
Received: July 11, 2023. Revised: August 13, 2023. 158

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Cloud-based Paddy Plant Pest and Disease Identification using Enhanced Deep

Metric Learning and k-NN Classification with Augmented Latent Fusion

Hendri Darmawan1 Mike Yuliana1* Moch. Zen Samsono Hadi1

1Department of Informatics and Computer Engineering, Politeknik Elektronika Negeri Surabaya,

Surabaya, 60111, Indonesia
*Corresponding author's Email: mieke@pens.ac.id

Abstract: Identifying pests and diseases is vital for rice farming, but the lack of experts often limits it. We propose a

novel method that uses deep metric learning and k-NN classifier to classify pests and diseases in paddy plants. We

experimented using different distance metrics, latent dimensions, base models, and optimizers to train the neural model

that produces latent representation from images. Then, we used k-NN retrieval approach to find and label similar

images from the latent space. During the inference phase, we manipulated the original image using various

transformations and fused them with its latent representation to enhance the quality of latent space. The results show

that our method surpasses the conventional deep learning classification (softmax classifier). Specifically, our method

achieved maximum accuracy of 0.920 on ResNet-50 and 0.878 on ResNet-152. In comparison, the softmax classifier

only achieved maximum accuracy of 0.752 on the same modeling scheme. Our method can produce more

discriminative and robust data representations for classification tasks. Moreover, latent fusion from input augmentation

during inference can also improve accuracy up to 19.2%. We also deployed the best model from our experiment on

serverless cloud computing, allowing users to use the platform for prediction and monitoring through GIS.

Keywords: Paddy plant pest and disease, Deep metric learning, Distance metrics, k-NN, Latent fusion, Serverless

cloud computing.

1. Introduction

Paddy plant pests and diseases are significant

sources of anxiety for farmers, as they can reduce

productivity or cause crop failure [1]. Identifying

these issues requires knowledge and experience, but

there is a shortage of officers to monitor and control

them in Indonesia. Therefore, there is a need for an

automated and accurate diagnosis system that can

help farmers detect and manage paddy health

problems. Recent advances in computer vision have

enabled fast and accurate diagnosis of plant diseases.

However, traditional image recognition algorithms

have limited performance for plant pest and disease

recognition, as mentioned by Liu et al. [2]. They face

challenges such as similar symptoms, slight leaf-

background differences, low contrast, considerable

leaf scale variation, and noisy leaf images. Therefore,

we need an advanced identification algorithm to

overcome these problems. Deep learning (DL) can

automatically extract features using convolutional

kernels optimized with specific algorithms. However,

conventional deep learning classification has a

drawback where the extracted features are difficult to

understand intuitively, and the model cannot

rationalize its predictions. Moreover, deep learning

classification is based on supervised learning, which

requires a large amount of labeled data for each class.

The output is a fixed probability model, which makes

them less adaptable to new domains.

To overcome these limitations, we propose an

enhanced classification algorithm, using latent fusion

augmented images incorporating deep metric

learning with k-NN approximation (FADMAKA).

Deep metric learning (DML) is an approach that

focuses on measuring the similarity or dissimilarity

between samples by using a neural model to learn the

optimal distance metric [3]. DML utilizes a neural

Received: July 11, 2023. Revised: August 13, 2023. 159

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

model to learn an optimal distance metric, enabling

automated feature extraction and non-linear

transformations into a latent space [4]. This latent

space allows for interpretability and flexibility,

making the model's predictions more intuitive and

adaptable to new domains. These representations

possess heightened discriminative qualities and can

be effectively separated by interpretable machine

learning models like k-NN, SVM, or logistic

regression [5]. We employed various augmentation

techniques during inference, including rotation,

flipping, and shifting, to generate distinct latent

representations for each image. These representations

were averaged to create a final representation, termed

"augmented latent fusion," to enhance robustness and

diversity. Subsequently, we adopted k-NN

classification to determine each image's class by

comparing its latent representation with all training

images in the latent database. The chosen k-NN

classifier offers simplicity, interpretability, and non-

parametric properties. We deployed our optimal

model to the cloud, providing a scalable and

accessible solution for paddy plant pest and disease

identification that can be accessed through a browser.

We created a world map service that shows the time-

series data to track the prediction over time. We also

suggested some solutions and preventive actions to

deal with the identified threats on our platform.

The paper's subsequent sections discuss related

works on plant pest and disease recognition (section

2), provide a detailed explanation of the proposed

method (section 3), present experimental setup,

results, and analysis (section 4), and conclude with a

summary of the main findings (section 5).

2. Literature study

The discussion in this section focuses on several

state-of-the-art methods for identifying pests and

diseases in paddy plants. Lu et al. [6] utilized median

filtering, histogram equalization, and edge

segmentation techniques on the rice sheath blight

images. They concatenated the color features (R, G,

and B values) with the texture features (mean,

contrast ratio, and entropy), which were then used as

input for the neural network. However, this method

has limited feature representation and may not

capture the complex patterns of images. High-

dimensional input data can also result from this

technique, which can cause the curse of

dimensionality and raise the risk of overfitting. Ni et

al. [7] proposed a method that uses data augmentation

and deep learning to classify rice pests and diseases.

They also designed a new model, RepVGG_ECA,

Table 1. Related works on paddy plant pest and disease

Approach Method
Object

Deploy
Pest Disease

Lu et al. [6] DL – ✓ –

Ni et al. [7] DL ✓ ✓ –

Malathi et al. [8] DL ✓ – –

Rahman et al. [9] DL ✓ ✓ –

Ours DML ✓ ✓ ✓

that adds efficient channel attention (ECA) attention

mechanism to the RepVGG model to enhance the

feature extractor. This approach relies on supervised

learning, which necessitates a substantial volume of

labeled data, leading to its heavy reliance on labeled

samples. DML can leverage unlabeled data, reducing

the dependance on labeled samples because it only

requires a distance function that can compare pairs or

triplets of samples rather than their actual class labels.

Malathi et al. [8] utilized deep learning techniques for

classifying ten pests in paddy crops. They employed

augmented pest images for training and experimented

with various DCNN architectures. The ResNet-50

model with fine-tuning achieved the highest accuracy.

This method also relies on supervised learning,

leading to limited adaptability to new domains due to

fixed probability outputs. Moreover, the prediction

output is hard to intuitively understand. Rahman et al.

[9] proposed deep learning-based methods for

classifying diseases and pests in rice plants using

CNNs. They experimented with two types of CNN

architectures: large-scale and small-scale

architectures. They also introduced a new

architecture that used a simple CNN with lower

model complexity but high performance. The best

model with the highest accuracy was VGG16 with

fine-tuned training. This method is also based on

supervised learning, which has the same limitations

as the previous methods.

Our proposed method introduced several

improvements over the existing methods. First,

unlike previous research that only focused on

predicting pests or diseases separately, our study

could identify both pests and diseases simultaneously.

Second, our method used DML with augmented

latent fusion instead of conventional deep learning.

