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Abstract: Determining the localization and tracking of sensor nodes in indoor environments is the goal of this study. 

The difficulty of significant estimation errors in target localization brought on by unpredictable noise in received signal 

strength indicator (RSSI) readings, particularly in indoor environments, is a major area of research right now. This 

study proposed a hybrid technique called particle swarm optimization- generalized regression neural network (PSO-

GRNN) to improve the sensor nodes' ability to estimate location and target tracking with more precision, as an 

alternative to conventional RSSI-based strategy. The GRNN algorithm can use the RSSI values as initiation data of 

the algorithm of GRNN to locate the location and tracing of the target node. An essential component of the GRNN 

architecture is the spread constant(σ), The method of trial-and-error to select a value of spread constant(σ), which is 

insecure and does not always yield the best result, is used to choose the parameter. The PSO method is used to 

determine the optimal GRNN spread constant value. The hybrid PSO-GRNN method was used to overcome these 

drawbacks and enhance localization and target tracking accuracy without the need for further apparatuses. The tracking 

algorithm PSO-GRNN the hybrid outperformed the conventional LNSM technique and produced impressive results. 

Comparing the proposed method to the conventional RSSI, a considerable gain of 87.58% is possible. 

Keywords: Received signal strength indicators (RSSIs), General regression neural network (GRNN), Target tracking, 

Indoor localization, Particle swarm optimization (PSO), Trilateration. 

 

 

1. Introduction 

In many wireless sensor networks (WSN) 

applications, including target tracking, person 

tracking, monitoring, healthcare, military purpose, 

and Factories and Industrial Areas [1]. Accurate 

localization in WSNs is still difficult to achieve, 

though. The two main techniques for WSN 

localization are range-based methods and range-free 

methods [2]. Calculating the distance or angle among 

sensory nodes is a component of the range-based 

approach [3]. The angle-of-arrival (AoA), global 

positioning system (GPS), acoustic energy, time of 

arrival (ToA), time difference of arrival (TDoA), and 

received signal strength indicator (RSSI). are some of 

the techniques used in this approach [4], which 

delivers great accuracy. GPS is a well-known 

technique that relies on a direct line of sight between 

the satellites and the receiver and is typically used for 

outdoor locations. But it has flaws like high power 

usage and cost [5]. 

The range-free method in WSN localization, on 

the other hand, is economical but often provides 

lesser accuracy [3]. It depends on the connectivity 

between stationary or mobile sensor nodes and 

stationary nodes, also known as anchor nodes. The 

range-free strategy, in contrast to the range-based 

method, establishes the location of the sensor node 

without guessing the distance [6]. 

From a technical viewpoint, the determination 

and tracking of target location can be achieved 

through a wide array of technologies in wireless 

sensor networks (WSNs), including but not limited to 

radio frequency (RF), Infrared (IR), video, acoustic, 

and Ultra-Wideband (UWB) [7]. Among these, RF 

stands out because of its dominant use of RSSI 

measurements and its ability to traverse through non-
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metallic barriers, walls, and smoke, making it a 

favorite choice for localization tasks. Wi-Fi access 

points can also be utilized to provide RF signals for 

indoor localization [8]. Furthermore, Bluetooth low 

energy (BLE) technology is increasingly receiving 

attention, with the growing use of BLE beacons for 

indoor localization applications [9]. 

Common techniques such as lateration and 

angulation are frequently employed in localization 

based on RSSI. The angulation-based technique 

calculates the position based on the angles of arrival 

between the nodes, while the lateration-based 

technique uses the distance between two sensor nodes 

for localization [10]. To estimate the angle of arrival 

of RF signals, WSN nodes need to be equipped with 

at least two directional antennas as per the angulation 

technique. Despite their frequent use, both lateration 

and angulation techniques face difficulties in 

accurately determining distances and angles in 

practical scenarios [11]. Such challenges often stem 

from sudden changes in target velocity and 

uncertainties in RSSI measurements due to factors 

like signal weakening, multipath fading, the 

orientation of the antenna, its height above the ground, 

and effects of shadowing. 

The exact nonlinear correlation between RSSI 

and distance presents challenges for lateration-based 

systems. Both the lateration and the angulation 

methods have inherent flaws in their calculations of 

distance and angle. It is preferable to use localization 

techniques that are capable to overcome this issue 

resulting from environmental dynamics. Artificial 

neural networks (ANNs) have displayed promising 

capabilities in tasks related to localization and target 

tracking. They exhibit proficiency in handling noise-

laden measurements and have a swift learning and 

generalization capacity [12]. Drawing inspiration 

from the biological neural networks of the human 

brain, ANNs are computational models constituted of 

interconnected nodes or neurons organized in layers. 

These are trained to understand and identify complex 

patterns and correlations within the provided input 

data. No prior knowledge of the noise distribution is 

required. ANNs can be used for localization to 

estimate the position of sensor nodes or targets 

grounded on collected signal strength indicators 

(RSSI). An ANN may be trained with a dataset of 

known locations and matching input qualities (such 

as RSSI values) to discover the underlying patterns 

and offer a mapping between the input data and the 

target location. In this study, GRNN is used in place 

of the conventional RSSI-based position estimation 

technique, so as to get PSO-GRNN algorithms. The 

GRNN may immediately provide position 

estimations for moving targets after being trained 

using the pair of RSSI data and corresponding actual 

target position. The suggested algorithms are tested 

using MATLAB simulations and account for these 

real-time issues (uncertainty in measurement noises 

and abrupt changes in target velocity). 

