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Abstract: This research proposes an efficient algorithm for solving the green vehicle routing problem (GVRP), 

capable of generating high-quality solutions while considering environmental impact and computational efficiency. 

We employ an adapted grey wolf optimizer (GWO) algorithm and Q-learning (QL) for parameter optimization, 

introducing a discrete grey wolf optimizer (DGWO), a discrete variant of the GWO. The DGWO leverages the 2-opt 

technique and the Hamming distance concept, making it suitable for addressing discrete problems like GVRP. The 

key novelty of our approach is the use of QL to refine the parameters of the DGWO, specifically the number of 

iterations and number of wolves. This application of QL significantly enhances the efficiency and effectiveness of 

the algorithm compared to DGWO with manual parameter tuning, highlighting the significance of QL in parameter 

optimization. The proposed discrete grey wolf optimizer-Q-learning (DGWO-QL) algorithm is extensively validated 

on benchmark instances of GVRP, demonstrating promising results. For smaller benchmark instances comprising of 

20 customers and 3 stations, our approach outperforms in 12 out of 16 instances. When tested on larger benchmark 

instances, within a range of 111 to 500 customers and 21 stations, it achieves success in 10 out of 12 instances. 

Compared to existing methods, our approach demonstrates improved performance in terms of solution quality and 

computational efficiency. The results show the robust performance of the DGWO-QL, particularly under stochastic 

route scenarios, which underscores the advantage of the proposed technique. This study represents a significant 

contribution to the current body of literature by underscoring the potential of the DGWO-QL algorithm in generating 

high-quality solutions for GVRP. 

Keywords: Metaheuristics, Reinforcement learning, Combinatorial optimization problems, Green vehicle routing 

problem, Grey wolf optimizer, Q-learning, Parameter tunning. 

 

 

1. Introduction 

In the contemporary discourse of transportation 

and logistics, an increasing focus has been placed on 

environmental sustainability. This global shift 

towards greener practices necessitates the re-

evaluation of traditional methodologies and the 

exploration of innovative strategies that synergize 

efficiency and sustainability. One key facet in this 

dialogue is the optimization of vehicle routing, 

particularly through the GVRP [1]. The GVRP 

constitutes an extension of the well-established 

vehicle routing problem (VRP) [2], enhancing it by 

incorporating factors related to energy consumption 

and carbon emissions, crucial considerations in an 

environmentally conscious world. Although the 

VRP has been extensively researched, the addition 

of green considerations adds a layer of complexity 

to the problem, making it a fertile ground for 

academic inquiry [3]. There is a critical need for an 

effective, efficient, and adaptable algorithm that can 

tackle the GVRP while minimizing fuel 

consumption and environmental impact. In this 

study, an innovative approach to solving the GVRP 

introduced, leveraging the power of the GWO and 

QL. This study answers this call, presenting an 

innovative approach combining GWO and QL. 

The GWO is a nature-inspired metaheuristic 

algorithm, renowned for its robustness and 

flexibility, making it a promising choice for 

complex optimization problems such as the GVRP 

[4]. However, GWO was initially designed for 
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continuous optimization problems, requiring certain 

adaptations for it to be applicable to the GVRP. This 

study introduces a discrete version of the GWO, 

customized to suit the unique characteristics of the 

GVRP. 

Additionally, we implement QL, a model-free 

reinforcement learning (RL) algorithm, for the 

purpose of fine-tuning the parameters of the DGWO 

[5]. By iteratively adjusting these parameters, QL 

allows for the optimization of the DGWO's 

performance, enhancing its ability to efficiently 

solve the GVRP. The combination of these 

algorithms offers an advanced approach to the 

GVRP, emphasizing both environmental 

sustainability and computational efficiency. Our 

proposed DGWO-QL algorithm surpasses existing 

methods in terms of adaptability, robustness, and 

computational efficiency. Furthermore, our 

empirical results showcase our method's ability to 

generate high-quality solutions for a wide range of 

GVRP instances. The application of the DGWO-QL 

in this context not only expands the body of 

knowledge on GVRP solutions but also 

demonstrates the potential of advanced 

computational methods in tackling complex 

logistical challenges. 

Through this paper, we aim to make a significant 

contribution to the burgeoning field of GVRP, 

promoting environmentally responsible logistics 

practices, and advancing our understanding of 

complex optimization algorithms. Not only does the 

application of DGWO-QL expand the body of 

knowledge on GVRP solutions, but it also 

exemplifies the potential of advanced computational 

methods in tackling complex logistical challenges. 