Third, we could enhance the classifier outcome with

new samples without retraining the model, as we

could expand the database with new samples to

improve the k-NN algorithm. Fourth, we also

deployed the best model to the cloud, which offered

a scalable and accessible solution not only in research

paper but also in practice. Table 1 provides a snapshot

of some relevant research in identifying pests and

Received: July 11, 2023. Revised: August 13, 2023. 160

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Figure. 1 Sample images for each class

diseases in rice plants and how it compares to our

work.

3. Proposed methodology

In this section, we will describe the overall

research framework, which has five main

components: (1) data preparation consisting of image

acquisition and augmentation; (2) image pre-

processing; (3) triplet sampling and model

development; (4) accuracy testing and comparison

with baseline and state-of-the-art methods; and

finally (5) model deployment.

3.1 Image acquisition

In this study, we acquired image data from

various sources, such as Large-scale dataset for

identifying insect pests: IP102 (field environment)

[10], Rice leaf diseases data set (white background)

[11], Rice plant diseases (field environment) [12],

and also some images scraped from Google images.

Fig. 1 illustrates sample images for each class. We

curated different datasets with varied conditions to

ensure image quality and diversity. Manual analysis

and cropping were conducted to augment the image

samples, especially for cases with multiple diseases

in a single image. Duplicate images were removed,

and mislabeled images were corrected. The data was

split into three parts: training set (80%), validation set

(20%), and holdout set (100 new samples per class).

Table 2 presents the data distribution across these sets.

3.2 Image augmentation

Image augmentation varies training images to

increase their number and address class imbalance

[13]. For augmentation during training, we used

random rotation with an angle range from -15 degrees

to +15 degrees represented by Eq. (1), horizontal flip

represented by Eq. (2), and blur up to m = 1 pixel

represented by Eq. (3).

 𝑇𝑅(𝑥, γ) = 𝑥′(𝑝 𝑐𝑜𝑠 γ − 𝑞 𝑠𝑖𝑛 γ , 𝑝 𝑠𝑖𝑛 γ

+𝑞 𝑐𝑜𝑠 γ , 𝐶) (1)

 𝑇𝐻(𝑥) = 𝑥′(𝑝, 𝑊 − 𝑞 − 1, 𝐶) (2)

 𝑇𝐵(𝑥, 𝑚) =
1

(2𝑚+1)2 ∑ 𝑚
𝑖=−𝑚 ∑ 𝑥′(𝑝 + 𝑖, 𝑞 + 𝑗, 𝐶)𝑚

𝑗=−𝑚 (3)

where 𝑝, 𝑞 are the pixel coordinates in the image 𝑥, γ

is angle of rotation, 𝑊 is the image's width, 𝑚 is the

radius of the square region used in the box blur filter,

and 𝐶 is the channel.

3.3 Image pre-processing

We used a uniform resolution of 64x64 pixels

with RGB channel. The image contrast was enhanced

by adjusting the image intensity range to a broader

target range using the contrast stretching method,

calculated by Eq. (4) [14].

𝑃𝑜𝑢𝑡_𝐶 = (𝑃𝑖𝑛_𝐶 − 𝑐𝐶)
(𝑏𝐶−𝑎𝐶)

(𝑑𝐶−𝑐𝐶)
+ 𝑎𝐶 (4)

where 𝑃𝑜𝑢𝑡_𝐶 is the output pixel, and 𝑃𝑖𝑛_𝐶 is the

input pixel. The formula stretches the input range

[𝑐𝐶 , 𝑑𝐶] to the output range [𝑎𝐶 , 𝑏𝐶] for each channel

𝐶 ∈ {𝑅, 𝐺, 𝐵} . After that, the image pixels were

scaled to be between 0.0 and 1.0, then normalized

with mean and standard deviation using Eq. (5).

𝑥𝑛𝑜𝑟𝑚_𝐶 =
𝑥𝐶−𝜇[𝐶]

𝜎[𝐶]
 (5)

where 𝑥𝑛𝑜𝑟𝑚_𝐶 is the normalized image and 𝑥𝐶 is the

original image for each channel. Each channel's mean

and standard deviation values are calculated from

ImageNet, given by 𝜇 = [0.485, 0.456, 0.406] and

𝜎 = [0.229, 0.224, 0.225], arrays of length 3 to the

respective RGB channel.

3.4 Triplet sampling

Training and validation sets were restructured

into anchor, positive, and negative parts, as shown in

Fig. 2, to train the triplet network that maps images

to the latent space. In latent space, we aim for the

anchor and positive images (same class) to be close,

while the anchor and negative images (different

classes) are distant. Triplet sampling is vital for

learning a discriminative feature. The triplets should

be informative and challenging, meaning that the

Received: July 11, 2023. Revised: August 13, 2023. 161

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Figure. 2 Triplet network

Table 2. Distribution of data for different pathogens

Class Pathogen name
Amount of data

Train Validation Holdout

0 Bacterial leaf blight 1171 293 100

1 Brown planthopper 1175 293 100

2 Rice leafhopper 1435 359 100

3 Rice blast 2526 641 100

4 Brown spot 1298 324 100

5 Yellow rice borer 1254 314 100

positive image is similar but not identical to the

anchor image, and the negative image is dissimilar

but not too distant from the anchor image.

3.5 Phase 1: DML model

The DML model is part of deep metric learning

that maps high-dimensional data to low-dimensional

space (latent). In this study, we fine-tuned

IMAGENET1K_V2 pre-trained weights on ResNet-

50 and ResNet-152 as base models in our case [15].

ResNet-50 and ResNet-152 are CNN models with 50

and 152 layers, respectively, organized into residual

blocks with skip connections. Both models use

bottleneck design to decrease computation cost and

parameter size. We used parametric rectified linear

unit (PReLU) activation function, as shown in Fig. 2.

PReLU improves ReLU by using a learnable

parameter to control the slope of the negative part of

the activation function [16]. The DML model learns

discriminative representations based on the distance

between latent representations, optimized with an

objective function that measures the similarity or

dissimilarity.

3.5.1. Objective function

Triplet margin loss decreases the distance

between anchor input (𝑋𝑖) and positive input (𝑋𝑝),

while increasing the distance between the anchor

input (𝑋𝑖) and a negative input (𝑋𝑛) in the latent

space. Let 𝑓(·) denotes DML model, where

𝑓(𝑋𝑖; 𝑤𝑡 , 𝑏𝑡) is the DML model that is fed with 𝑋𝑖

from 𝑁 samples. The terms 𝑤𝑡 and 𝑏𝑡 are weights

and biases that will be optimized using Eq. (6). We

obtain latent representation as the output for anchor,

positive, and negative input, then calculate 𝑑, i.e. a

specific distance metric, calculated using Eqs. (7-9).

We added a margin to increase the distance between

the anchor and the negative, denoted as 𝛼 of 1.0. In

principle, a more significant margin produces a more

distinct latent space but makes converging the

training process harder.