The suggested techniques successfully exclude 

calculations for path loss exponent, environmental 

calibration, and RSSI-based distances. Because of 

this, ANN-based localization methods show great 

promise. The additions of this paper are: 

1. Establishing a comprehensive RSSI dataset in 

MATLAB utilizing the log-normal shadow fading 

model for localization.  

2. Employing RSSI values with distance to construct 

a propagation channel model for indoor 

environments. 

3. Design a hybrid PSO-GRNN algorithm with 

LNSM for Location and Target Tracking. 

4. Utilizing a novel hybrid PSO-GRNN localization 

method to increase the accuracy of estimated 

Location and Target Tracking. 

This study's main objective is to address the 

problem of high nonlinearity in the relationship 

between target location and RSSI values. A proper 

neural network is used to do this. The particle swarm 

optimization (PSO) algorithm improves the 

performance of the generalized regression neural 

network (GRNN). The smoothing factor (σ) the 

important parameter in GRNN's. The conventional 

method of choosing this parameter involves trial and 

error, a process that poses risks and doesn't 

necessarily yield the best outcome. The PSO method 

mitigates this issue by finding the optimal value for 

the GRNN spread constant, thereby potentially 

enhancing GRNN's performance. Six anchor nodes' 

RSSI values are used as the GRNN's input data, while 

the output is the target node's real coordinates. These 

data are used to train and test the GRNN. Three of the 

six nearest anchor nodes in the Log-Normal 

Shadowing Model (LNSM) are used in the 

conventional method.  six anchor nodes are used in 

the hybrid PSO-GRNN method to increase the 

precision of localization and target tracking 

estimation. 

This paper is structured as follows. In section 2, a 

brief review of significant studies related to target 

localization and tracking methodologies within 

target-tracking WSNs is presented. Section 3 lays out 

the approach for localizing a mobile target using a 

general regression neural network and PSO. 

Comprehensive simulation studies, which delve into 

the system architecture and performance evaluation 

of the proposed methods, are explained in section 4. 

Concluding remarks and potential areas for future 

work are highlighted in section 5. 
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2. Related work 

Recent scientific research has shown various 

degrees of interest in localizing sensor nodes in 

WSNs. One study [13] the linear least squares 

method and RSSI to locate the source node. The 

LNSM path loss model produced the RSSI. They 

discovered that the predicted inaccuracy was 2.72 

meters after doing the study within a simulated 

setting for a 50 m × 50 m area. [14] used two-stage 

techniques to increase localization accuracy. When 

using range-based location techniques, the received 

signal strength indicator serves as the main 

determining criterion. standard weighted centroid 

approaches, and then it was refined by reducing the 

reference nodes utilizing propagation model-based 

computational techniques. By using the Cooja 

simulator to test the methods, one can accurately 

pinpoint a position up to 97 percent of the time. In 

[15]the MLE-PSO indoor localization algorithm, 

which is based on RSSI and PSO, is introduced in this 

study. This algorithm's primary goal is to improve 

dynamic performance and localization accuracy. The 

MATLAB platform is used to implement and test the 

suggested methodology. The findings show that the 

MLE-PSO technique takes use of maximum 

likelihood estimation's (MLE) high accuracy when 

the ranging error is small and particle swarm 

optimization's (PSO) stability when the ranging error 

is significant. As a result, compared to both the 

conventional MLE algorithm and the PSO algorithm, 

the MLE-PSO approach achieves greater accuracy. 
Jondhale [16] generalized regression neural network 

(GRNN) technology in this study to provide a method 

for improving real-time target tracking performance. 

The study illustrates the viability of using GRNN to 

approximate a nonlinear function to locate RSSI-2D 

data. The Kalman filter (KF) and unscented Kalman 

filter (UKF) are used to further improve the results. 

The study in a simulation environment for a 100m × 

100 m area. used to effectively monitor a single 

moving target using a GRNN-based algorithm. Trial 

and error are used to choose the smoothing parameter 

(σ) for the GRNN. The best result was obtained with 

equal to 3.5, yielding an RMSE of 5.3517 after 

analyzing various values from spread constant 

ranging from 0.5 to 6. This method of trial and error 

is time-consuming and may not produce the best 

results. 

So, we propose in our study a hybrid technique 

termed PSO-GRNN to overcome this limitation. By 

using the particle swarm optimization (PSO) 

technique, the Smoothing Parameter (σ) in GRNN is 

optimized, leading to greater accuracy. The best 

value can be determined more effectively by merging 

PSO with GRNN, which improves tracking precision. 

As cited in references[17], the trilateration 

measurement strategy is widely used to pinpoint the 

positions of sensor nodes in WSNs. This approach is 

contingent on knowing the distance between the 

target sensor node and three anchor nodes [7]. 

