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Abstract: Due to its impartiality in emotion identification, micro-expression can be used in emotional computing. 

Deep learning has proved successful at recognizing nuanced facial emotions. When the stakes are high, micro-

expressions (MEs) reveal people's true sentiments. Early micro-expression recognition (MER) methods use 

traditional traits. MEs are delicate, rapid facial movements, making them harder to measure and annotate than 

macro-expressions. Recent deep learning (DL) methodologies aim to improve ME and MER performance. Micro-

expression in small, localized areas of the face and a lack of large databases now hinder emotional facial movement 

recognition. To meet these issues, this study suggests a unique attention mechanism dubbed micro-attention that 

operates in tandem with residual networks called micro expression fusion network (MEFNet). Enhance the ME 

model by incorporating attention mechanisms to focus on the most informative regions of the face. This can help 

improve the accuracy of spatial and temporal data extraction, especially during subtle micro-expressions. Extend the 

two-stream CNN model to incorporate additional modalities, such as audio or textual cues, in addition to the eye and 

mouth regions. This multi-modal fusion will enable a more comprehensive understanding of emotions and increase 

the system's robustness to variations in facial expressions. The MEFNET achieved a specificity of 99.2%, sensitivity 

of 99.5%, and accuracy of 100% on the CAS(ME)2 dataset, and a specificity of 99.6%, sensitivity of 99.3%, and 

accuracy of 100% on the SMIC dataset. Rendering to the experimental results, the suggested framework compares 

favourably to the state-of-the-art methods. 
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1. Introduction 

Microexpression recognition is popular for good 

reason. Micro-expressions—short, involuntary facial 

gestures—can reveal a person's true feelings, even 

when they're trying to hide them. These looks last 

only a few milliseconds and are too delicate to see. 

Technology and deep learning algorithms can now 

detect and evaluate these expressions in real-time. 

Microexpressions, or fleeting facial expressions, 

reveal a person's true feelings. Microfacial 

expressions, which last half a second to four seconds 

[1], are the most common and effective way to 

express emotions. Meanwhile, much research has 

gone into teaching computers to identify human 

emotions by analyzing macro expressions ([2, 3]).  

Psychologists [4, 5] have shown that humans 

aren't always good at reading emotions from 

appearances. Micro-expression, unlike macro-

expression, is subconscious, revealing true emotion. 

Due to its impartiality, micro-expression recognition 

is used in affect monitoring [4], criminal detection 

[6], and home safety [7]. Deep learning has 

transformed AI research. Its ability to automatically 

learn and extract characteristics from photos and 

videos makes it useful for micro-expression 

identification. Deep learning algorithms can identify 
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emotional cues in facial photos and videos due to 

their massive data processing. It impacts psychology, 

policing, and HCI. 

Deep learning for microexpression identification 

creates real-time microexpression recognition and 

categorization systems. We require deep learning 

architectures to extract fine-grained properties from 

huge face expression datasets. Deep learning 

microexpression recognition can improve human-

robot interaction, VR experiences, fraud detection, 

and emotion detection. Attention was added to the 

micro-expression-recognizing deep CNN. This 

method can also extract certain face features.  

Focusing on micro-expressions helps learning 

and acquisition. Deep learning solves most 

computer vision problems better than hand-crafted 

ones. Recently published CNN-based micro-

expression recognition algorithms [22–25]. Face 

micro-expression recognition often uses CNNs, 

RNNs, and hybrids. These methods employ CNNs 

to extract spatial parameters from each expression 

video clip and feed them into recurrent neural 

networks (RNNs) to capture the temporal link 

between frames. The techniques cannot encode 

video information's spatial and temporal connection. 

We present two 3D convolutional neural network 

(CNN) models that simultaneously extract spatial 

and temporal information from a video to improve 

current approaches. 

This paper's primary contributions are summed 

up as follows:  

1. We present a spatial and temporal MECNN 

model to categorize facial expression movies. We 

achieved state-of-the-art performance on benchmark 

micro-expression datasets using the specified 

MECNN model.  A two-stream MFCNN model 

merges eye and lip traits.  