�̂�, �̂� = ℒ𝑇𝑤𝑡,𝑏𝑡

𝑎𝑟𝑔 𝑚𝑖𝑛

ℒ𝑇 = ∑ 𝑚𝑎𝑥(𝑑(𝑓(𝑋𝑖; 𝑤𝑡, 𝑏𝑡), 𝑓(𝑋𝑝; 𝑤𝑡, 𝑏𝑡))𝑁
𝑖=1

−𝑑(𝑓(𝑋𝑖; 𝑤𝑡 , 𝑏𝑡), 𝑓(𝑋𝑛; 𝑤𝑡 , 𝑏𝑡)) + 𝛼, 0)

(6)

The latent dimension is given by ℎ, finding ℎ is a

trade-off between efficient (small size) and effective

(large size) [17]. We tested latent dimensions for ℎ ∈
 {16, 256, 1024}, and we varied the epochs based on

latent space size: 100 for 16, 200 for 256, and 300 for

1024. In this study, we experimented using several

metrics, including Euclidean distance calculated

using Eq. (7) [18], cosine distance calculated using

Eq. (8) [19], and Pearson correlation calculated using

Eq. (9) [20-21]. Pearson correlation is not a distance

function because it violates triangle inequality.

However, Pearson correlation can measure the linear

relationship between two latent to estimate the

similarity by indicating their linear closeness.

𝑑(𝑧, 𝑧′) = √∑  ℎ
𝑖=1 (𝑧𝑖 − 𝑧′𝑖)2 (7)

𝑑(𝑧, 𝑧′) = 1 −
∑ 𝑧𝑖𝑧𝑖

′
ℎ

𝑖=1

√∑ 𝑧𝑖
2ℎ

𝑖=1
∑ 𝑧′𝑖

2ℎ

𝑖=1

 (8)

𝑑(𝑧, 𝑧′) = 1 −
∑ (𝑧𝑖−�̄�)(𝑧𝑖

′−�̄�′)
ℎ

𝑖=1

√∑ (𝑧𝑖−�̄�)2ℎ

𝑖=1
∑ (𝑧𝑖

′−�̄�′)2ℎ

𝑖=1

 (9)

Received: July 11, 2023. Revised: August 13, 2023. 162

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Algorithm 1: FADMAKA with augmented set 3

1 Input:

Training set 𝒟𝑡 = {(𝑥𝑖
𝑡 , 𝑦𝑖

𝑡)}𝑖=1
𝑛𝑡 ,

Validation set 𝒟𝑣 = {(𝑥𝑖
𝑣, 𝑦𝑖

𝑣)}𝑖=1
𝑛𝑣 ,

Holdout set 𝒟𝑒 = {(𝑥𝑖
𝑒 , 𝑦𝑖

𝑒)}𝑖=1
𝑛𝑒 ,

2 Data augmentation and pre-processing

- Augment 𝒟𝑡 by Eq. (1) to Eq. (3)

- Pre-process 𝑥𝑖
𝑡 , 𝑥𝑖

𝑣 , 𝑥𝑖
𝑒 by Eq. (4) to Eq. (5)

3 Triplet sampling

- Resample 𝒟𝑡and 𝒟𝑣 as triplet sample

4 Phase 1: develop DML model

- Define DML model 𝑓(·) that outputs latent

representation 𝑧 ∈ 𝑅ℎ

5 Define objective function

- Define triplet loss using Eq. (6) with a

specific distance metric from Eq. (7) to Eq.

(9)

6 DML model training

- Train 𝑓(·) using 𝑥𝑖
𝑡 for obtaining final 𝑤 ̂

and �̂� by solving Eq. (6) using optimization

SGD in Eq. (10) or AdamW in Eq. (11)

- Validate and checkpoint 𝑓(·) using 𝒟𝑣

7 Compute latent for training and validation set

- zt = {𝑓(𝑥𝑖
𝑡; 𝑤,̂ �̂�) | 𝑥𝑖

𝑡 ∈ 𝒟𝑡}

- zv = {𝑓(𝑥𝑖
𝑣; 𝑤,̂ �̂�) | 𝑥𝑖

𝑣 ∈ 𝒟𝑣}

8 Phase 2: k-nearest neighbors

- Find the optimal 𝑘 value that maximizes the

accuracy of zv in zt database

9 Compute latent for holdout set and classify

- 𝑧𝑖
𝑒 = {𝑓(𝑥𝑖

𝑒; 𝑤,̂ �̂�) | 𝑥𝑖
𝑒 ∈ 𝒟𝑒}

- 𝑧𝑖
𝑟 = {𝑓(𝑇𝑅(𝑥𝑖

𝑒, γ); 𝑤,̂ �̂�) | 𝑥𝑖
𝑒 ∈ 𝒟𝑒}

- 𝑧𝑖
ℎ = {𝑓(𝑇𝐻(𝑥𝑖

𝑒); 𝑤,̂ �̂�) | 𝑥𝑖
𝑒 ∈ 𝒟𝑒}

- 𝑧𝑖
𝑠 = {𝑓(𝑇𝑆(𝑥𝑖

𝑒 , (𝛥𝑝, 𝛥𝑞)); 𝑤,̂ �̂�) | 𝑥𝑖
𝑒 ∈ 𝒟𝑒}

- 𝑧𝑖
𝑓

=
1

4
(𝑧𝑖

𝑒 + 𝑧𝑖
𝑟 + 𝑧𝑖

ℎ + 𝑧𝑖
𝑠)

- k-NN 𝑧𝑖
𝑓
 with 𝑘 from step 8 in zt database

10 Output: predicted class of 𝑥𝑖
𝑒

where 𝑧 ∈ ℝℎ to denote the latent space of 𝑋𝑖 and

𝑧′ ∈ ℝℎ to denote the latent space of any other input

(𝑋𝑝 or 𝑋𝑛). �̄� and �̄�′ is the average of the latent

representation of 𝑧 and 𝑧′ that can be calculated by

�̄� =
1

ℎ
∑ 𝑧𝑖

ℎ
𝑖=1 and �̄�′ =

1

ℎ
∑ 𝑧′𝑖

ℎ
𝑖=1 .

3.5.2. Optimization algorithm

The optimization algorithm aims to adjust the

neural model weights to achieve the minimum loss

value. We experimented with different optimizers,

including SGD and AdamW. SGD works by updating

model weights by taking small steps in the opposite

direction of the gradient of the objective function.

The equation for SGD algorithm is shown in Eq. (10).

θ𝑡+1 = θ𝑡 − 𝜂∇θℒ𝑇(𝑤𝑡 , 𝑏𝑡) (10)

where θ𝑡 = [wt, bt] and θ𝑡+1 = [wt+1, bt+1] are

the model parameters at iteration t and t + 1. Note

that wt+1 is updated the weight parameter, bt+1 is

updated the bias parameter, 𝜂 is the learning rate, and

∇θℒ𝑇(𝑤𝑡, 𝑏𝑡) are the gradients of the loss function

with respect to 𝑤𝑡 and 𝑏𝑡 . On the other hand,

AdamW is an adaptive optimization algorithm that

decouples weight decay regularization terms from the

gradient update, which can reduce the large weights

on the model during training to avoid overfitting. The

equations for AdamW algorithm are denoted as

follows Eq. (11) [22].