The forthcoming portions of this document delve 

into an exhaustive examination of the GVRP-related 

literature in section 2. A comprehensive explanation 

of the problem at hand is articulated in section 3. 

The core principles of the GWO are expanded upon 

in section 4, and their bespoke applications and 

adaptations for the GVRP are discussed in section 5. 

Following this, section 6 provides the computational 

outcomes of our methodology, illustrating its 

effectiveness and superior performance in 

addressing the GVRP. 

2. Literature review 

In the arena of the GVRP research, the 

environmental implications, particularly the carbon 

emissions associated with routing, have been a 

subject of great importance. This environmental 

thrust has garnered substantial scholarly attention in 

recent years, culminating in a multitude of pivotal 

studies. 

Erdoğan and Miller-Hooks' seminal work [1] 

broadened the conventional VRP by integrating 

refueling stops and emphasizing carbon emission 

costs. However, this study has its limitations, such 

as potential identical outcomes in small problem 

instances and increased resource usage and driving 

distances with alternative fuel vehicles. 

Schneider, Stenger, and Goeke [6] proposed a 

fresh perspective on the GVRP, incorporating 

electric vehicles and recharging stations. Despite its 

novelty, the study's limitations include the inability 

to solve larger instances in the most efficient way 

and assumptions about vehicle recharging that may 

not always be applicable. 

Felipe, Ortuño, Righini, and Tirado [7] 

introduced a new approach to the GVRP with 

electric vehicles. However, the model's assumptions 

about vehicle recharging and capacity may not 

always align with real-world scenarios, and the 

model's performance could be constrained by the 

vehicles' autonomy and available recharge 

technologies. 

Montoya, Guéret, Mendoza, and Villegas [8] 

offered a unique approach to the GVRP, introducing 

a multi-space sampling heuristic. However, the 

study's assumptions, such as unlimited charging 

station capacity, and the complexity of adapting 

cluster-second heuristics to the GVRP, present 

limitations. 

Peng, Zhang, Gajpal, and Chen [9] presented a 

novel memetic algorithm (MA) for the GVRP. 

However, the study's assumptions about the fleet of 

alternative fuel vehicles and the potential 

unidentified limitations of the first MA to solve the 

GVRP suggest potential drawbacks. 

Andelmin and Bartolini [10] proposed a 

heuristic for the GVRP that considers refueling 

stations and constraints. However, the model's 

assumptions and the lack of direct comparison with 

other heuristics may limit its applicability and 

performance assessment. 

Li, Li, and Zhao [11] presented the GVRP in the 

context of electric vehicles requiring recharge at a 

limited number of stations within a specified time. 

Despite promising outcomes, the study lacks an in-

depth analysis of the results. 

Elhassania [12] introduced an innovative 

approach to the electric vehicle routing problem 

with stochastic travel times (EVRPSTT) using an 

iterated local neighborhood search (ILNS). However, 

the computational time required for each instance, 

particularly as the number of scenarios in the 

stochastic environment increases, limits the 

approach. 
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While these studies collectively represent the 

growth and diversification of GVRP research, there 

is an apparent bias towards deterministic 

environments, with stochastic cases receiving 

minimal focus. Therefore, several research 

opportunities remain untapped, such as examining 

the unpredictable nature of refuelling stations, the 

effect of traffic congestion on emissions, and the 

integration of emerging vehicle technologies like 

autonomous vehicles into GVRP. 

3. Problem definition 

The GVRP is a variant of the classic VRP that 

incorporates environmental considerations. In the 

GVRP, a fleet of vehicles, which could be electric or 

other types of alternative fuel vehicles, must service 

a set of customers while minimizing total travel 

distance and considering constraints related to 

vehicle fuel capacity and refuelling. The fleet of 

vehicles starts and ends their routes at a central 

depot. Along their routes, vehicles may need to stop 

at fuel stations to recharge or refuel. The GVRP 

aims to find the most efficient routes that service all 

customers, minimize total distance travelled, and 

ensure that vehicles do not run out of fuel. It 

presents several constraints including:  

 

• Each customer, fuel station, or depot node has 

exactly one successor node in the tour. 

• Each alternative fuel station and its associated 

dummy vertices have at most one successor 

node. 

• The number of arrivals and departures at each 

vertex must be equal. 

• A maximum of m vehicles leaves and return to the 

depot per day. 

• Each tour is completed within a maximum time 

limit of 𝑇𝑚𝑎𝑥. 

• The vehicle's fuel level is adjusted upon arrival at 

each vertex based on the distance travelled and 

fuel consumption rate. 

• Fuel level is limited at the depot and fuel stations. 