2. STAM, a modest yet powerful CAM module, 

adjusts convolutional feature and activation settings. 

3. 3D CNNs trained on eye and mouth regions 

are evaluated in intermediate and late fusion settings. 

Salience maps can analyze facial attributes. 

Different 3D kernel sizes were investigated for 

micro-expression recognition.  

2. Related works 

Microexpressions indicate emotions [39-41]. 

Neurology, criminology, and HCI employ 

microexpression identification. Deep learning 

increases facial emotion recognition. Recent deep 

learning microexpression detection studies are 

reviewed here. Researchers identified micro-

expressions using public video data [8]. 

"Microexpression detection" finds a movie's 

beginning, peak, and end. Micro-expression movies 

must be labeled. This study addresses real-time 

microexpression recognition. Distinguishing micro-

expression is hard. Broad expression feature 

generation allows micro-expression recognition.  

CNNs [9] and GPUs advanced computer vision. 

After huge dataset training, deep learning model 

features exceeded baseline procedures. FER and 

MER have various CNN models. Sangeethaa et al. 

[11] promptly designed the effective visual 

geometry group (VGG) architecture [10] to 

overcome the FER issue with strong supervision in 

each layer. The authors in [13] improved MER 

accuracy using picture classification attention. CNN 

computed optical fluxes from the start and end 

frames (Khor et al., [27] and Liu, [12]). ME 

database shortage inhibits MER research. Pre-

processing photos to identify ME characteristics 

may solve this issue. DNNs identify. Wang et al. 

[14] presented transfer-learning-based transferring 

long-term CNN model. Takalkar et al. [15] created a 

framework to merge deep CNN and handcrafted 

characteristics. The aforementioned image 

classification algorithms perform well with a few 

RGB pixels. This approach saves processing but 

ignores video motion and temporal information. 

Zhao et al. [16] produced a keyframe sequence. 3D-

CNN calculates optical flow using keyframe 

sequences.  

3D-CNN retrieved spatiotemporal properties for 

action recognition [17-19]. Haddad et al. found FER 

3D convolution promising [20]. 3D-convoluted 

MER. [21]. 3D-CNN's biggest issue is computation 

expense. 3D convolution duplicate parameters 

overfit tiny datasets. Reddy et al. [22] built a 

shallow, strong 3D-CNN. Another model's cut-off 

facial areas. Full-face models exceed it. Research 

suggests hand-designed features are less precise and 

lasting. Accuracy makes deep learning approaches 

attractive. 3D CNN recognizes micro-expressions 

using optical flow data. This paper presents two 

integrated spatiotemporal training-based 3DCNN 

techniques. MFCNN implies the eyes and mouth, 

whereas MECNN suggests the face. The authors 

[22-31] used various deep learning techniques 

including transfer learning, and CNN. Micro-

expressions are delicate and ephemeral. Advanced 

approaches are needed to identify and categorize 

micro-expressions due to their short duration and 

subtle motions. Hand-designed facial expression 

representations are less accurate and robust than 

deep learning-based approaches. 
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Figure. 1 MECNN model structure 

3. Methods and materials 

Inspired by deep networks' ability to extract 

spatio-temporal characteristics for microexpression 

identification, we present two 3D-CNN models, 

MEFNET. MECNN considers the whole face, while 

MFCNN concentrates on the eyes and mouth. Both 

suggested models use the 3DCNN to combine 

spatial and temporal context. 3D-CNNs with careful 

layer and filter size selection are presented for face 

micro-expression recognition. The proposed 

MECNN and MFCNN use 3D-CNN to identify face 

micro-expressions. 

MECNN: 

CAM, STAM, and ECM are the channel 

attention module, spatial-temporal attention module, 

and emotion classification module, respectively. 

Each convolutional block utilizes a CAM layer and 

a STAM layer following the convolutional layers. 