𝑚𝑡+1 = 𝛽1𝑚𝑡 + (1 − 𝛽1)∇θℒ𝑇(𝑤𝑡, 𝑏𝑡)

𝑣𝑡+1 = 𝛽2𝑣𝑡 + (1 − 𝛽2)(∇θℒ𝑇(𝑤𝑡, 𝑏𝑡))
2

�̂�𝑡+1 =
𝑚𝑡+1

1−𝛽1
𝑡+1

𝑣𝑡+1 =
𝑣𝑡+1

1−𝛽2
𝑡+1

θ𝑡+1 = θ𝑡 − 𝜂𝜆θ𝑡 −
 𝜂�̂�𝑡+1

√�̂�𝑡+1+ϵ

 (11)

where 𝑚𝑡+1 and 𝑣𝑡+1 are the first and second-

moment estimates of the gradient with respect to the

parameters, �̂�𝑡+1 and 𝑣𝑡+1 are the bias-corrected

estimates of 𝑚𝑡+1 and 𝑣𝑡+1 to improve reliability, β1

and β2 are exponential decay rates for the moment

estimates, we used 0.9 and 0.999, respectively. ϵ is a

small constant to prevent division by zero, we used

1e-8, and 𝜆 is the weight decay coefficient we used

1e-2. We used the initial learning rate 𝜂 of 0.001 for

SGD and AdamW. A large learning rate may miss the

minimum, while a small one may approach too

slowly or get trapped in local minima [23]. However,

AdamW is a method that adapts the learning rate for

different parameters because it uses the average of the

first and second moments of the gradients.

3.6 Phase 2: classification task

In this research, we compared two classifiers:

FADMAKA with k-NN for our proposed method and

softmax classifier to implement the baseline and

state-of-the-art methods as a comparison model.

3.6.1. Extract and fuse latent space

After optimizing the DML model, we got the

final weights and biases, denoted as 𝑤 ̂ and �̂�. We

obtain the latent space using 𝑓(·) for the training set,

denoted as 𝑧𝑡, the validation set, denoted as 𝑧𝑣, and

the holdout set, denoted as 𝑧𝑒. We use 𝑛𝑡, 𝑛𝑣, and 𝑛𝑒

to denote the number of train, validation, and holdout

sets, respectively. They are defined as follows Eq.

(12).

Received: July 11, 2023. Revised: August 13, 2023. 163

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Figure. 3 2D latent space using t-SNE: ResNet-50 with

AdamW, Pearson 16dims

Figure. 4 Augmented latent fusion anatomy

𝑧𝑡 = {𝑧𝑖
𝑡|𝑖 = 1, … , 𝑛𝑡}

𝑧𝑣 = {𝑧𝑖
𝑣|𝑖 = 1, … , 𝑛𝑣}

𝑧𝑒 = {𝑧𝑖
𝑒|𝑖 = 1, … , 𝑛𝑒}

 (12)

where 𝑧𝑖
𝑡 = f(𝑥𝑖

𝑡; 𝑤,̂ �̂�), 𝑧𝑖
𝑣 = f(𝑥𝑖

𝑣; 𝑤,̂ �̂�), and 𝑧𝑖
𝑒 =

f(𝑥𝑖
𝑒; 𝑤,̂ �̂�). We also used random augmentation

during inference to improve representative latent

space, as different image matrices can produce

different latent representations. We obtain the latent

space for the rotated holdout set, denoted as 𝑧𝑟, the

horizontal flipped holdout set, denoted as 𝑧ℎ, and the

shifted holdout set, denoted as 𝑧𝑠 . Note that 𝑛𝑒 =
𝑛𝑟 = 𝑛ℎ = 𝑛𝑠 is the number of holdout images. They

are defined as follows Eq. (13).

𝑧𝑟 = {𝑧𝑖

𝑟|𝑖 = 1, … , 𝑛𝑟}

𝑧ℎ = {𝑧𝑖
ℎ|𝑖 = 1, … , 𝑛ℎ}

𝑧𝑠 = {𝑧𝑖
𝑠|𝑖 = 1, … , 𝑛𝑠}

 (13)

where 𝑧𝑖
𝑟 = 𝑓(𝑇𝑅(𝑥𝑖

𝑒 , 𝛾); 𝑤,̂ �̂�) , 𝑧𝑖
ℎ = 𝑓(𝑇𝐻(𝑥𝑖

𝑒);
𝑤,̂ �̂�), and 𝑧𝑖

𝑠 = 𝑓(𝑇𝑆(𝑥𝑖
𝑒 , (𝛥𝑝, 𝛥𝑞)); 𝑤,̂ �̂�). Here, 𝑇𝑅

is the random rotation function stated in Eq. (1) with

𝛾 ∼ 𝑈(−15,15). 𝑇𝐻 is horizontal flipping function

stated in Eq. (2), and 𝑇𝑆 is random shifting function

from -10 to +10 in the x and y axes, stated in Eq. (14).

 𝑇𝑆(𝑥, (𝛥𝑝, 𝛥𝑞)) = 𝑥′(𝑝 − 𝛥𝑝, 𝑞 − 𝛥𝑞, 𝐶) (14)

where (𝛥𝑝, 𝛥𝑞) ∼ 𝑈(−10,10) × 𝑈(−10,10). After

that, we fused the latent space by calculating the

average of each dimension, where denoted as 𝑧𝑓. The

calculation for the augmented set 3 is as follows Eq.

(15).

𝑧𝑓 = {𝑧𝑖
𝑓

|𝑖 = 1, … , 𝑛𝑓} (15)

where 𝑧𝑖
𝑓

=
1

4
(𝑧𝑖

𝑒 + 𝑧𝑖
𝑟 + 𝑧𝑖

ℎ + 𝑧𝑖
𝑠) and 𝑛𝑓 is the

number of element latent set, which is equal to the

number of holdout set. Depending on the augmented

set scenario, we may calculate the average of

different latent spaces. For the augmented set 2, we

averaged 𝑧𝑒 , 𝑧𝑟, and 𝑧ℎ. For the augmented set 1, we

only averaged 𝑧𝑒 and 𝑧𝑟.

