idea of the computation 

with kernel 〈𝑃′〉  and four-isogeny Φ = Φ1 ∘ 𝜄  as 

stated in [8] and given by  

 

(𝑅′: 𝑇′) = (𝑅 (2𝑅𝑀𝑇𝑀𝑇 − 𝑅(𝑅𝑀
2 +

𝑇𝑀
2)) . (𝑅𝑀𝑇 − 𝑇𝑀𝑇)

2: 𝑇(2𝑅𝑀𝑇𝑀𝑅 − 𝑇(𝑅𝑀
2 +

𝑇𝑀
2))(𝑇𝑀𝑅 − 𝑅𝑀𝑇)

2)                                             (42)    

 

Note that this formula already incorporates the  
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𝑅′ = 
𝐵{(𝐴−√𝐴2−4)𝑇(2𝑅𝑀𝑇𝑀𝑅−𝑇(𝑅𝑀

2+𝑇𝑀
2))(𝑇𝑀𝑅−𝑅𝑀𝑇)

2+2𝑅(2𝑅𝑀𝑇𝑀𝑇−𝑅(𝑅𝑀
2+𝑇𝑀

2)).(𝑅𝑀𝑅−𝑇𝑀𝑇)
2}

2√𝐴2−4
  (44) 

 

𝑆′ =
𝐵{(𝐴+√𝐴2−4)𝑇(2𝑅𝑀𝑇𝑀𝑅−𝑇(𝑅𝑀

2+𝑇𝑀
2))(𝑇𝑀𝑅−𝑅𝑀𝑇)

2+2𝑅(2𝑅𝑀𝑇𝑀𝑇−𝑅(𝑅𝑀
2+𝑇𝑀

2)).(𝑅𝑀𝑅−𝑇𝑀𝑇)
2}

2√𝐴2−4
   (45) 

 

Algorithm 1. Huff curve 3-isogeny determination 

Require: Three torsion point 𝑃(𝑅3: 𝑆3: 𝑇3), Curve Co-efficient 𝐴, 𝐵 and a point 𝑄(𝑆: 𝑇) on curve on 

𝐻𝑎,𝑏 where 𝑎 =
𝐴

𝐶
 , 𝑏 =

𝐵

𝐶
. 

1: 𝑠0 ← (𝑆)
2                                                             // 𝑠0 = (𝑆)

2 

2: 𝑠1 ← (𝑇)
2                                                              // 𝑠1 = (𝑇)

2 

3: 𝑠2 ← (𝑅3)
2                                                            // 𝑠2 = (𝑅3)

2 

4: 𝑠3 ← (𝑆3)
2                                                             //𝑠3 = (𝑆3)

2 

5: 𝑠4 ← (𝑇3)
2                                                             // 𝑠4 = (𝑇3)

2 

6: 𝑠5 ← 𝑠0 ∙ 𝑠4//𝑠5 = 𝑆
2𝑇3

2 

7: 𝑠6 ← 𝑠3 ∙ 𝑠1                                                            // 𝑠6 = 𝑇
2𝑆3

2 

8: 𝑠7 ← 𝑠0 ∙ 𝑠3 // 𝑠7 = 𝑆
2𝑆3

2 

9: 𝑆′ ← 𝑆 ∙ (𝑠5 − 𝑠6)                                                   // 𝑆
′ = 𝑆(𝑆2𝑇3

2 − 𝑇2𝑆3
2) 

10: 𝑇′ ← 𝑍 ∙ (𝑠5 + 𝑠6 − 2𝑠7)                        // 𝑇
′ = 𝑇(𝑆2𝑇3

2 + 𝑇2𝑆3
2 − 2𝑆2𝑆3

2) 

11: 𝐴′ ← 𝐴 ∙ (2𝑠3 − 𝑠4)                                               // 𝐴
′ = 𝐴(2𝑆3

2 − 𝑇3
2) 