They improve feature-map-based inter-channel and 

intra-channel focus. To further improve 

categorization activities, ECM is implemented after 

completely linked layers. Channel attention module 

(CAM) and spatial-temporal attention module 

(STAM) are the two main components of our 

proposed model's overall design, as shown in Fig. 1. 

While ECM is placed after fully connected layers, 

CAM and STAM are placed after convolutional 

layers in convolutional blocks. 

In order to quantify attention value, CAM 

exploits the connections between channels of 

convolutional maps. Some of the channels in the 

convolutional layer may be more concerned with 

discriminative characteristics, while others may be 

less so. Those global clues in forward propagation 

may be overlooked by common deep networks 

because they treat all channels the same. To make 

up for this, CAM was developed in an effort to 

clearly represent the channel interactions. As a result, 

CAM allows deep networks to capture cross-channel 

interactions and identify "what" is crucial early on. 

The MECNN model includes activation 

functions, dropouts, fully-connected layers, 3D 

convolutional and pooling layers. 3D convolutional 

layers can extract spatial and temporal properties 

from 3D kernel convolutions. Unlike the 2D CNN, 

the 3D-CNN uses both spatial and temporal filters. 

The 3D pooling layer gradually downscales the 3D 

convolutional layer's output while preserving key 

characteristics. 3D pooling picks the most 

informative feature representation across a brief 

time and space frame. Dropout reduces model 

overfitting. Dropout improves regularization in the 

recommended network. The flatten layer is input 

dimension lengthening before the completely linked 

layer. Hierarchical feature extraction needs dense or 

fully-connected layers. The softmax layer grades 

dataset segments.  

The proposed network we present here consists 

of two fully-connected (dense) layers, a stacking 

layer, a 3D convolutional layer with 32 filters of size 

3 ×  3 ×  15, and a 3D pooling layer with a kernel 

size of 3 ×  3 ×  3 . The number of expression 

labels in a dataset determines the ultimate size of the 

fully connected layer. The convolutional block takes 

convolutional feature maps N as input, where N is in 

the form of RH×W×C for 2D networks or RT×H×W×C 

for 3D networks. Through the use of channel 

attention map AC(N) and spatial-temporal attention 

map As(N), CAM and STAM respectively obtain 

their respective attention maps. The performance of 

the STAM is observed to vary across the dimensions 

of the network input. 

 

NC = AC(N) ⊗ N        (1) 

 

Ns = As(N) ⊗ N      (2) 

 

X = concat(NC, Ns)    (3) 

 

Here, ⊗  represents the element-wise 

multiplication. The channel attention map is denoted 

by AC(N) ∈  RC×1×1  and the spatial-temporal 

attention is signified by As(N)) ∈  R1×H×W . 

Increasing the convolutional operation from 2 

dimensions to 3 dimensions results in unmanageable 

parameter expansion and training expense, hence we 

present a (2+1) D convolutional layer for 3D STAM 

in 3D convolutional networks. Three-dimensional 

convolution has been decomposed into two-

dimensional and one-dimensional convolutions in an 

effort to simplify the convolutional operation and 

minimize the number of parameters required. By 

employing a (2+1) D convolutional layer in our 

approach, we are able to bring the channel-wise 

mixed pooling layer into the third dimension. In 

addition, the dropout layer is only used during 

training since a consistent classification outcome is 

required for testing. 

MFCNN 

In the MFCNN model, two independent 3D  
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Figure 2. MFCNN model 

 

spatiotemporal CNNs are fed data from only areas 

around the eyes and mouth. Later, the two CNNs are 

combined to form a single network. Following the 

identification of 68 facial landmarks using the DLib 

face detector, we do the preliminary processing on 

each frame of the expression video to determine the 

corresponding eye and mouth areas. The areas 

around the eyes and lips can be cropped using these 

points of reference. We present two variants of 

MFCNN models, which we call Intermediate 

MFCNN and Late MFCNN, founded on the distinct 

fusion procedures. 