• Sufficient remaining fuel is guaranteed to return to 

the depot or a fuel station from any customer 

location along the route. 

 

For a more detailed understanding of the 

mathematical formulation and various constraints of 

the GVRP, readers can refer to Erdogan and Miller-

Hooks in 2012 [1]. 

4. Grey wolf optimizer 

GWO is a population-based algorithm, inspired 

by grey wolves' social hierarchy and hunting 

behaviour [4]. In GWO, each wolf, representing a 

potential solution, is categorized as either alpha (α), 

beta (β), delta (δ), or omega (ω). The α wolf 

represents the best solution so far, while β and δ are 

the second and third best, respectively. Their 

hunting behaviour can be divided into three 

categories: tracking and approaching prey, 

encircling and tormenting prey and prey attack [4]. 

The wolves' surrounding pattern around the prey can 

be mathematically described as follows:             

 

𝑐 =  2 × 𝑅𝑎𝑛𝑑2                           (1) 

 

𝛾 =  2 ×  𝑟 ×  𝑅𝑎𝑛𝑑1 –  𝑟                             (2) 

 

where 𝑅𝑎𝑛𝑑1  and 𝑅𝑎𝑛𝑑2  are uniformly 

distributed random numbers ranging from 0 to 1, 

and r decreases gradually from 2 to 0, represented as 

 

𝑟 = 2 − 𝑡 ×
2

max 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
                    (3) 

 

𝑑 =  |𝑐 ×  𝑋𝑃(𝑡)  −  𝑋(𝑡)|                               (4) 

 

𝑋(𝑡+1)  =  |𝑋𝑃(𝑡)  −  𝛾 ×  𝑑|                (5) 

 

where 𝑋(𝑡+1) represents the position of the wolf 

at the (t + 1)𝑡ℎ iteration, acquired by combining the 

position of the prey 𝑋𝑃(𝑡) at the tth iteration and the 

difference vector d. Each wolf makes advantage of 

the potential of 𝛼, 𝛽, and 𝛿 wolves in their hunting 

strategy because they are the best in the pack. The 

wolves update their position using 𝛼 , 𝛽 , and 𝛿  as 

follows: 

 

X1 = |𝑋𝛼 - 𝑦𝛼 × 𝑑𝛼|    , 𝑑𝛼 = |c × 𝑋𝛼  - X|          (6) 

 

X2 = |𝑋𝛽 - 𝑦𝛽  × 𝑑𝛽 |    , 𝑑𝛽 = |c × 𝑋𝛽  - X|           (7) 

 

X3 = |𝑋𝛿 - 𝑦𝛿 ·× 𝑑𝛿 |    , 𝑑𝛿 = |c × 𝑋𝛿  - X| (8) 

 

𝑋(𝑡+1) = 𝑋1 + 𝑋2 + 𝑋3 / 3                            (9) 

 

where 𝑋𝛼, 𝑋𝛽, and 𝑋𝛿 represent the approximate 

placements of alpha, beta, and delta wolves, 

respectively. The revised position of the wolf is 

represented by Eq. (9). The parameters c and γ and 

in GWO balance exploration and exploitation [4]. 

5. Grey wolf optimizer for GVRP 

The original GWO algorithm was conceived for 

continuous optimization problems and has 

demonstrated successful implementation in such 

contexts. However, given the discrete nature of the 
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GVRP, a direct application of GWO isn't viable. 

Therefore, it necessitates the customization of GWO 

to accommodate combinatorial optimization 

problems (COPs) [13], which are inherently discrete, 

with the GVRP as our focal problem. To this end, 

we delve into the discretization of GWO to tailor it 

for the resolution of the GVRP in subsequent 

subsections. Prior to that, the clarke and wright 

savings heuristic (CWSH) articulated for initializing 

the proposed algorithm, elaborate on the 2-opt 

operator, and QL approach for parameter tuning. All 

these components have a pronounced influence on 

the efficacy of our proposed algorithm. 

5.1 Initialization 

CWSH is an effective strategy for addressing the 

GVRP. The method uses a concept of 'savings' 

derived from potential reductions in distance when 

certain customers are grouped together [14]. In the 

process, each customer is initially assigned an 

individual round-trip from a central depot. Then, the 

method searches for possible connections between 

these trips, always aiming for the ones that provide 

the highest 'savings’. It proceeds by linking the end 

of one route to the beginning of another, effectively 

forming a combined route and eliminating the two 

separate ones. This process continues until the total 

number of routes meets a predetermined quantity, 

providing a set of optimized routes. 