12: 𝐵′ ← 𝐵 ∙ (2𝑠2 − 𝑠4)                                              // 𝐵
′ = 𝐵(2𝑅3

2 − 𝑇3
2) 

 

 
Table 1. Analyzing the differences in the number of 

procedures required to create isogenies on different 

curves 

Curves 2-isogeny 3-isogeny 

Montgomery 

[18,19] 

2𝑠2 + 4𝑚2
+ 5𝑎2 

5𝑠2 + 6𝑚2
+ 14𝑎2 

Edwards [29,30] 3𝑠2 + 31𝑚2 6𝑚2 + 5𝑠2
+ 11𝑎2 

Huff (this work) 2𝑠2 + 3𝑚2
+ 7𝑎2 

5𝑠2 + 5𝑚2
+ 5𝑎2 

 

 

 
Figure. 1 Analyzing the performance of 2-isogeny in 

relation to the Montgomery, Edwards, and Huff curves 

 

 
Figure. 2 Analyzing the performance of 3-isogeny in 

relation to the Montgomery, Edwards, and Huff curves 

 

isomorphism, and thus no further transformation is 

required. Finally, the mapping from 𝑀𝐴′′,𝐵′′  to the 

𝐻𝑎′,𝑏′ through birational map  𝜓′ is given as: 

    

𝜓′(𝑅′: 𝑇′) ⟶ (𝑅′, 𝑆′) =  

(
𝐵{(𝐴−√𝐴2−4)𝑇′+2𝑅′}

2√𝐴2−4
,
𝐵{(𝐴+√𝐴2−4)𝑇′+2𝑅′}

2√𝐴2−4
)     (43) 

 

Image curve 𝐻𝑎′,𝑏′  has curve coefficients 𝑎′and 

𝑏′ equal to  

 

𝑎′ =
𝐴 − √𝐴2 − 4

2𝐵
 

𝑏′ =
𝐴 + √𝐴2 − 4

2𝐵
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The combination of the three maps 𝜓, Φ, and 𝜓′ 
gives rise to a Four-isogeny from 𝐻𝑎,𝑏 to 𝐻𝑎′,𝑏′. To 

obtain the four-isogeny, we computed (𝑅′, 𝑆′) from 

the input point (𝑅, 𝑆)  on 𝐻𝑎,𝑏 using the following 

equation: 

4. Results  

In this present work, an approach for quickly 

calculating the 2, 3, and 4 isogenies on huff curves 

has been illustrated. We have developed separate 

algorithms for computing the two-isogenies and 

three-isogenies. The performance of our algorithms 

is evaluated using field operations such as addition, 

multiplication, and squaring. Table 1 displays the 

performance of our isogeny formulas for the Edward, 

Montgomery, and Huff curves. In the table, 𝑎2 

denotes addition or subtraction, 𝑠2 denotes squaring, 

and 𝑚2 denotes multiplication. Based on our findings, 

isogenies defined on Huff curves perform better than 

those defined on Montgomery and Edwards curves. 

Since our method relies more on subtraction than 

field addition, it achieves similar results to Huff 

curves while reducing the performance gap. Overall, 

our algorithm presents an efficient approach for 

computing isogenies on huff curves. 

5. Conclusion  

In this study, we presented the 2, 3, and 4-Isogeny 

formula for Huff Curves. It is applicable to IBC. We 

used the projective coordinates and projective curve 

coefficients to enhanced the formula for 2- and 3-

isogeny. When computing even-degree isogeny, we 

take advantage of the efficiency by creating a 

birational mapping between the Huff and 

Montgomery curves. by integrating the isogeny on 

Montgomery curves with the birational mapping, 2 

and 3-isogeny onto the Huff curve have 

computational costs of 2𝑠2 + 3𝑚2 + 7𝑎2 and 5𝑠2 +
5𝑚2 + 5𝑎2 , respectively. Furthermore, we showed 

that isogenies for Huff curves similarly effective as 

isogenies for Montgomery curves by putting our 

theories.  
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