As its name implies, the Intermediate MFCNN 

Model combines the characteristics of two 3D-CNN 

as shown in the figure 2. One 3D-CNN receives 

input from the upper face (containing the eyes) and 

the lower face (including the lips). At this juncture, 

we combine the extracted characteristics from the 

eye and mouth areas. Comparable to the MECNN 

model, the proposed MFCNN employs two 

independent 3D-CNN, each of which is composed 

of stacking, one 3D convolutional layer with 32 

filters of size 3×3 ×15, and one 3D pooling layer 

with a kernel size of 3 × 3 ×3. Activation maps may 

be flattened down into feature vectors using a flatten 

layer. Combining the two networks' normalized 

features results in a third vector. Class scores are 

generated using a combination of dense and dropout 

layers applied to the fused features in Intermediate 

MFCNN. 

As its name implies, the characteristics of two 

3DCNN are combined in late MFCNN model right 

before the last thick layer. In this model, one 3D 

convolutional neural network (CNN) receives input 

from the eye region of the face, while the second 3D 

CNN receives input from the mouth region. At the 

final fully connected layer, features extracted from 

the eye and mouth regions are combined. This 

model also includes two independent 3D CNNs, 

each of which is built from a stacking layer, a 3D 

convolutional layer with 32 filters of size 3×3×15, a 

3D pooling layer with a kernel size of 3×3 ×3, and a 

flatten layer to produce a feature vector with a single 

dimension. Both networks make use of dropout, 

flatten, and dense layers. Both networks are 

 
Notation  Meaning 

𝐾𝑙(𝑙 = 1,2,3. . . . . . . . 𝑛) Network's parameter 

𝑛 Number of categories 
1

∑ 𝑒𝐾𝑙
𝑇𝑎(𝑙)𝑛

𝑙=1

 
Normaliztion 

1 Total no.of probabilities 

P Probability 

K Sample 

𝑉 Arbitrary value 

𝐿𝑓 Loss function 

N Number of classes 

 

combined into one prior to the final dense layer. 

Loss functions generalize logistic functions, which 

are widely used to solve multi-classification 

problems. Softmax returns an n-dimensional vector 

(the sum of its elements is 1) that indicates the 

likelihood that the image used as source was 

assigned to one of the N classes. Labels and training 

data for k samples, 

 

{(𝑎(1), 𝑏(1)), (𝑎(2), 𝑏(2)), . . . . . . . . . (𝑎(𝑘), 𝑏(𝑘))}  (4) 

 

Then the probability of each sample, 𝑓𝜃(𝑎(𝑙)) 

 

[
 
 
 
 
 
𝑃(𝑏(𝑙) = 1|𝑎(𝑙); 𝐾)

𝑃(𝑏(𝑙) = 2|𝑎(𝑙); 𝐾)
.
.
.

𝑃(𝑏(𝑙) = 𝑛|𝑎(𝑙); 𝐾)]
 
 
 
 
 

=
1

∑ 𝑒𝑉𝑙
𝑇𝑎(𝑙)𝑛

𝑙=1

[
 
 
 
 
 𝑒

𝐾1
𝑇𝑎(𝑙)

𝑒𝐾2
𝑇𝑎(𝑙)

.

..

𝑒𝐾𝑛
𝑇𝑎(𝑙)]

 
 
 
 
 

 (5) 

 

In order to ensure convergence during training, 

the loss function uses the gradient descent technique. 

The loss function 𝐿𝑓, 

 

𝐿𝑓 = −
1

𝑘
∑ ∑ 𝑙{𝑏(𝑖) = 𝑝}

𝑞
𝑝=1

𝑛
𝑚=1 𝑙𝑜𝑔

𝑒𝐾𝑝
𝑇𝑎(𝑖)

∑ 𝑒𝐾𝑖
𝑇𝑎(𝑖)𝑛

𝑖=1

   (6) 

 

The value of the function is zero when the 

condition is false and one otherwise. The equation 6 

is simplified as, 

 

𝐿𝑓 = −
1

𝑘
[∑ 𝑙𝑜𝑔

𝑒
𝐾

𝑏(𝑖)
𝑇 𝑎(𝑖)

∑ 𝑒𝐾𝑖
𝑇𝑎(𝑖)𝑛

𝑖=1

𝑛
𝑚=1 ]   (7) 

 

In practice, we often augment the loss function 

with a weight attenuation to avoid producing 

arbitrary 𝑉  when the parameter was 0. The 

likelihood that the classifier is an actual label 

decreases as the loss function increases. To get the 

best possible outcome, we iteratively determined the 
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loss function's minimal value. 