However, given the mobility of the node in our use 

case, the distances between the mobile node and 

anchor nodes are often indeterminable upfront. This 

necessitates the mobile node to constantly revise its 

location, thereby complicating the application of the 

trilateration method for our research. Lately, 

techniques rooted in artificial intelligence, like the bat 

optimization algorithm [18] and ANN algorithms, 

have come into use to address the issue of localization 

in wireless networks. In [19] suggests a machine 

learning-based indoor positioning system (IPS) 

method. Using a feed-forward neural network with a 

single hidden layer and utilizing two different ANN 

Architectures with 3 and 4 neurons in this layer to 

estimate the coordinates target node from the RSSI 

dataset obtained from 4 anchor nodes. For the error 

estimation, 1.74 is the maximum value. The average 

value demonstrates how effective neuron network 

technologies are in solving this type of problem when 

compared to alternative approaches. Two different 

types of artificial neural networks (ANNs) are used 

in this study's Wi-Fi-fingerprinting localization 

system to estimate location[20]. These ANNs include 

generalized regression neural networks (GRNN) and 

feedforward backpropagation neural networks 

(FFBP). The working area of approximately 37 × 32 

m2 with 17 Aps. Both varieties of neural networks 

accomplish modelling tasks satisfactorily. The 

findings show that FFBP neural networks perform 

better than GRNN in terms of structural simplicity, 

nonetheless. However, GRNN produces more 

accurate predictions, with an average distance 

inaccuracy of up to 0.48 meters. Despite obtaining 

good accuracy in this study, it has a high cost due to 

the use of many access points in the workspace. 

In this study [21], deep learning was utilized to 

increase the accuracy of location prediction for ANN-

based indoor localization systems as well as to 

estimate the distance between wireless nodes. The 

ANN-based one uses noise, temperature, and 

humidity in addition to RSSI measurements to 

determine the distance and location. Since WSN have 

limited capabilities, this method is considered 

expensive in terms of the time complexity. 

In [22], a CNN-based target-localization method 

using RSSI data as inputs was suggested. The 

intricacy of the online estimating stage was  
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Table 1. Frequently used symbols 

Symbol  Definition 

𝑃𝑟     RSSI value at reference distance 𝑑0  

𝑅𝑆𝑆𝐼                  Received Signal Strength Indicators 

𝑛  Attenuation factor    

𝑋σ       A normal distribution with zero-mean                           

and 𝜎2 variance for random 

shadowing effects. 

σ  Spread constant 

Wij The weights between the input and 

pattern layers 

Pi   The ith hidden neuron's output 

Di  The Euclidean distance between the 

input vector and training (learning) 

samples 

X  Input (RSSI vector) 

Y  Output estimation coordinates 

n  Number of RSS samples 

Vi(t)  The velocity of particle 

Xi(t)  Particle's position 

ω  The inertia factor 

C1 and C2  Acceleration coefficients 

r1 and r2 Random numbers that are uniformly 

distributed between [0, 1] 

t  The current number of iterations 

�̇� and �̇�  The speed in 𝑥  and 𝑦  directions 

respectively at t time instance 

dt  Discretization time step 

𝑥  The actual target coordinate value   

�̂� The estimation coordinate value for 

unknown nodes 

𝑅𝑀𝑆𝐸  The root-mean-square error 

ALE  Average Localization Error 

 

successfully transferred to an offline training stage. 

The proposed method produced localization accuracy 

of 2 m. For localization using the deployed APs, 

thousands of RSSI fingerprints with entries fora 12.5 

m 10 m region were used. By applying SVM, KNN, 

and CNN-based techniques, respectively, the average 

localization errors produced with the suggested 

fingerprint-based methodology were 4.1145 m, 

4.1681 m, and 3.9118 m. 

The main disadvantage of target L&T methods 

that use CNN is the time-consuming process of fine-

tuning the CNN hyper-parameters, including the 

activation function, threshold, and learning rate. 

The received signal strength indicator (RSSI) of 

Wi-Fi signals is used in this study [23] work to assess 

the localization of indoor environments. To precisely 

determine indoor placements, the paper offers a 

closest neighbor-based method that makes use of 

RSS measurements. The suggested method produced 

an average localization error of 2.2 meters by 

combining mobile fingerprinting and semi-

supervised learning techniques. 193 access points 

(APs) were used throughout the studies, which took 

place in a 47 m by 36 m space, and 283 test data 

points were used to analyse their results. 

Utilizing an LSTM-based model is an alternative 

and often used technique for indoor position 

assessment. The researchers used received signal 

strength (RSS) variations between nearby reference 

in the study [24], with a step size of 3 meters. This 

was carried out to lessen the volatility of RSS over 

time within a 113 by 43-meter indoor space. A 

positioning inaccuracy of 3.57 meters was achieved 

by using LSTM networks with a lag size of 4. 

3. Log-normal shadowing model and a 

hybrid PSO-GRNN 

3.1 Log-normal shadowing model 

The signal is influenced by the channel 

environment after it has passed via a wireless channel. 

Therefore, a specific model must be used to describe 

the channel to estimate the variables that influence 

the received signal strength. The two-ray, free-space, 

and LNSM models are three well-known propagation 

models for calculating such parameters. For WSN 

applications, LNSM is the best model due to its 

universality and environment-based configuration. 

RSSI amounts are measurements as per the log-

normal shadow fading model [21]. 