3.6.2. k-NN

We used k-NN to classify the latent

representation as it is easily separable with distance

information. Algorithm 1 contains a summary of the

FADMAKA method we propose. For an input image

during inference, we retrieved similar images from

𝑧𝑡 , i.e. latent space of the training set. The k-NN

algorithm ranks the scores and selects a few nearest

neighbors to assign the class prediction of the input

image. Fig. 3 shows the 2D representation of the

latent space 𝑧𝑡 , which we obtained by applying t-

SNE dimensionality reduction with perplexity 15

with automatically optimized learning rate [24]. The

figure reveals that each class forms its own cluster

and is well separated from the others. However, some

classes are not well separated and are mixed with the

wrong clusters. It may indicate they have similar

features, such as brown spot and rice blast. This is

reasonable because some images of rice blast also

show brown spot on the same leaf. Augmented latent

fusion can improve the robustness of latent

representation, as shown in Fig. 4. The original latent

point is close to a different class that it does not

belong to. But when we use the augmented input and

take the average of the latent points along each

dimension, the augmented point shifts towards the

same class. Nevertheless, it also means that we need

to calculate more than one latent representation for

each input during inference, depending on how much

we vary the augmentation.

3.6.3. Softmax classifier

We compared the accuracy of FADMAKA with

the softmax classifier (baseline) using fine-tuned

Received: July 11, 2023. Revised: August 13, 2023. 164

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Figure. 5 Implementation system for identification and location mapping

techniques also on ResNet-50 and ResNet-152 base

models. We trained the models for 300 epochs, a

sufficiently high number to avoid underfitting. We

also implemented checkpointing weights to prevent

overfitting issues [23]. For these scenarios, we

appended a fully connected layer with six nodes and

a softmax layer in the last layer of the base model

from Fig. 2 for the classification task. We

experimented by changing optimizers with SGD and

AdamW. Furthermore, we also reproduced the state-

of-the-art methods using a softmax classifier and

compared their accuracy with FADMAKA. We

applied the categorical cross-entropy loss function as

the standard loss function for multi-class deep

learning classification Eq. (17) [25].

�̂�, �̂� = ℒ𝑋𝑤𝑡,𝑏𝑡

arg 𝑚𝑖𝑛

 ℒ𝑋 = −
1

𝑁
∑  𝑁

𝑖=1 ∑  𝐾
𝑗=1 𝑦𝑖𝑗log (𝑠𝑖𝑗)

 (17)

where 𝑁 is the number of samples, 𝐾 is the number

of classes, yij is the true label of the i-th sample for

the j-th class, and 𝑠𝑖𝑗 is the predicted probability from

softmax layer of the i-th sample for the j-th class.

3.7 Model deployment

We deployed the best model from this research

on a cloud platform using a serverless cloud service

with FastAPI and GIS for the mapping system, as

shown in Fig. 5. In the implementation phase, the user

needs to take a picture with GPS enabled on their

device, and then send the data to our API. The DML

model then extracts the latent representation from the

image and compares it with the latent in the database

using k-NN. After that, the algorithm predicts the

threat class, writes it to the EXIF image along with

the GPS location and time, and saves it in the image

database. The user can monitor the prediction results

on our world map service, which uses a time-series

world map to track environmental changes [26]. We

also used reverse geocoding technique to find the

human-readable address based on its coordinates

from the EXIF data. Besides the time-series world

map that can help monitor pest or disease outbreaks

in a specific region, we also provide

recommendations based on the predicted threat to

assist the user in managing the problem. The user can

also see the predicted class and similar images on the

main page as feedback to verify the prediction by

looking at the retrieved images from the database, an

advantage of FADMAKA that can provide

interpretable results, unlike conventional deep

learning classification.

Moreover, we can enrich the database with new

samples to enhance the classifier without retraining

the DML weights. Theoretically, using the few-shots

learning approach, we can also directly apply it to

identify many other pests and diseases by saving the

latent representation from the new classes in the

latent database. This is possible because the DML

model does not output a probability distribution that

sums up to one like a softmax classifier does. Instead,

it outputs a latent representation that captures the

similarity or dissimilarity between images. The DML

model learns to distinguish between images by

creating a considerable margin distance in the latent

space [27].

Received: July 11, 2023. Revised: August 13, 2023. 165

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

4. Experimental results and discussion

In this experiment, we ran our model on a

hardware device consisting of an Intel® Xeon® CPU

@ 2.00GHz with 13GB of RAM and a Tesla P100-

PCIE 16GB graphics card (CUDA 11.4) with the

seed 2023 for the reproducibility of the random

process. We used three different sets of data for

training, validation, and testing. The training set was

used to train the model by adjusting the model

parameters through a backpropagation algorithm

with a batch size of 16. The validation data was used

to select the best model during training using

checkpointing and to choose the k value for the k-NN

algorithm. After completing the training, we loaded

the best model parameters from the checkpoint to

evaluate the holdout set.

4.1 Choosing k from validation set's latent space

This subsection aims to determine the optimal

value of 𝑘 that produces the best FADMAKA testing

accuracy for each scenario on the validation set. We

can observe in Fig. 6, that models perform best at a

specific 𝑘 ∈ {1,6,11, . . . ,196} . Thus, selecting the

appropriate 𝑘 value is vital for developing the model

with high and stable performance on unseen data.

According to Fig. 6, the median of maximum

accuracy on the validation set for ResNet-50 with

SGD is 0.872, while for AdamW it is 0.970. For

ResNet-152, the median of maximum accuracy with

SGD is 0.869, while for AdamW it is 0.986. AdamW

achieves higher median maximum accuracy of all

tested scenarios compared to SGD. This is likely due

to its ability to adaptively adjust the learning rate

during training and maintain optimal weight values,

because of weight decay regularization which

reduces overfitting. In contrast, SGD may experience

fluctuations in the gradient, leading to oscillations in

the objective function and longer convergence times.

Additionally, SGD may also be prone to overfitting

when using non-Euclidean distance metrics in higher

dimensions as shown in Fig. 6. Higher base model

complexity can also lead to higher median accuracy

in the AdamW scenario. This may be because higher

DML model complexity optimized by SGD can also

increase the risk of overfitting.

4.2 Evaluation on holdout set

In this subsection, we evaluated holdout set using

𝑘 values from the validation set in the previous sub-

section and the k-NN classifier on the latent space

database from the train set. Holdout data measures

how well the model can predict unseen data, not part

of the training or validation process. Tables 3 and 4

show the FADMAKA accuracy with different

distance metrics, optimizers, and latent dimensions

using holdout set. Based on the data presented, the

median accuracy for ResNet-50 with SGD is 0.708,

while for AdamW it is 0.745. In comparison, the

median accuracy for ResNet-152 with SGD is 0.715,

while for AdamW it is 0.755. Our findings on

holdout evaluation indicate that AdamW outperforms

SGD and that ResNet-152 achieves higher accuracy

than ResNet-50. It is in line with our previous

analysis using the validation set. ResNet-152 has

more layers and parameters than ResNet-50, which

allows it to extract more complex and deep features

from the data. However, more layers and parameters

imply that the model needs more time and resources

for inference and the risk of overfitting. The results

in Tables 3 and 4 also show that increasing the latent

dimension does not constantly improve the holdout

accuracy, even with more training epochs, because a

higher latent dimension means that the model can

learn more complex or diverse features, but it also

increases the risk of overfitting, which is when the

model memorizes the training data and fails to

generalize to unseen data. The optimal ResNet-50

model had a latent dimension of 16, 36 k nearest

neighbors, was optimized using AdamW with

Pearson correlation, and achieved an accuracy of

0.772. In contrast, the best ResNet-152 model had a

latent dimension of 1024, 6 k nearest neighbors, was

optimized using AdamW with Euclidean distance,

and achieved an accuracy of 0.789.