4. Experimental setup 

The experimental conditions used in this study 

are described here. Before diving into a detailed 

explanation of the hyper-parameter settings used to 

train the proposed networks, we present a 

description of each micro expression dataset utilized 

in the studies. The experiment employed Python 3.6 

within the PyCharm IDE, and was based on the 

keras structure with a backend of the TensorFlow 

platform. Tests on 64-bit versions of Windows 10 

and other platforms. The GPU was an NVIDIA 

2080 Ti, and there was 11 GB of dedicated graphics 

memory on the system. Adam was used to optimize 

the loss with the following experimental parameters: 

0.0001 learning rate, 1e-5 decay, 100 epochs, 0.5 

dropout, 64 batches. In this study, 80% of the data is 

utilized for training and 20% for testing. 

4.1 Datasets 

This study's micro-expression recognition 

datasets are summarized below. Deep learning 

requires a huge data collection. To meet study 

requirements, we employed CAS(ME)2 and SMIC 

micro expression video datasets. Eighty percent of 

each dataset was trained and twenty percent 

validated. The training and validation split is done 

once, and all trials use the same sets. Face 

expression recognition researchers can utilize 

CAS(ME)2. 247 movies from 123 people—68 

women and 55 men—represent a wide age and 

racial range. The movies were shot in English, 

Mandarin Chinese, Cantonese, and ASL using 

natural and manufactured face expressions. These 

films have great lighting and settings. Participants 

had to produce angry, scornful, terrified, pleased, 

sad, astonished, and neutral looks. Each video is 

labeled with emotion start and finish times, strength, 

and facial action unit presence. Because it 

incorporates spontaneous expressions, CAS(ME)2 is 

harder to identify. HCI, emotion analysis, and 

artificial facial expression detection have used the 

dataset extensively. 

The SMIC dataset is a facial expression analysis 

benchmark. SJTU took it. There are 282 images and 

164 640x480-pixel videos. 16 actors—8 men and 8 

women—were instructed to express various moods. 

Neutral to intense delight, sadness, surprise, rage, 

disgust, and terror. Actors focused, thought, and 

bewildered. SMIC contains human-annotated 

images of humans with different facial expressions 

and mental states. Expressions and conditions have 

start and finish times and 0–5 intensity ratings.  

5. Result and discussion 

We compare the experimental results to the gold 

standard in this section. F1-score, weighted average 

recall (WAR) or accuracy, and unweighted average 

recall (UAR) measure experiment success. UAR is 

like "balanced" accuracy, which accounts for class 

size but averages accuracy results. The micro-

averaged F1-Score is for extremely unbalanced data. 

K-fold cross-validation divides the sample into k 

equal-sized subsamples. Each subset is tested, while 

the rest is the training set. Cross-validation tests 

total K. Setting an appropriate K may reduce 

practice evaluation time. K=6 is typical. The recall 

rate is the percentage of positive cases correctly 

predicted. Sensitivity is this. It assesses a model's 

favourable data selection. Thus, it is the percentage 

of correct diagnoses. 

 

Recall(r) =
𝑇𝑟𝑝

𝑇𝑟𝑝+𝐹𝑎𝑛
        (8) 

 
Accuracy is the proportion of correct diagnoses 

relative to all diagnoses. 