 

𝑅𝑆𝑆𝐼 = 𝑃𝑟(𝑑0) − 10𝑛𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋𝜎           (1) 

 

Where 𝑃𝑟 is RSSI evaluated at the reference distance 

receiver node d0 1m from the transmitter, 𝑛  is the 
attenuation factor, 𝑋σ is a typical random variable 

(a measurement of the shadowing effect that often 

falls between 3 and 20 dBm). In this study, the 

parameters are selected so that 𝑋 ~ (3,1) with a 

difference of 3 dBm and 1 dBm as a standard 

deviation value. The mathematical symbols used 

frequently in this paper are summarized in Table 1. 

3.2 Generalized regression neural network 

A probabilistic model roughly linked to RBNN is 

GRNN, which was introduced by Specht in 1991 [25]. 

Although GRNN typically needs more neurons, 

design time is drastically reduced. The spread 

constant ( σ ), a single parameter used in GRNN 

optimization, must be determined. GRNN provides a 

quick and reliable method in contrast to iterative 

procedures [2]. When building the GRNN model, 

choosing the spread constant (σ) is an important step. 

A suitable value must be selected to get the desired  
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Figure. 1 GRNN structure 

 

training results. In this study, the RSSI values of 

signals obtained from the anchor nodes at a specific 

point in time are utilized as inputs for the GRNN, and 

the expected x and y coordinates of the mobile node 

at that time are the GRNN architecture's output, as 

shown in Fig. 1, the GRNN architecture consists of 

four parts. 

1. The input layer is where the initial data that will be 

transmitted to the following layer is received. 

2. Pattern layer, or hidden layer: In this layer, there 

are exactly as many hidden neurons as there are 

learning samples. One learning sample is represented 

by each hidden neuron. The input values from the 

input layer are subjected to a radial basis function, 

such as a Gaussian transformation function denoted 

by Eqs. (2) and (3). The input parameters are 

represented by the weights (Wij) between the input 

and pattern layers. The distance between the input 

data and the patterns that have been saved is 

represented by the output of the pattern layer, which 

is entirely connected to the third layer. 

 

 𝑝𝑖 = exp [
−𝐷𝑖

2

2 𝜎2 ]  , i=1, 2,…n                    (2) 

 

 𝐷𝑖
 2  = (𝑋 − 𝑋𝑖)

𝑇 (𝑋 − 𝑋𝑖)                      (3) 

 

Where Pi denotes the ith hidden neuron's output, σ 

denotes the spread-constant, X for the network's input 

(RSSI vector), xi for the ith neuron's learning sample, 

and Di stands for the Euclidean distance between the 

training (learning) samples and the input vector. 

3. Each hidden neuron is completely connected to the 

layer known as the summation layer. There are two 

distinct summation types in it: 

•  The S-summation neuron, which calculates the total 

of the pattern layer's weighted outputs. 

• The D-summation neuron, which controls the 

pattern neurons' unweighted outputs. 

The connection weight (Ws) between the ith 

hidden neuron and the S-summation neuron is the 

value of the target output Yi, which equates to the ith 

input value. 

4. Output layer: In this layer, the projected result is 

obtained by dividing the output of the S-summation 

neuron (SN) by the output of the D-summation neuron 

(SD), as shown in Eqs. (4) and (5). 

 

SN=∑ 𝑦𝑖𝑝𝑖
𝑛
𝑖=1                                                   (4) 

 

𝑆𝐷 ∑ 𝑝𝑖
𝑛
𝑖=1                                               (5) 

 

The fixed anchor node’s locations, AN1, AN2, 

AN3, AN4, AN5and AN6 were placed in the working 

area. A mobile node (target) is moving. The target 

node collected the RSSI values from each of the six 

anchor nodes. The RSSI values gathered at the target 

node were subsequently used for both training and 

testing the GRNN algorithm, to identify the location 

and track the target node. 

Eq. (6) can be used to express the GRNN’s input 

and output for an indoor environment. In the given 

equations, RSSIij refers to the RSSI value of the jth 

anchor for the ith sample, (xi, yi) indicates the precise 

position of the target node, and n denotes the 

aggregate number of samples. 

 

𝐼𝑛𝑝𝑢𝑡 =

[
 
 
 
 
 

𝑅𝑆𝑆11𝑅𝑆𝑆12𝑅𝑆𝑆13𝑅𝑆𝑆14𝑅𝑆𝑆15𝑅𝑆𝑆16

𝑅𝑆𝑆21𝑅𝑆𝑆22  𝑅𝑆𝑆23𝑅𝑆𝑆24𝑅𝑆𝑆25𝑅𝑆𝑆26

.

.

.
𝑅𝑆𝑆𝑛1𝑅𝑆𝑆𝑛2𝑅𝑆𝑆𝑛3𝑅𝑆𝑆𝑛4𝑅𝑆𝑆𝑛5𝑅𝑆𝑆_𝑛6]

 
 
 
 
 

,  

𝑂𝑢𝑡𝑝𝑢𝑡 =  

[
 
 
 
 
 
(𝑥1, 𝑦1)
(𝑥2, 𝑦2)

.

.

.
(𝑥𝑛, 𝑦𝑛)]

 
 
 
 
 

                                                   (6) 

3.3 PSO Algorithm 

James Kennedy and Russell Eberhart introduced 

the evolutionary computation technique particle 

swarm optimization (PSO) in 1995 [26]. It is a 

population-based stochastic technique that works 

well for resolving issues with nonlinear global 

optimization [27]. The algorithm begins by 

initializing a collection of random particles and then 

iteratively seeks the best solution. Each particle 

records its best position in each iteration, known as 

the personal best (pbest), while the entire swarm 

records the best position for the entire group, known  

 



Received:  July 7, 2023.     Revised: August 12, 2023.                                                                                                     722 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.60 

 

 
Figure. 2 Block Diagram of the hybrid PSO–GRNN algorithm. 