While this approach echoes the fundamental 

principles of the original CWSH, it is designed with 

additional considerations to meet the specific 

requirements of GVRP. It embodies environmental 

concerns like minimizing energy consumption and 

promoting green practices, ensuring that the devised 

solutions are eco-friendly. The algorithm of the 

CWSH is shown as follows: 

 

Algorithm1: Clarke and Wright Savings 

Heuristic 

Inputs: Routes, Customer data, Depot, 

Distances matrix  

Outputs: initial solution 

Calculate savings for pairs. 

Shuffle pairs, prioritize high savings. 

Initialize depot-customer routes. 

For each pair: 

 -Merge if best. 

Return initial routes. 

 

The steps of Algorithm1 can be summarized as 

following: 

 

• Define savings: Determine the potential 

distance reduction when two routes are 

combined. 

• Calculate savings: Compute savings for all 

possible pairs of customers. 

• Prioritize pairs: Shuffle and order pairs by 

highest savings at the top. 

• Create initial routes: Establish separate 

round-trip routes from the depot to each 

customer. 

• Check and merge pairs: For each pair, if 

best found, merge their routes into one. 

• Iterate: Continue merging until the total 

number of routes equals a predetermined 

number. 

• Output routes: Return the resulting initial 

routes for the GVRP. 

5.2 2-opt 

The 2-Opt algorithm is a local search heuristic 

commonly used in optimization problems, 

particularly in the context of the traveling salesman 

problem (TSP) and its variant [15]. The goal of the 

2-Opt algorithm is to improve the quality of a given 

solution by iteratively swapping pairs of edges in a 

tour, aiming to reduce the total tour length [16]. The 

algorithm of the 2-opt is shown as follows: 

 

Algorithm2: 2-Opt algorithm 

Input: Solution (S), Number of swaps (SW) 

Output: Modified solution S 

for each iteration from 1 to SW do 

Select two random routes from 1 to (length of 

S - 1) 

Swap elements in S between "i" and "j" 

End for 

 

Algorithm 2 can be explained as: 

 

• Start with an initial solution: Begin with a 

predefined order of visiting locations. 

• Set swap quantity: Determine a number of 

location pairs to swap. 

• Choose random pair: For each iteration, 

select two random locations in the route. 

• Swap section: Swap the selected locations 

by reversing the order in the middle section of 

the route. 

• Repeat process: Continue the swapping 

process until all iterations are completed. 

• Output final route: Return the updated 

sequence of locations, which is the new solution 

for the GVRP. 
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5.3 Discretization of GWO 

The GWO algorithm, as previously expounded, 

is fundamentally devised to simulate the predatory 

behaviour of wolves. This algorithm replicates 

wolves' encircling strategy to mimic exploration and 

exploitation processes within a designated search 

space. The behaviour is mathematically represented 

through specific equations, dynamically updating 

the positions of the search agents, colloquially 

referred to as 'wolves', in each iteration. 

Originally, GWO was primarily intended for 

continuous optimization problems, but the GVRP 

manifests as a COPs, restricting direct GWO 

application. Therefore, certain modifications were 

necessary to tune the GWO algorithm to align with 

the problem structure inherent in the GVRP. 

The end result of this adjustment process is a 

variant of the original algorithm known as DGWO 

[17]. This variant incorporates the 2-opt technique 

and the hamming distance (HD) concept to tailor the 

GWO to the GVRP context. In this scenario, each 

'wolf' symbolizes a potential solution to the GVRP, 

and the objective of the DGWO algorithm is to 

identify the minimum-cost route for the vehicle. 

Certain parameters intrinsic to the original GWO, 

specifically r, γ, and c, were eliminated in the 

DGWO version to simplify the methodology and 

facilitate practical application. Given the 

incompatibility of these conventional GWO 

parameters with the discrete variant, alternative 

difference vectors (xα, xβ, and xδ) and a revised 

position updating equation were conceived. Despite 

these modifications, the DGWO endeavours to 

adhere to the original GWO's conceptual design as 

closely as possible. 

In the proposed DGWO algorithm, the 

computation of difference vectors is executed as 

follows: 

 

𝑋𝛼  =  𝑟𝑎𝑛𝑑 ∈  [1, 𝐻𝐷]                         (10) 

 

where rand is random number between 1 and 

HD   

𝑋𝛽 and 𝑋𝛿 are computed similarly.  

X1, X2, and X3 from Eq. (6,7,8) respectively 

calculated based on 2-opt, where HD in this case 

refer to number of swaps and 𝑋𝑖  is the routes as 

follow: 

 

 𝑋1 =  2 − 𝑜𝑝𝑡(𝑋𝑖 , 𝐻𝐷)                 (11) 

 

X2 and X3 are calculated similarly to X1.   