 

Precision(p) =
Trp

Trp+Fap
                 (9) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐) =
𝑇𝑟𝑝+𝑇𝑟𝑛

𝑇𝑟𝑝+𝑇𝑟𝑛+𝐹𝑎𝑝+𝐹𝑎𝑛
               (10) 

 

Taking into account the relative relevance of 

each class in the dataset, weighted average recall 

(WAR) measures the average recall across numerous 

classes: 

 

WAR  =  ∑ wl  ∗  rl
P
l=1                   (11) 

 

where M  is the number of classes, wl  is the 

weight of the lth class, and rl is the recall of the kth 

class. Unweighted average recall (UAR) is a 

measure of the average recall across multiple classes, 

where each class is given equal importance: 

 

UAR =
1

M
 ∑  rk

M
k=1                  (12) 

 

The F1 score combines a model's accuracy and 

recall measures.  

 

F1 − score = 2 ×
Precision(p)×Recall(r)

Precision(p)+Recall(r)
         (13) 

 

Here, we additionally ran each algorithm on 

CAS(ME)2 and SMIC for verification. The findings 

are presented in Table 1. Its recognition  
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Table 1. The performance analysis of the MFCNN, 

MECNN and base model 

Data

set 
Model 

Accura

cy 

Rec

all 

F1-

Score 

W

A

R 

UA

R 

CAS 

(ME)
2 

Base 

model  
90.23% 91 90 91 90 

MECN

N 
98.9% 98 99 98 99 

MFCN

N  
100% 99 100 99 100 

SMI

C 

Base 

model 
89.9% 89 89 90 89 

MECN

N 
98.2% 98 98 98 98 

MFCN

N 
99.8% 99 99 99 100 

 

 

performance for the SMIC database is inferior to 

that of the CAS(ME)2. Low camera frame rate 

(100/fps) and environmental factors like lighting and 

shadows may be the reason for this performance. 

There was statistically significant variation in the 

recognition outcomes between MFCNN (99.8%), 

MECNN (98.9%), and Basic Network (90.23%). 

However, the suggested MEFNET outperformed the 

competition in terms of recognition rate. 

The total efficacy of all algorithms is shown in 

Table 1. MFCNN, an algorithm based on 

conventional techniques, has the highest mean 

accuracy of any micro-expression recognition 

system at 100%. The MECNN method has the best 

accuracy (98%) of any deep learning technique. In 

addition, we use the confusion matrix to assess the 

algorithm's effectiveness in recognizing each 

emotion class. The algorithm's ability to distinguish 

between emotions may be evaluated by seeing the 

total number of TPs, FPs, TNs, and FNs it has 

learned for each category. Since feature learning is 

so challenging, it stands to reason that a class with 

more examples will have better recognition 

performance when it comes to emotions. This is 

because additional data allows the model to learn the 

associated characteristics. 

On CASME II and SMIC, we also calculated the 

confusion matrices for each method. Fig. 3 shows 

the MEFNET's confusion matrix. The results of 

several approaches on CASME II and SMIC are 

shown in Table 1. 

It is clear that MEFNET can outperform the 

Basic Network in all facets of recognition, with a 

specificity of 99.2%, a sensitivity of 99.5%, and an 

accuracy of 100% on CAS(ME)2 dataset and 

specificity of 99.6%, a sensitivity of 99.3%, and an 

accuracy of 100% on SMIC dataset.  A model's  

 

 
(a)  

 
(b)  

Figure. 3 confusion matrix on the dataset CAS(ME)2 and 

SMIC (a) MFCNN on CAS(ME)2 dataset (b) MFCNN on 

SMIC dataset 

 

dependability depends on its test data predictions. 

Fig. 4 shows a sample accuracy graph for a dataset-

trained model. The model's training data accuracy 

may initially be 0 to 10. 

Each training cycle often results in improved 

accuracy on the training data, as the model's weights 

and biases are fine-tuned. If the model is overfitting 

the training data, nevertheless, it may start to 

underperform on the validation data even while it 

continues to do well on the training data. In this 

situation, the validation accuracy will drop while the 

training accuracy keeps rising, creating an 

imbalance in the sample accuracy graph. The 

accuracy of the model MFCNN is static after the 

epoch 20 and reaches 100% on both datasets. The 

model MECNN reaches 98% and static after the 

epoch 30. 