 

as the global best (gbest). Each particle updates its 

position in the search space according to its current 

velocity, the distances to pbest and gbest, and its 

current position. The swarm is directed toward the 

ideal solution by this iterative process. 

 

𝑉𝑖(𝑡 + 1) = ωVii(𝑡) + 𝐶1𝑟1[𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡)] 
+𝐶2𝑟2[𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)]              (7) 

 

Xi(t+1) =Xi(t)+Vi(t+1)                               (8) 

 

The velocity of particle i in the ith iteration is 

indicated as Vi(t), and its position in the same 

iteration is denoted as Xi(t). The algorithm updates 

each particle's position and velocity using several 

factors. These variables consist of: 

 

• ω: The inertia factor, or omega, controls how 

much a particle's former velocity affects its 

present velocity. 

•  C1 and C2: Acceleration coefficients that control 

the influence of the particle's personal best 

(pbest) and the global best (gbest) on its velocity. 

• r1 and r2: Two random constriction coefficients in 

the range (0,1), used to introduce randomness 

into the algorithm. 

• t: The current number of iterations. 

 

The velocity and position updates are performed 

based on mathematical equations that consider these 

parameters and the particle's previous velocity and 

position as in Eqs. (7) and (8). According to [28] the 

values of c1 = c2 = 1.494 and ω= 0.7 were chosen 

after conducting experimental testing to obtain faster 

convergence. The PSO method keeps updating until 

the predetermined maximum number of iterations, 

tmax is achieved or an acceptable global best (gbest) 

solution is obtained. The number of iterations is 

specified as 100. The PSO method uses the root-

mean-square error (RMSE) [29] as a fitness function, 

as indicated in the following equation: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛 
∑ (𝑥 − 𝑥)2𝑛

𝑖=1                                (9) 

 

Where 𝑥 is the actual target coordinate value and 𝑥 is 

the estimation coordinate value for unknown nodes 

and n is the number of RSSI samples. 

3.4 Proposed Hybrid PSO-GRNN algorithm 

The GRNN algorithm can be applied within a 

WSN to ascertain the position of a mobile node. The 

RSSI values are leveraged as inputs for the GRNN 

algorithm, aiding in the determination and tracking of 

the target node's location. A key component of the 

GRNN setup is the spread constant (σ). The 

conventional method of choosing this parameter 

involves trial and error, a process that poses risks and 

doesn't necessarily yield the best outcome. The PSO 

method mitigates this issue by finding the optimal 

value for the GRNN spread constant, thereby 

potentially enhancing GRNN's performance. In this 

context, the integration of PSO and GRNN forms a 

"hybrid PSO-GRNN algorithm," enabling the GRNN 

to achieve the lowest possible location error. Fig. 2 

shows the mechanism of the hybrid method. 

Because the PSO's operating time generally rises 

with the swarm size (particles’ number), the swarm 

size is specified at 20. The MATLAB program 

implements the PSO method. In this technique, each 

particle consists of a single element called a spread 

constant. The spread constant value was acquired 

from the training phase. Employed in the online 

localization phase to reduce the mobile node's 

localization error. The suggested hybrid PSO-GRNN 

algorithm's flow chart is shown in Fig. 3, and it may 

be utilized to increase the precision of mobile node 

location estimates. 
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Figure. 3 Flowchart of the hybrid PSO–GRNN algorithm 

 

A statistical study is carried out utilizing root 

mean square error (RMSE) and average localization 

error (ALE) to evaluate the LNSMs  and proposed 

method accuracy. The Hybrid PSO-GRNN technique, 

which is covered in this section, is compared to the  

 

 
Figure. 4 Actual and target estimated by the Traditional 

RSSI, PSO+GRNN 

 

classic LNSM method's error metrics. The LNSM 

technique does not fulfil the accuracy requirements, 

particularly in an interior environment. As a result, 

the Hybrid PSO-GRNN algorithm is presented to 

improve the precision of localization and tracking, as 

described in more depth in the following section. 

 

ALE =
1

𝑡
∑

(𝑥�̂�−𝑥𝑖)+(𝑦�̂�−𝑦𝑖)

2
𝑡
𝑖=1                              (10) 

4. Results and discussion 

The proposed system comprises a group of anchor 

nodes that are placed within a simulated region that 

is 100 meters by 100 meters making up the proposed 

system. Fig. 4 shows a movable target with a wireless 

sensor node attached, while an external base station 

(not visible in the image) is situated outside the 

simulation region. At each time step (t), the anchor 

nodes broadcast RF signals, which are picked up by 

the mobile target, which acts as a transceiver. In each 

time step, the RSSI readings gathered from each 

anchor node are sent to a base station outside the 

simulation area. The base station is linked to a laptop 

that meets the following requirements: Using a Core 

i7, 2.3 GHz, 8GB RAM, a variety of analytic 

algorithms, such as the conventional RSSI and a 

hybrid PSO-GRNN, are executed. This scenario is 

similar to a scenario in [2] to compare the results and 

verify the accuracy of the proposed algorithm. 