4.3 Comparison with the baseline models

We evaluated the performance of the best

models from FADMAKA schemes by comparing its

accuracy with the baseline softmax classifier

performed on holdout set as shown in Table 5 and

Table 6. FADMAKA without augmented latent

outperformed the deep learning classification,

achieved an accuracy of 0.772 on ResNet-50 with a

latent dimension of 16 and a computation time of 5.59

ms, and an accuracy of 0.789 on ResNet-152 with a

latent dimension of 1024 and a computation time of

31.45 ms. Moreover, fusing augmented latents on

images can improve FADMAKA accuracy, but it also

increases computation time. For ResNet-50, the

accuracy increases by 11%, 15%, and 19.2% with the

fusion of augmented type 1, type 2, and type 3,

respectively, and the computation times are 11.6 ms,

16.06 ms, and 20.96 ms, respectively. For ResNet-

152, the accuracy increases by 2.4%, 6.7%, and

11.3% with the fusion of augmented type 1, type 2,

and type 3, respectively, and the computation times

are 44.9 ms, 58 ms, and 70.35 ms, respectively. We

Received: July 11, 2023. Revised: August 13, 2023. 166

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Figure. 6 Validation set accuracy of DML with various k-NN settings for all FADMAKA schemes

Table 3. Holdout set accuracy of DML with the best k-NN settings using ResNet-50

Optimizer
Latent

dimension

Max

epochs

Cosine distance Euclidean distance Pearson correlation

k-NN Accuracy k-NN Accuracy k-NN Accuracy

SGD

16 100 46 0.679 31 0.730 31 0.690

256 200 1 0.733 11 0.752 1 0.723

1024 300 1 0.687 46 0.707 1 0.708

AdamW

16 100 106 0.745 16 0.745 36 0.772

256 200 31 0.740 21 0.742 16 0.712

1024 300 21 0.753 31 0.760 21 0.738

Table 4. Holdout set accuracy of DML with the best k-NN settings using ResNet-152

Optimizer
Latent

dimension

Max

epochs

Cosine distance Euclidean distance Pearson correlation

k-NN Accuracy k-NN Accuracy k-NN Accuracy

SGD

16 100 96 0.723 26 0.733 86 0.710

256 200 1 0.667 11 0.750 1 0.715

1024 300 1 0.703 21 0.660 1 0.752

AdamW

16 100 21 0.783 6 0.713 6 0.755

256 200 6 0.733 31 0.785 6 0.760

1024 300 1 0.717 6 0.789 16 0.753

found that ResNet-152 without fusion augmentation

with 1024 latent dimensions achieved the highest

accuracy. However, when we added fusion

augmentation, its accuracy did not significantly

increase compared to the ResNet-50 with 16 latent

dimensions. This might happen because the high

dimension created more variation in the augmented

latent. As a result, when the latent points were

Received: July 11, 2023. Revised: August 13, 2023. 167

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Table 6. Accuracy of FADMAKA on holdout set

Base model
Optimizer

(lr: 0.001)
Loss function

Max

epochs
Augmented latent

Latent

dimension
k-NN

Inf. time

(ms)
Acc

ResNet-50 AdamW Triplet Pearson 100 – 16 36 5.59 0.772

ResNet-50 AdamW Triplet Pearson 100 Rotation 16 36 11.60 0.857

ResNet-50 AdamW Triplet Pearson 100 Rotation, flip 16 36 16.06 0.888

ResNet-50 AdamW Triplet Pearson 100 Rotation, flip, shift 16 36 20.96 0.920

ResNet-152 AdamW Triplet Euclidean 300 – 1024 6 31.45 0.789

ResNet-152 AdamW Triplet Euclidean 300 Rotation 1024 6 44.90 0.808

ResNet-152 AdamW Triplet Euclidean 300 Rotation, flip 1024 6 58 0.842

ResNet-152 AdamW Triplet Euclidean 300 Rotation, flip, shift 1024 6 70.35 0.878

Table 7. Accuracy of existing researches on holdout set

Approach
Training

augmentation

Batch

size
Optimizer

Max

epochs

Inf. time

(ms)
Acc

ANN [6] - 64 SGD, lr: 0.001 100 0.50 0.313

RepVGG [7] Flip, blur, saturation, contrast 32 Adam, lr: 0.0001 100 13.40 0.706

 RepVGG_ECA [7] Flip, blur, saturation, contrast 32 Adam, lr: 0.0001 100 25.95 0.716

ResNet-50 [8] Rotation, flip, shift, shear, zoom 32 Adam, lr: 0.001 100 5.62 0.811

VGG16 [9] Rotation, flip, shear, skew, contrast 64 Adam, lr: 0.001 100 308.82 0.804

Simple CNN [9] Rotation, flip, shear, skew, contrast 64 Adam, lr: 0.001 100 19.15 0.722

Table 5. Accuracy of baseline model on holdout set

Base model
Optimizer

(lr: 0.001)

Max

epochs

Inf. time

(ms)
Acc

ResNet-50 SGD 300 3.51 0.752

ResNet-50 AdamW 300 3.50 0.738

ResNet-152 SGD 300 12.04 0.743

ResNet-152 AdamW 300 11.96 0.745

averaged, they may not have been as effective as in

the low dimension because they failed to capture the

general features due to sparsity. We can see from

Table 5 that the best accuracy of our baseline deep

learning classification was 0.752 on ResNet-50 with

SGD optimizer, which takes 3.51 ms to classify one

image. SGD optimizer performed better than

AdamW in the softmax classifier. Recent studies

suggest that adaptive optimizer often leads to worse

generalization performance than SGD for specific

tasks such as image classification and language

modeling despite their faster training speed [28]. It is
because adaptive optimizers may have unstable and

extreme learning rates that prevent them from

converging to an optimal solution [28]. One more

empirical explanation is that SGD is more locally

unstable than adaptive optimizer at sharp minima so

that SGD can better escape to flat minima, which is

flat minima often generalize better than sharp minima

[29]. However, the effectiveness of these optimizers

may vary depending on the task and dataset used.