The DGWO preserves the original GWO feature 

of updating wolf positions employing the difference 

vectors dα, dβ, and dδ. Moreover, the algorithm 

incorporates the application of the 2-opt technique. 

At each iteration, each wolf executes a defined 

number of 2-opt operations contingent on dα, dβ, 

and dδ, thus updating its position using the 2-opt 

method. A minor modification is also introduced in 

the process of generating new solutions, grounded in 

the original Eq. (9). The new position of each wolf 

is determined by identifying the most promising 

solution among X1, X2, and X3, derived from the 2-

opt operations. The algorithm of the DGWO is 

shown as follows: 

 

Algorithm3: Discrete grey wolf optimizer 

Input: Initial solution, Iiterations (Itr.), and 

number of wolves (W). 

Output: the best solution 

Initialize wolves solutions based on Algorith1. 

Identify the best three solutions: Alpha, Beta, and 

Delta. 

Repeat for each iteration: 

   - For each wolf: 

     - Generate new solutions by altering wolf's 

solution based on Alpha, Beta, and Delta. 

     - If new solution is better, update wolf's 

solution. 

      Update the positions of Alpha, Beta, and 

Delta  

End of for 

 

Where Algorithm3 can be synopsized: 

 

• Initiate starting solution, Itr., and W. 

• Generate solutions equal to the number of 

wolves by using Algorithm1. 

• Identify the top three solutions (Alpha, Beta, 

and Delta). 

• Start the iteration process. 

• In each iteration, adjust each wolf's solution 

based on Alpha, Beta, and Delta. 

• Replace current wolf solution if the new one 

is better. 

• Update positions of Alpha, Beta, and Delta 

after each iteration. 

• Continue the process until the end of 

iterations. 

• Return the best-found solution. 

5.4 QL for parameter settings 

Before presenting the computational results, QL 

method employed to fine-tune the hyperparameters 

of the DGWO algorithm. The objective of this fine-

tuning process was to identify the optimal settings 
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for the number of iterations (Itr.) and the number of 

wolves (W.) in the algorithm. These parameters play 

a critical role in determining the algorithm's 

convergence speed and overall performance [18]. 

The QL process involved systematically exploring 

the parameter space and updating a Q-table with 

rewards obtained from running the DGWO 

algorithm with different parameter combinations. 

The parameter space is defined with potential values 

for the number of iterations and wolves. This space 

is ranged from 50 to 1000 with a step size of 10 for 

iterations and 5 to 100 with a step size of 1 for the 

number of wolves. An initial Q-table [19], with 

dimensions corresponding to the length of the 

parameter space, is randomly initialized with values 

between -1 and 1. 

Subsequently, QL parameters are set: a learning 

rate (α) of 0.5, a discount factor (γ) of 0.9, an 

exploration rate (ε) of 0.1, and a total of 2000 

training episodes. At each episode of QL, an action 

is selected based on the current state. If a randomly 

generated number is less than the exploration rate, a 

random action is chosen (exploration); otherwise, 

the action associated with the maximum Q-value for 

the current state is chosen (exploitation). This action 

choice is in line with the epsilon-greedy approach, 

balancing between exploration of new states and 

exploitation of known information. 

The chosen action is then implemented, updating 

the number of wolves and ensuring that the new 

state remains within the bounds of the state space. 

The DGWO algorithm is run with these updated 

parameters, and the resulting total distance is 

negated to form a reward. This reward forms the 

basis for the update of the Q-table, following the 

standard QL update rule. Specifically, the Q-value 

for the current state-action pair is updated as a 

weighted average of the current Q-value and the 

sum of the current reward and the discounted 

maximum future Q-value. This procedure is iterated 

for a set number of steps in each episode. 

The QL process resulted in the identification of 

optimal parameter settings for the DGWO algorithm. 

The Q-table, shown in Table 1, provides a 

comprehensive overview of the Q-values associated 

with each state-action pair. Each Q-value represents 

the expected total reward for a given parameter 

combination. These optimal parameter settings were 

subsequently utilized in the computational 

experiments to ensure the DGWO algorithm's 

optimal performance. 

Finally, the resultant Q-table, which contains the 

Q-values for all state-action pairs, is saved to a file 

using for future use. This concludes the fine-tuning 

of DGWO parameters using QL, providing a  
 

Table 1. Q-Table of DGWO’s parameters 

Itr./W. 5 6 7 .. 100 

50 Q(i1, j1) Q(i1, j2) Q(i1, j3) .. Q(i1, jN) 

60 Q(i2, j1) Q(i2, j2) Q(i2, j3) .. Q(i2, jN) 

70 Q(i3, j1) Q(i3, j2) Q(i3,j3) .. Q(i3, jN) 

.. .. .. .. .. .. 