The literature has already described a range of 

state mobility models. In this study, we opt for a 

model with constant velocity. The following 

equations are used in this study to define the motion 

of the mobile target. 

 

𝑥𝑡 = 𝑥𝑡−1 + �̇�𝑡  𝑑𝑡                                            (10) 

 

𝑦𝑡 = 𝑦𝑡−1 + �̇�𝑡  𝑑𝑡                                            (11) 
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Table 2. The parameters of a hybrid PSO-GRNN and the 

LNSM 

Symbol           Parameter                              Value 

X0                    Initial Target State at t-0           [10 10 ] 

dt              Discretization time step                  1s 

F               Frequency of operation              2.4 GHz 

X            Normal Random Variable          ~N (3, 1) 

               Path Loss Exponent                         3.4 

               Spread Factor                             2.1001  

                                                         (obtained   from PSO) 

 
Table 3. Selection of best Smoothing Parameter (σ) 

determined by PSO+GRNN 

Localization and Tracking Algorithm     Swarms numbers                           

                                         20           40           50         60 

                                     2.1001   0.3578   2.3131   1.9711 

RMSR of Trad.RSSI      13.08     13.95     11.63     13.27 

RMSR of PSO+GRNN   1.624    2.452      1.715     2.158 

 

where  𝑥𝑡  and 𝑦𝑡  specify the position. �̇�  and  �̇�  the 

speed in 𝑥  and 𝑦  directions respectively at t time 

instance, and the time elapsed between two 

subsequent time instants is denoted by the 

discretization time step (dt). 

Therefore, the parameters of a hybrid PSO-GRNN 

and the LNSM can be gained as shown in Table 2. 

The research is conducted in two phases (the 

training phase and the online localization phase), as 

was previously described. Run a hybrid PSO-GRNN 

to determine the ideal value before the online 

localization analysis phase to determine the wireless 

scenario.  

To gain fitness function for 20, 40, 50, and 60 

swarms, the PSO-GRNN algorithm will be run as 

shown in Table 3 via the parameter settings for PSO 

that are covered in Part 3.3 of the log-normal 

shadowing model and a hybrid PSO-GRNN. To 

enable the algorithm PSO to choose the swarms that 

can accomplish the least errors and elapsed time, 

several swarms are implemented. Table 3 

demonstrates that 20 swarms offer the PSO-GRNN 

algorithm's optimum answer since they obtain a 

fitness function of approximately 1.624 m when  

equal to 2.1001. 

The online localization phase is processed within 

the identical network parameters as the training phase, 

using the best value (σ) ascertained from the training 

process. Fig. 4 portrays the target paths deduced by 

both traditional RSSI and PSO-GRNN 

methodologies. Anchor nodes are designated by 

black circles, while the true target position is marked  

 

 
Figure. 5 Localization Errors in x estimates in Traditional 

RSSI, and PSO+GRNN 

 

 
Figure. 6 Localization Errors in y estimates in Traditional 

RSSI, and PSO+GRNN. 

 

by red squares. The black and blue plus signs, 

respectively, signify the estimated positions derived 

from RSSI and PSO-GRNN at a given time instance 

t. The simulation data demonstrate that the 

PSO+GRNN-derived approach holds an advantage 

over RSSI in matters of localization and tracking 

efficiency. The mean localization errors for 

traditional RSSI and PSO-GRNN are 7.4513 and 

0.8854, respectively, providing evidence for the 

PSO-GRNN framework's capability to address real-

time target tracking problems in WSN using RSSI. In 

comparison, the suggested approach provides a 

remarkable improvement of 87.58% over the typical 

RSSI method. Given the RMSE values for the 

algorithms change for each run due to the parameter 

normal random variable Xσ in Eq. (1), RSSI values 

are simulated in MATLAB using the log-normal 

shadow fading model. 
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Table. 4 Comparison error analysis of the hybrid PSO-GRNN algorithms with previous works 
No.  Ref       Location 

technology 

algorithm                              

ANN type or 

learning 

framework                                                                                

Metric    Environment      Tested area        Average 

localization 

error           

RMSE                      

1  [5]              MATLAB 

simulation          

SVR                          RSSI          Indoor           100mx100m       3.92  5.75 

2  [1] APs LSTM RSSI    Indoor           20mx29m       /   1.73 

3  [2] MATLAB 

simulation          

GRNN RSSI    Indoor           100mx100m       4.74 5.35 

4  [21] MATLAB 

simulation          

deep learning RSSI    Indoor           9 m x 9 m       < 1.74 /   

5  [22] APs CNN         RSSI    Indoor           12. m x10m       3.91 /   

6  [23] APs semi-

supervised 

learning         

RSSI    Indoor           113. m x43m       2.2 /   

7  [24] APs LSTM RSSI    Indoor           113mx43m       /   3.57 

8  PSO-

GRNN 

(Proposed 

Method)   

MATLAB 

simulation     

PSO+GRNN         

    

RSSI    Indoor           100mx100m       0.88 1.62 

 

 

 
Figure.7 Localization errors in x-y estimates in 

Traditional RSSI, and PSO+GRNN 

 

 
Figure. 8 Performance of the hybrid PSO-GRNN 

 

Through the simulation results, it was found that 

the proposed method is superior to the search results 

in [2], as the root mean square error is equal to 5.3517 

and average localization error equal to 4.7437, while  

in our research root mean square error and average 

localization error equal to 1.624 and 0.885 

respectively. The comparison of localization errors 

for the x and y estimates, using each of the above-

mentioned methods, is displayed in Fig. 5 and 6, 

respectively. The average performance for both the x 

and y estimates is ascertained through Eq. (10), and 

this is depicted in Fig. 7, which considers the average 

of the errors in the x and y estimates. 