4.4 Comparison with the existing researches

We also reproduced state-of-the-art methods

from the literature: [6, 7, 8], and [9] using our dataset

which the results show in Table 7. All methods used

224x224 RGB images, except for [6], which used

50x50 images. We compared our proposed model

with the method by Lu et al. [6], which used ANN

with one hidden layer and 90 nodes. Their method

suffered from severe underfitting on our dataset,

resulting in low accuracy. This could be due to

several reasons, such as the simplicity of their

network architecture (since our dataset has six classes

instead of two), the sensitivity of their feature

extraction methods to noise information, or the

difference in image quality between our dataset and

theirs. Our FADMAKA model improved upon their

method in several aspects. First, we used a CNN layer

to automatically learn robust features from the

images without manual feature engineering. Second,

we used an advanced architecture model with fine-

tuning technique on pre-trained weights. Third, we

used data augmentation to increase the diversity and

size of our training set. The method by Lu et al. [6]

had a fast inference time because of its simple

architecture but the lowest accuracy among others. Ni

et al. [7] used RepVGG, a deep and complex

architecture and applied more data augmentation

methods but still had lower accuracy than our

baseline model. Their model also took a long time to

infer, which means a high computational cost. Ni et

al. [7] also tried RepVGG_ECA, which added an

ECA layer after each block and after the head layer

to enhance RepVGG. The ECA layer was a new

technique proposed by Ni et al. [7] to improve the

network's feature representation ability. The ECA

method improved the accuracy, but it also made the

inference slower. We think that their proposed

method was overfitted on our dataset. Perhaps their

Received: July 11, 2023. Revised: August 13, 2023. 168

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

approach could do better on our dataset by tweaking

some hyperparameters for regularization to prevent

overfitting.

Malathi et al. [8] used a similar approach to our

baseline classifier, which used a ResNet-50 model

with pre-trained weights from ImageNet. However,

they used a higher image resolution of 224x224, more

data augmentation techniques, and a larger batch size

than us. They also added a fully connected layer with

dropout after the base model and weight decay 0.001

term to the optimizer to prevent overfitting. They did

not report the details of the additional layer, so we

used one layer with 2048 units and a dropout rate of

0.3. The final layer had six nodes for the

classification task. Their model had the highest

accuracy among the state-of-the-art models we

reproduced on our dataset, but it was still lower than

our proposed FADMAKA model. However, this

approach is better than our baseline classifier. Our

baseline used the same base model with a lower

image resolution 64x64, without the additional fully

connected layer and dropout. Rahman et al. [9] used

three techniques in their paper: without transfer

learning, with transfer learning, and with fine-tuning.

They said that fine-tuning had the highest accuracy.

However, when we reproduced it on VGG16 with

fine-tuning from ImageNet weights on all layers, the

model was still underfitting even with 100 epochs

with the hyperparameters they suggested. Then we

tried transfer learning by freezing the VGG16 layers

and only training the additional fully connected

layers. We noticed the accuracy was good, but the

inference computation was slow compared to other

methods. The accuracy was better than our baseline

could be because of the higher image resolution and

more diverse data augmentation techniques.

However, our FADMAKA model had higher

accuracy, even with a smaller image resolution and

inference time. Rahman et al. [9] also proposed

Simple CNN with the same hyperparameters and

augmentation settings, but the accuracy was not that

high compared to our baseline classifier models.

Overall, the FADMAKA approach had high

accuracy but required more computational time than

the average of state-of-the-art methods, although it

was still faster than RepVGG_ECA and VGG16. The

computation increased because of the additional

augmentation process and the averaging of the latent

representation. Also, k-NN classification required

high computational time because it had to calculate

the similarity between the input latent and all the

latents in the database. We expected that we could

increase the accuracy of our model by using the

following methods: enhancing the image resolution

to preserve more details, applying more varied data

augmentation techniques during training to prevent

overfitting, adding some additional fully connected

layer after the base model to extract more features,

and adding dropout to regularize the model. This

could be seen from the pattern of the state-of-the-art

model [8], which also used ResNet-50 as the base

model and achieved an accuracy of 0.811, while our

baseline classifier model only got 0.752 even with

longer epochs.

5. Conclusion

We propose FADMAKA, a novel paddy pest and

disease identification method using DML and k-NN.

Our method extracts latent representations from input

images and retrieves and labels similar images from

the latent space. We evaluated our method on a

dataset of 600 images of paddy plants with 6 classes

of pests and diseases. Our method outperforms

several baselines and state-of-the-art methods that

used a softmax classifier, achieving maximum

accuracy of 0.920. Moreover, our method can

improve accuracy by up to 19.2% by augmenting

input images during inference and fusing the latent

space. We deploy our model on serverless cloud

computing so that users can access the platform

through their online devices. Our work contributes to

computer vision and agriculture by providing a novel

and effective paddy pest and disease identification

solution. However, our work also has limitations and

challenges that need to be addressed in future

research, such as model complexity, scalability,

computational time, and the addition of new domains.

Nomenclature

• a, b, c, d: the parameters for contrast stretching

• α: margin parameter for Triplet

• β1, β2: exponential decay rates

• 𝐶: image channel where 𝐶 ∈ {𝑅, 𝐺, 𝐵}

• 𝑑(·): distance metric

• 𝑓(·): DML model

• γ: angle of rotation

• 𝐾: the number of classes

• 𝑘: k nearest neighbor

• ℒ𝑇: the Triplet margin loss function

• ℒ𝑋: categorical cross-entropy loss function

• 𝑚: radius of the square blur filter

• 𝑚𝑡+1: first-moment of the gradient

• 𝑁: the number of samples in a dataset

• 𝑛: the number of images in each set

• 𝑝, 𝑞: the pixel coordinates in each channel

• 𝑠: predicted label by DL

• 𝑇(·): generic transformation function

Received: July 11, 2023. Revised: August 13, 2023. 169

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

• 𝑣𝑡+1: second-moment of the gradient

• 𝑤,̂ �̂�: final weights and biases for DML

• �̂�, �̂�: final weights and biases for DL

• 𝑥: image of size 𝐻𝑥𝑊𝑥𝐶

• 𝑥′: transformed image of size 𝐻𝑥𝑊𝑥𝐶

• X: anchor input image for Triplet

• 𝑋𝑛: negative input image for Triplet

• 𝑋𝑝: positive input image for Triplet

• 𝑦: image label

• 𝑧 or 𝑧′: latent representation of size h

• �̄� or �̄�′: average of the latent representation

• η: learning rate

• θ𝑡: weights and biases at t

• λ: weight decay coefficient

• ϵ: small constant

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, H.D., M.Y., and M.Z.S.H.;

Methodology, H.D.; Software, H.D.; Formal analysis,

H.D., M.Y., and M.Z.S.H.; Supervision, M.Y. and

M.Z.S.H.; Funding acquisition, M.Y. and M.Z.S.H.

Acknowledgments

This research was supported by Direktorat

Jenderal Pendidikan Vokasi through Penelitian

Produk Vokasi (P2V) Scheme 2023.

References

[1] B. Wang, “Identification of Crop Diseases and

Insect Pests Based on Deep Learning”, Scientific

Programming, Vol. 2022, pp. 1–10, Jan. 2022.

[2] J. Liu and X. Wang, “Plant diseases and pests

detection based on deep learning: a review”,

Plant Methods, Vol. 17, No. 1, 2021,

[3] J. Yu, X. Wang, X. Chen, and J. Guo,

“Automatic Premature Ventricular Contraction

Detection Using Deep Metric Learning and

KNN”, Biosensors, Vol. 11, No. 3, 2021.