1000 Q(iM,j1) Q(iM,j2) .. .. Q(iM, jN) 

 

 

principled approach to hyperparameter tuning in the 

context of the GVRP. The algorithm of the QL is 

shown as follows:  

 

Algorithm4: Q-learning 

Initialize Q-table with random values 

For each episode: 

  Select initial DGWO parameters from search 

space 

  Repeat until episode ends: 

  Choose an action: random or the one with the 

highest Q-value 

  Update DGWO parameters based on the chosen   

action 

  Run DGWO with updated parameters and get 

reward 

  Update Q-value for the chosen action 

  Update DGWO parameters for the next iteration 

End for  

Return best parameters values 

 

 

The fourth algorithm simplified as follows:  

 

• Initialize a random parameter for the 

algorithm. 

• Run a loop for a predefined number of times 

(episodes). 

• Decide between exploring (choosing a new 

parameters) or exploiting (using the best 

parameters). 

• Apply the chosen parameters to the 

algorithm. 

• Run the algorithm and measure its 

effectiveness. 

• Update the effectiveness rating of the 

chosen parameters. 

• Prepare parameters for the next episode. 

• At the end of all episodes, identify the best 

parameters. 

• Apply the best parameters to the algorithm 

for best results. 

6. Computational results 

To comprehensively evaluate the performance of  
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Table 2. The numerical results of the DGWO-QL for EMH small instances 

 MCWS/DBCA  

V. 

LNS ILNS/CCP DGWO DGWO-QL 

Instances V. BD t. BD  t BD t BD t BD t 

20c3sU1 6 1797.51 -- 6 1632.69 2.64 1574.08 227.72 1591.61 1.02 1545.63 0.50 

20c3sU2 6 1613.53 -- 6 1484.57 2.24 1574.78 120.90 1586.78 0.71 1466.65 0.09 

20c3sU3 6 1964.57 -- 6 1625.36 2.30 1683.74 80.64 1664.08 0.19 1624.28 0.08 

20c3sU4 5 1487.15 -- 5 1463.47 2.51 1641.43 173.69 1685.12 0.29 1420.16 0.14 

20c3sC1 4 1300.62 -- 4 1173.57 2.46 1342.47 229.20 1267.38 0.42 1141.71 0.21 

20c3sC2 5 1553.53 -- 5 1539.97 2.25 1195.14 88.50 1373.97 0.54 1456.06 0.15 

20c3sC3 3 1083.12 -- 3 880.20 0.76 1088.73 41.84 1012.33 0.97 880.20 0.27 

20c3sC4 4 1091.78 -- 4 978.83 1.73 1136.97 257.89 1047.75 1.05 971.63 0.69 

S1_2i6s 6 1614.15 -- 6 1512.99 2.43 1590.38 79.37 1581.83 0.84 1480.56 0.11 

S1_4i6s 5 1541.46 -- 5 1397.27 2.80 1449.16 112.21 1463.57 1.67 1387.18 0.83 

S1_6i6s 5 1616.20 -- 5 1520.30 2.56 1440.68 147.01 1531.92 0.88 1427.46 0.29 

S1_8i6s 6 1882.54 -- 6 1604.89 3.22 1728.08 90.28 1673.48 0.94 1597.19 0.32 

S1_4i2s 6 1582.20 -- 6 1582.21 2.38 1589.99 169.66 1615.36 1.38 1504.72 0.57 

S1_4i4s 5 1580.52 -- 5 1460.09 2.60 1588.32 104.33 1597.83 0.59 1552.66 0.06 

S1_4i6s 5 1541.46 -- 5 1397.27 2.81 1456.07 163.19 1858.23 0.64 1769.58 0.07 

S1_4i8s 5 1561.29 -- 5 1397.27 2.92 1497.96 305.04 1486.27 0.47 1437.31 0.09 

 

 

the proposed DGWO-QL algorithm for solving the 

GVRP, extensive computational experiments     

conducted using well-known instances from the 

literature. These instances, originally proposed by 

Erdogan and Miller-Hooks (EMH) [1], encompass a 

diverse range of problem sizes and complexities, 

allowing for a thorough assessment of the 

algorithm's efficacy. 