The regression coefficient (R) of determination 

between the real and predictable position is a useful 

metric to examine the hybrid PSO-GRNN algorithm's 

prediction capabilities as shown in Fig. 8. The R 

values of 0.9961 indicate a good agreement between 

the estimated and real location. 

Comparison of the proposed hybrid PSO-GRNN 

algorithm's performance in terms of WSN 

localization with that of earlier studies' algorithms.as 

shown in Table 4. 

5. Conclusion 

This study proposed two approaches for indoor 

localization and tracking estimation in WSNs. The 

first method uses a traditional LNSM approach, while 

the second uses a hybrid PSO-GRNN algorithm. The 

GRNN algorithm was improved by combining the 

PSO and GRNN algorithms to select the optimum 

value of the spread constant (σ), so it improves 

localization accuracy. The performance of the 

traditional LNSM-based method is compared with 

the hybrid PSO-GRNN algorithm as well as the 
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algorithm used in earlier studies. Comparing the 

results shows that the hybrid PSO-GRNN algorithm 

achieves significantly better MAE and RMSE scores 

than the traditional LNSM method, which exhibits 

significant localization errors. The mean localization 

errors and the root mean square error for PSO-GRNN 

are 0.8854 and 1.624 respectively, the suggested 

approach provides a remarkable improvement of 

87.58% over the traditional RSSI method. 

Furthermore, the hybrid PSO-GRNN algorithm 

outperforms analogous systems when considering the 

average error in localization. Therefore, the hybrid 

PSO-GRNNs, especially indoors, provide a practical 

and effective solution for locating and tracking both 

mobile and stationary nodes in WSNs. 

Conflicts of interest  

The authors declare no conflict of interest. 

Author contributions  

Conceptualization, S.M.T and I.S. Al-Mejibli; 

methodology, S.M.T and I.S. Al-Mejibli; software, 

S.M.T; validation, S.M.T and I.S. Al-Mejibli; formal 

analysis, S.M.T; investigation, S.M.T and I.S. Al-

Mejibli; resources, S.M.T; data curation, S.M.T; 

writing—original draft preparation, S.M.T; writing—

review and editing, I.S. Al-Mejibli; visualization, 

S.M.T; supervision, I.S. Al-Mejibli; project 

administration, S.M.T and I.S. Al-Mejibli; funding 

acquisition, S.M.T 

References 

[1] M. Z. Karakusak, H. Kivrak, H. F. Ates, and M. 

K. Ozdemir, “RSS-Based Wireless LAN Indoor 

Localization and Tracking Using Deep 

Architectures”, Big Data and Cognitive 

Computing, Vol. 6, No. 3, p. 84, 2022. 

[2] S. R. Jondhale and R. S. Deshpande, “Kalman 

Filtering Framework-Based Real Time Target 

Tracking in Wireless Sensor Networks Using 

Generalized Regression Neural Networks”, 

IEEE Sensors Journal, Vol. 19, No. 1, pp. 224–

233, 2019. 

[3] V. Garg and M. Jhamb, “A Review of Wireless 

Sensor Network on Localization Techniques”, 

International Journal of Engineering Trends 

and Technology, Vol. 4, No. 4, pp. 1049-1053, 

2013. 

[4] N. A. Alrajeh, M. Bashir, and B. Shams, 

“Localization techniques in wireless sensor 

networks”, International Journal of Distributed 

Sensor Networks, Vol. 9, No. 6, p. 304628, 2013.  

[5] J. P. Molla, D. Dhabliya, S. R. Jondhale, S. S. 

Arumugam, A. S. Rajawat, S. B. Goyal, M. S. 

Raboaca, T. C. Mihaltan, C. Verma, and G. 

Suciu, “Energy Efficient Received Signal 

Strength-Based Target Localization and 

Tracking Using Support Vector Regression”, 

Energies, Vol. 16, No. 1, p. 555, 2023. 

[6] S. Kumar and D. K. Lobiyal, “An advanced DV-

Hop localization algorithm for wireless sensor 

networks”, Wirel Pers Commun, Vol. 71, No. 2, 

pp. 1365–1385, 2013.  

[7] H. Obeidat, W. Shuaieb, O. Obeidat, and R. A. 

Alhameed, “A Review of Indoor Localization 

Techniques and Wireless Technologies”, 

Wireless Personal Communications, Vol. 119, 

No. 1, pp. 289–327, 2021.  

[8] V. İlçi, E. Gülal, and R. M. Alkan, “An 

investigation of different Wi-Fi signal 

behaviours and their effects on indoor 

positioning accuracy”, Survey Review, Vol. 50, 

No. 362, pp. 404–411, 2018.  

[9] Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. E. 

Sheimy, “Smartphone-based indoor localization 

with bluetooth low energy beacons”, Sensors, 

Vol. 16, No. 5, p. 596, 2016. 