Loss graph shape may indicate network 

performance. The loss number is often high early in 

training because the network cannot reliably predict 

the output and its parameters were initially set 

randomly. As training continues, the loss value  
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                                                      (a)                                                                                  (b)  

Figure. 4 Accuracy of the MEFNET (a) MFCNN on CAS(ME)2 dataset (b) MECNN on CAS(ME)2 dataset 

 

 
                                                    (a)                                                                                          (b)   

Figure. 5 Loss of the MEFNET (a) MFCNN on CAS(ME)2 dataset (b) MECNN on CAS(ME)2 dataset 

 

Table 3. Performance comparison  

Methodology Dataset Model 
Accu

racy 

Reddy, S.P.T 

et.al [22] 
CASME 2, SMIC CNN 51% 

He.K et.al [23] CIFAR-10 ResNet 50% 

Peng, M. et.al 

[24] 
CASME 2 TL 46% 

Xia, Z et.al [26] CASME 2, SMIC RCNN 80% 

Huang, X. et.al 

[14] 
CASME 2, SMIC LSTM 65% 

Khor, H.  et.al 

[27] 

CASME 2, 

SAMM 
DSN 71% 

Zhi, R.  et.al 

[28] 
CASME 2, SMIC 

3D-

CNN 
66% 

Proposed 

methodology 
CASME 2, SMIC 

MEFN

et 
100% 

 

 

decreases to 0.015 and 0.25 on CAS(ME)2 and 

SMIC datasets, indicating the network is improving 

prediction accuracy. 

6. Performance comparison with existing 

methodology 

On this particular dataset CASME 2 and SMIC, 

deep learning models were utilized for the purpose 

of micro-expression recognition. The Table 4 shows 

a list of some of the deep learning models that have 

been applied to CASME 2 and SMIC along with the 

stated accuracy of those models.  

Table 3 provides a summary of the comparison 

of the results obtained from the CASME2 and SMIC 

database. The authors of the research papers [22-28] 

have made significant progress in improving the 

accuracy of micro-expression recognition. Their 

work has resulted in accuracy improvements ranging 

from 51% to 80%. The initial accuracy reported in 

these studies ranged from 51% to 80%. This 

indicates that the existing methods and models had 

limitations in effectively capturing the subtle and 

fleeting nature of micro-expressions. These 
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relatively lower accuracies can be attributed to the 

challenges associated with distinguishing micro-

expressions, limited dataset availability, and the 

difficulty in extracting discriminative features. To 

address these challenges and improve the accuracy 

of micro-expression recognition, the authors 

proposed a novel approach, which achieved a 

remarkable accuracy of 100%. As can be shown in 

Table 3, our technique is capable of achieving a 

recognition accuracy that is 19% greater than that 

which was acquired from reference [37].  

7. Conclusion and future work 

Video ME recognition using 3DCNN deep 

learning. MEs seldom produce symptoms. We 

propose a two-stream 3D CNN architecture to 

overcome this challenge. First stream generates 

spatiotemporal characteristic from source picture 

series optical data. A second 3D CNN stream 

receives op tical flow vectors to detect motion 

changes. Our 3DCNN model beats cutting-edge 

models on SMIC and CASME2 ME datasets. New 

action recognition module MEFNet employs 

convolution and activation to improve processing. 

We present a parallel fusion strategy for the 

convolutional attention module and a highlight and 

dropout layer in STAM to boost attention in space 

and time to address order. MEFNet may possibly 

enhance any CNN without training samples or 

modalities. MEFNet improves CASME2 and SMIC 

deep networks. MEFNET surpasses the basic 

network in all recognition parameters, with 99.2% 

specificity, 99.5% sensitivity, and 100% accuracy 

on the CAS(ME)2 dataset and 99.6%, 99.3%, and 

100% accuracy on SMIC. MEFNet's attention 

recalibration may enhance action recognition.  

Our future focus will be improving attention 

modules. We will investigate a computationally 

efficient MER framework. We wish to examine 

temporal simulation of video clips using a pooling 

method to reduce parameters and processing cost. 
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