6.1 Small-sized instances 

In the context of small-sized GVRP instances, 

typically encompassing around 20 customers and 3 

fuel stations, we assessed the performance of the 

proposed DGWO-QL algorithm. This assessment 

was conducted in comparison with three existing 

algorithms: the modified clarke and wright 

savings/distance-based clustering algorithm 

(MCWS/DBCA) [1], the large neighborhood search 

(LNS) [11], and the improved large neighborhood 

search/chance constraint programming (ILNS/CCP) 

[12]. Additionally, we evaluated the DGWO-QL 

against our DGWO algorithm with randomly tuned 

parameters. 

The performance metrics employed in this 

evaluation included the number of vehicles (V), the 

best distance value (BD), and the computational 

time (t) measured in seconds except for 

MCWS/DBCA time was not reported in the work 

[1]. The DGWO-QL algorithm's parameters were 

optimized based on a policy that maximizes the 

expected reward of q-value, with 440 Itr. and 36 

wolf solutions W. 

As demonstrated in Table 2, the DGWO-QL 

algorithm consistently surpassed the other 

algorithms in terms of total distance travelled, 

solving 12 out of 16 instances with lower total 

distances. This indicates the algorithm's proficiency 

in identifying efficient routes for small-sized 

instances. Moreover, the DGWO-QL algorithm 

exhibited competitive computational times, 

underscoring its efficiency in solving the GVRP 

within a practical time frame. The results also 

highlighted the superior performance of the DGWO-

QL over the DGWO with expert-based tuning [13], 

emphasizing the effectiveness of parameter 

optimization in enhancing the convergence speed 

and solution quality of the DGWO for optimization 

problems. 

6.2 Large-sized instances 

For the large-sized instances of the GVRP, 

characterized by varying numbers of customers 

ranging from 111 to 500 and 21 fuel stations, the 

performance of the DGWO-QL algorithm compared 

with existing algorithms: MCWS/DBCA [1], MA 

[9], and multi start local search (MSLS) [10], and 

our DGWO without using QL for parameters 

tunning. The evaluation metrics used were the 

number of vehicles (V), the best distance value (BD), 

and the computational time (t) in minutes, the 

computational time for the MCWS/DBCA algorithm 

is not provided in the referenced work [1]. 

In the large-sized instances of the GVRP, the 

parameters were set to be Itr. of 670 iterations and 

W. of 63 wolf. 

As presented in Table 3, the DGWO-QL 

algorithm exhibited competitive performance for the 

large-sized instances. While it did not always  
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Table 3. The numerical results of the DGWO-QL for EMH large instances 
 MCWS/DBCA  

V. 

MA MSLS DGWO DGWO-QL 

Instance V. BD BD  t BD t BD t BD t 

111c_21s 20 5626.64 17 4770.47 2.01 4774.2 1.87 5037.18 6.07 4084.31 4.17 

111c_22s 20 5610.57 17 4767.21 2.33 4769.77 1.96 5396.58 6.51 4248.00 4.24 

111c_24s 20 5412.48 17 4767.14 3.62 4768.4 2.42 4982.34 6.93 4730.46 4.58 

111c_26s 20 5408.38 17 4767.14 3.54 4769.5 2.57 5159.09 6.73 4189.09 4.27 

111c_28s 20 5331.93 17 4767.97 3.99 4767.97 2.78 4873.44 5.97 4799.20 4.44 

200c_21s 35 10413.59 31 8766.04 9.15 8790.8 10.48 9125.64 9.13 8740.94 7.95 

250c_21s 41 11886.61 37 10,381.21 15.23 10414.45 21.46 10587.38 11.61 10238.32 9.02 

300c_21s 49 14229.92 44 12,206.16 31.84 12,209.94 35.44 15483.26 17.04 12621.27 14.82 

350c_21s 57 16460.30 50 13,931.57 57.99 13,929.89 60.99 14174.69 23.86 12694.58 19.03 

400c_21s 67 19099.04 58 16,412.81 101.27 16,424.29 111.84 16827.56 26.14 14384.93 23.33 

450c_21s 75 21854.17 64 17,931.21 172.06 17,973.93 145.73 18993.47 32.26 16592.72 29.17 

500c_21s 84 24517.08 72 20,198.74 196.43 20,245.13 198.97 20658.93 36.67 19524.63 32.49 

 

 

achieve the best total distance travelled for all the 

instances (10 of 12), it consistently obtained 

solutions that were in close proximity to the best-

known solution values. Moreover, the algorithm 

showcased its efficiency by maintaining competitive 

computational times, indicating its ability to handle 

the increased problem complexity without 

significant time overhead. Additionally, the impact 

of parameter tunning was significant when 

compared to randomly tunned in DGWO where BD 

minimized alongside with the runtime.   