[10] Y. Shi, W. Shi, X. Liu, and X. Xiao, “An RSSI 

classification and tracing algorithm to improve 

trilateration-based positioning”, Sensors, Vol. 

20, No. 15, p. 4244, 2020. 

[11] Q. Luo, K. Yang, X. Yan, J. Li, C. Wang, and Z. 

Zhou, “An Improved Trilateration Positioning 

Algorithm with Anchor Node Combination and 

K-Means Clustering”, Sensors, Vol. 22, No. 16, 

p. 6085, 2022. 

[12] S. Kumar, R. Sharma and E. R. Vans 

“Localization for Wireless Sensor Networks: A 

Neural Network Approach”, International 

Journal of Computer Networks & 

Communications, Vol. 8, No. 1, pp. 61–71, 2016. 

[13] Y. Xu, J. Zhou, and P. Zhang, “RSS-based 

source localization when path-loss model 

parameters are unknown”, IEEE 

Communications Letters, Vol. 18, No. 6, pp. 

1055–1058, 2014. 

[14] S. Sinha and S. Ashwini, “RSSI based improved 

weighted centroid localization algorithm in 

WSN”, In: Proc. of International Conference for 

Emerging Technology, Belagavi, India, pp. 1-4, 

2021.  

[15] C. Zhao and B. Wang, “A MLE-PSO indoor 

localization algorithm based on RSSI”, In: Proc. 

of Chinese Control Conference, Dalian, China, 

pp. 6011–6015, 2017. 

[16] S. R. Jondhale and R. S. Deshpande, “GRNN 

and KF framework based real time target 



Received:  July 7, 2023.     Revised: August 12, 2023.                                                                                                     727 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.60 

 

tracking using PSOC BLE and smartphone”, Ad 

Hoc Networks, Vol. 84, pp. 19–28, 2019. 

[17] J. Luomala and I. Hakala, “Adaptive range-

based localization algorithm based on 

trilateration and reference node selection for 

outdoor wireless sensor networks”, Computer 

Networks, Vol. 210, p. 108865, 2022. 

[18] S. S. Mohar, S. Goyal, and R. Kaur, 

“Localization of sensor nodes in wireless sensor 

networks using bat optimization algorithm with 

enhanced exploration and exploitation 

characteristics”, Journal of Supercomputing, 

Vol. 78, No. 9, pp. 11975–12023, 2022. 

[19] A. Gadhgadhi, Y. Hachaichi, and H. Zairi, “A 

Machine Learning based Indoor Localization”, 

In: Proc. of International Conference on 

Advanced Systems and Emergent Technologies, 

Hammamet, Tunisia, pp. 33-38, 2020.  

[20] B. Sulaiman, E. Natsheh, and S. Tarapiah, 

“Towards a better indoor positioning system: A 

location estimation process using artificial 

neural networks based on a semi-interpolated 

database”, Pervasive Mobile Computing, Vol. 

81, p. 101548, 2022. 

[21] A. Guidara, G. Fersi, M. B. Jemaa, and F. Derbel, 

“A new deep learning-based distance and 

position estimation model for range-based 

indoor localization systems”, Ad Hoc Networks, 

Vol. 114, p. 102445, 2021. 

[22] Z. Liu, B. Dai, X. Wan, and X. Li, “Hybrid 

wireless fingerprint indoor localization method 

based on a convolutional neural network”, 

Sensors, Vol. 19, No. 20, p. 4597, 2019. 

[23] J. Yoo and J. Park, “Indoor localization based on 

wi-fi received signal strength indicators: Feature 

extraction, mobile fingerprinting, and trajectory 

learning”, Applied Sciences, Vol. 9, No. 18, p. 

3930, 2019. 

[24] X. Yang, D. Chen, J. Huai, X. Cao, and Y. 

Zhuang, “An improved wireless positioning 

algorithm based on the LSTM network”, In: 

China Satellite Navigation Conference 

Proceedings, Volume 2, pp. 616–627, 2021. 

[25] S. Chen, C. F. N. Cowan, and P. M. Grant, 

“Orthogonal Least Squares Learning Algorithm 

for Radial Basis Function Networks”, IEEE 

Transactions ON Neural Networks, Vol. 2, No. 

2 pp. 302-309. 1991. 

[26] A. O. D. Sá, N. Nedjah, and L. D. M. Mourelle, 

“Distributed efficient localization in swarm 

robotics using Min-Max and Particle Swarm 

Optimization”, Expert Systems with 

Applications, Vol. 50, pp. 55-65, 2016. 

[27] S. K. Gharghan, R. Nordin, and M. Ismail, “A 

wireless sensor network with soft computing 

localization techniques for track cycling 

applications”, Sensors, Vol. 16, No. 8, p. 1043, 

2016. 

[28] M. A. E. Shorbagy and A. E. Hassanien, 

“Particle Swarm Optimization from Theory to 

Applications”, International Journal of Rough 

Sets and Data Analysis, Vol. 5, No. 2, pp. 1–24, 

2018. 

[29] B. Sulaiman, E. Natsheh, and S. Tarapiah, 

“Towards a better indoor positioning system: A 

location estimation process using artificial 

neural networks based on a semi-interpolated 

database”, Pervasive and Mobile Computing, 

Vol. 81, p. 101548, 2022. 