[4] M. Kaya and H. S. Bilge, “Deep Metric

Learning: A Survey”, Symmetry, No. 11, 2019.

[5] T. Endo and M. Matsumoto, “Aurora Image

Classification with Deep Metric Learning”,

Sensors, Vol. 22, No. 17, 2022.

[6] Y. Lu, Z. Li, X. Zhao, S. Lv, X. Wang, K. Wang,

and H. Ni, “Recognition of Rice Sheath Blight

Based on a Backpropagation Neural Network”,

Electronics, Vol. 10, No. 23, 2021.

[7] H. Ni, Z. Shi, S. Karungaru, S. Lv, X. Li, X.

Wang, and J. Zhang, “Classification of Typical

Pests and Diseases of Rice Based on the ECA

Attention Mechanism”, Agriculture, Vol. 13, No.

5, 2023.

[8] V. Malathi and M. P. Gopinath, “Classification

of pest detection in paddy crop based on transfer

learning approach”, Acta Agriculturae

Scandinavica, Section B — Soil & Plant Science,

Taylor & Francis, Vol. 71, No. 7, pp. 552–559,

2021.

[9] C. R. Rahman, P. S. Arko, M. E. Ali, M. A. I.

Khan, S. H. Apon, F. Nowrin, and A. Wasif,

“Identification and recognition of rice diseases

and pests using convolutional neural networks”,

Biosystems Engineering, Vol. 194. pp. 112–120,

2020.

[10] X. Wu, C. Zhan, Y. K. Lai, M. M. Cheng, and J.

Yang, “IP102: A Large-Scale Benchmark

Dataset for Insect Pest Recognition”, In: Proc. of

2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp.

8779–8788, 2019,

[11] H. B. Prajapati, J. P. Shah, and V. K. Dabhi,

“Detection and classification of rice plant

diseases”, Intelligent Decision Technologies,

IOS Press, Vol. 11, pp. 357–373, 2017.

[12] J. Chen, D. Zhang, A. Zeb, and Y. A.

Nanehkaran, “Identification of rice plant

diseases using lightweight attention networks”,

Expert Systems with Applications, Vol. 169, p.

114514, 2021.

[13] C. Shorten and T. M. Khoshgoftaar, “A survey

on Image Data Augmentation for Deep

Learning”, Journal of Big Data, Vol. 6, No. 1, p.

60, 2019.

[14] Erwin, “Improving Retinal Image Quality Using

the Contrast Stretching, Histogram Equalization,

and CLAHE Methods with Median Filters”,

International Journal of Image, Graphics and

Signal Processing, Vol. 12, No. 2, pp. 30–41,

Apr. 2020.

[15] C. Janiesch, P. Zschech, and K. Heinrich,

“Machine learning and deep learning”,

Electronic Markets, Vol. 31, No. 3, pp. 685–695,

2021.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Delving

Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification”, In:

Proc. of 2015 IEEE International Conference on

Computer Vision (ICCV), pp. 1026–1034, 2015,

[17] W. Gu, A. Tandon, Y. Y. Ahn, and F. Radicchi,

“Principled approach to the selection of the

embedding dimension of networks”, Nature

Communications, Vol. 12, No. 1, p. 3772, 2021.

[18] Y. Huo, P. Puspitaningayu, N. Funabiki, K.

Hamazaki, M. Kuribayashi, Y. Zhao, and K.

Received: July 11, 2023. Revised: August 13, 2023. 170

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.14

Kojima, “Three Diverse Applications of

General-Purpose Parameter Optimization

Algorithm”, Algorithms, Vol. 16, No. 1, 2023.

[19] K. Park, J. S. Hong, and W. Kim, “A

Methodology Combining Cosine Similarity with

Classifier for Text Classification”, Applied

Artificial Intelligence, Taylor & Francis, Vol. 34,

No. 5, pp. 396–411, Apr. 2020.

[20] G. Mao, “On high-dimensional tests for mutual

independence based on Pearson’s correlation

coefficient”, Communications in Statistics -

Theory and Methods, Taylor & Francis, Vol. 49,

No. 14, pp. 3572–3584, Jul. 2020.

[21] M. Yuliana, Wirawan, and Suwadi, “An

Efficient Key Generation for the Internet of

Things Based Synchronized Quantization”,

Sensors, Vol. 19, No. 12, 2019.

[22] I. Loshchilov and F. Hutter, “Decoupled Weight

Decay Regularization”, In: Proc. of 7th

International Conference on Learning

Representations, ICLR 2019, New Orleans, LA,

USA, May 6-9, 2019.

[23] H. Darmawan, M. Yuliana, and M. Z. S. Hadi,

“GRU and XGBoost Performance with

Hyperparameter Tuning Using GridSearchCV

and Bayesian Optimization on an IoT-Based

Weather Prediction System”, International

Journal on Advanced Science, Engineering and

Information Technology, INSIGHT - Indonesian

Society for Knowledge and Human Development,

Vol. 13, No. 3, pp. 851–862, 2023.

[24] R. Gove, L. Cadalzo, N. Leiby, J. M. Singer, and

A. Zaitzeff, “New guidance for using t-SNE:

Alternative defaults, hyperparameter selection

automation, and comparative evaluation”,

Visual Informatics, Vol. 6, No. 2. pp. 87–97,

2022.

[25] H. Darmawan, M. Yuliana, and M. Z. S. Hadi,

“Realtime Weather Prediction System Using

GRU with Daily Surface Observation Data from

IoT Sensors”, In: Proc. of 2022 International

Electronics Symposium (IES), pp. 221–226,

2022.

[26] Y. Kiyoki, S. Sasaki, and A. R. Barakbah, “AI-

Sensing Functions with SPA-Based 5D World

Map System for Ocean Plastic Garbage

Detection and Reduction”, Information

Modelling and Knowledge Bases XXXIV, Vol.

364, 2023.

[27] S. Luo, Y. Shi, L. K. Chin, Y. Zhang, B. Wen,

Y. Sun, B. T. T. Nguyen, G. Chierchia, H. Talbot,

T. Bourouina, X. Jiang, and A. Q. Liu, “Rare

bioparticle detection: Via deep metric learning”,

RSC Advances, Royal Society of Chemistry, Vol.

11, No. 29, pp. 17603–17610, 2021.

[28] M. Tang, Z. Huang, Y. Yuan, C. Wang, and Y.

Peng, “A Bounded Scheduling Method for

Adaptive Gradient Methods”, Applied Sciences,

2019.

[29] P. Zhou, J. Feng, C. Ma, C. Xiong, S. Hoi, and

E. Weinan, “Towards Theoretically

Understanding Why SGD Generalizes Better

than ADAM in Deep Learning”, In: Proc. of the

34th International Conference on Neural

Information Processing Systems, 2020.