6.3 Performance analysis and discussion 

The proposed DGWO-QL algorithm's 

performance was evaluated against several existing 

approaches, including MCWS/DBCA, LNS, 

ILNS/CCP, MA, MSLS, and our DGWO. The 

results, presented in Tables 2 and 3, demonstrate the 

superior performance of the DGWO-QL algorithm 

in solving both small and large instances of the 

GVRP. The DGWO-QL algorithm consistently 

outperforms the other approaches in terms of the BD 

values. For instance, in the small instance 20c3sU2, 

the DGWO-QL algorithm achieves a BD value of 

1466.65, which is significantly lower than the BD 

values obtained by the other approaches. Similarly, 

in the large instance 111c_21s, the DGWO-QL 

algorithm achieves a BD value of 4084.31, 

outperforming all other approaches. 

However, for instances 20c3sC2, S1_4i4s, 

S1_4i6s, and S1_4i8s in the small-sized category, 

and 111c_28s and 300c_21s in the large-sized 

category, the DGWO-QL algorithm does not 

achieve the lowest BD. This could be attributed to 

the increased complexity of these instances, which 

may require more sophisticated parameter tuning or 

additional exploration and exploitation strategies.  

The superior performance of the DGWO-QL 

algorithm can be attributed to the effective 

combination of the GWO and QL process. The 

GWO utilizes the hunting behaviour of wolves to 

explore and exploit the solution space, while the QL 

process refines the algorithm's parameters, 

enhancing its search capabilities. This cooperative 

approach allows the algorithm to adapt to the 

conditions and constraints imposed by the GVRP, 

leading to high-quality solutions. 

The impact of parameter tuning is also evident in 

the performance of the DGWO-QL algorithm. 

Compared to the DGWO with randomly tuned 

parameters, the DGWO-QL algorithm exhibits 

improved performance, indicating the importance of 

parameter tuning in achieving near-optimal 

solutions. 

The proposed DGWO-QL algorithm also 

addresses several limitations of the existing 

approaches. For instance, the MCWS/DBCA 

approach assumes an unlimited homogeneous fleet 

of alternative fuel vehicles, which may not hold true 

in real-world scenarios. The LNS approach, on the 

other hand, lacks an in-depth analysis of the results. 

The ILNS/CCP approach is limited by the 

computational time required for each instance, 

particularly as the number of scenarios in the 

stochastic environment increases. The MA approach, 

while effective, has limitations that the DGWO-QL 

approach addresses. MA's assumption of an 

unlimited homogeneous fleet of alternative fuel 

vehicles may not align with real-world scenarios, 

limiting its applicability. Additionally, its 

algorithmic generality does not guarantee 

effectiveness for all types of GVRP problems. The 

MSLS approach shows limitations when dealing 

with larger GVRP instances, as it slows down with 

an increasing number of customers. Its efficiency 

and scalability could be limited due to the 
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dependency of its operators' running time on the 

number of routes. 

7. Conclusion 

In this research, we have introduced a novel 

approach to the GVRP by developing the DGWO-

QL algorithm, a customized solution that combines 

the GWO with QL. This unique integration has been 

specifically tailored to address the distinct 

challenges posed by the GVRP, including the 

minimization of fuel consumption and the 

consideration of environmental impacts. Our 

extensive computational experiments have 

demonstrated the superiority of the DGWO-QL 

algorithm over existing methods. The algorithm 

consistently generated high-quality solutions, 

striking a balance between exploration and 

exploitation in the solution space. Importantly, it 

maintained this performance even as the complexity 

of the problem increased, showcasing its scalability 

and robustness. One of the key contributions of our 

study is the effective customization of the GWO 

algorithm for the discrete nature of the GVRP. By 

integrating the 2-opt technique and the concept of 

Hamming distance, the DGWO algorithm was able 

to explore the solution space more effectively. The 

impact of parameter tuning was also a significant 

finding in our study. When compared to a randomly 

tuned DGWO, our best parameters minimized both 

the total distance and the runtime, demonstrating the 

importance of careful parameter selection. Our 

research has significant practical implications. The 

DGWO-QL algorithm has the potential to contribute 

substantially to the reduction of fuel consumption, 

the minimization of environmental impact, and the 

improvement of operational efficiency in the 

transportation industry. Future research could 

further enhance the performance and efficiency of 

the DGWO-QL algorithm by expanding its 

application to other variants of VRP, integrating 

other metaheuristic algorithms or machine learning 

techniques, and incorporating real-time data and 

dynamic factors like traffic congestion or weather 

conditions. 
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