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Abstract: Inverse kinematics plays a significant role in the robotic motion control. The flexible way to formulate the 

inverse kinematics can be achieved by using a neural network. The drawback of the neural network-based inverse 

kinematics is that it has no feedback mechanism to compensate for the remaining error. To improve its performance, 

further development should be conducted. In the design of the robotic motion control for the NAO robot arms, this 

paper proposed a new approach that combines the neural network-based inverse kinematics with the Jacobian. This 

combination yields a closed-loop control system. This control system utilizes the neural network as the feedforward 

controller and the Jacobian as the feedback controller. In particular, the neural network-based inverse kinematics has 

a function to estimate a set of required joint angles for the joint actuators, and the Jacobian function is to compensate 

for the remaining error of the neural network-based inverse kinematics in the estimation of joint angles. By using this 

proposed approach, we obtained more accurate joint angles for controlling the joint actuators. The comparison result 

showed that the averaged MSE for the particle swarm optimization (PSO) was 3.47 x 10-3 rad, 1.19 x 10-3 rad for the 

neural network, and 3.72 x 10-5 rad for the proposed approach. The performance comparison result indicated that our 

proposed approach has a lower averaged MSE than the other ones. Accordingly, the result of this research confirmed 

that our proposed approach can provide more accurate joint angles for controlling the joint actuators such that the 

robot’s end-effector can be driven along the desired path in the cartesian space.  

Keywords: Robotic motion control, NAO robot arms, Inverse kinematics, Neural network, Jacobian, Closed-loop 

control system. 

 

 

1. Introduction 

The articulated robots have received widespread 

attention in modern robot applications. One reason is 

that the articulated robots contain more degrees of 

freedom (DOF) than any other robot such that they 

have more flexibility in the movement. The presence 

of multiple joints in the articulated robots produces a 

number of degrees of freedom. The other reason for 

using the articulated robots is due to their versatility. 

The articulated robots have been extensively applied 

for several industrial applications, such as welding 

[1], painting [2], and assembling [3]. It is important 

to note, the articulated robots are not limited only to 

industrial robots but also to other robots that contain 

multiple joints, including the bio-inspired robot [4], 

surgery robot [5], humanoid robot [6], and so on. 

NAO robot is the kind of articulated robot that 

physically resembles the human body structure due to 

containing a head, two arms, and two legs. This robot 

contains multiple revolute joints, all of which are 

represented by servo motors. These servo motors are 

so-called joint actuators. Physically, this robot is 

available in two models: NAO H25 and NAO H21. 

The main difference between the two is the number 

of joints and the type of end-effector on their arms. 

For each arm, the NAO H25 has five joints and a 

prehensile hand as the end-effector, while the NAO 

H21 has four joints and a non-prehensile hand as the 

end-effector [7, 8]. Accordingly, the robotic arms of 

the NAO H25 have more degrees of freedom than 
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those of the NAO H21. For the other body parts, the 

number of joints and the type of end-effector are the 

same. For that reason, this research will be focused 

on the robotic arms of the NAO H25. 

To design the robotic motion control, we require 

to formulate robot kinematics. The robot kinematics 

relates to the transformation from the joint space to 

the cartesian space and vice versa [9]. Related to the 

robot kinematics, there are two kinematics models: 

forward and inverse kinematics [10]. The forward 

kinematics is concerned with the mapping from the 

joint space, where the control action is executed, to 

the cartesian space, which is the robot’s workspace. 

The forward kinematics is specifically utilized to find 

the robot’s end-effector position and orientation 

based on a specific set of joint variables. In revolute 

joints, the joint variables are expressed in the joint 

angles. In contrast to the forward kinematics, the 

inverse kinematics deals with the mapping from the 

cartesian space to the joint space. The inverse 

kinematics has a function to determine a set of joint 

angles based on the given position and orientation of 

the robot’s end-effector. The joint angles resulted 

from the inverse kinematics are required to control 

the joint actuators. The inverse kinematics has high 

nonlinearity, so it is more complex than the forward 

kinematics.  

In spite of its complexity, the inverse kinematics 

has an important role in the robotic motion control. It 

should be noted that most tasks to be performed by 

robotic arms are specified in the cartesian space, 

whereas the control action is carried out in the joint 

space. That is why we need the inverse kinematics. 

For instance, in the manipulation task [11, 12], the 

robotic arms are supposed to drive their end-effector 

to attain the desired objects and then move them to 

another location in the cartesian space. In this task, 

the desired targets are defined in the cartesian space, 

and the inverse kinematics is required to find a set of 

appropriate joint angles to control the joint actuators 

so that the robot’s end-effector can be directed to the 

desired targets. In addition to the manipulation task, 

path tracking is another task that requires the inverse 

kinematics role. In the task of path tracking [13, 14], 

the robotic arms should be able to move their end-

effector along a predetermined path in the cartesian 

space. This path is typically formed by a sequence of 

desired target points in the cartesian space. In this 

task, the inverse kinematics is also utilized to figure 

out the required joint angles for controlling the joint 

actuators in order that the robot’s end-effector can be 

driven to follow the desired path in the cartesian 

space. Based on the applications, it is clear that the 

inverse kinematics plays a vital role in the planning 

and execution of robotic motions. The analytical and 

computational methods are the two techniques that 

can be applied to solve the inverse kinematics [15].  

The analytical method is principally divided into 

geometric and algebraic methods [16]. In this study 

[17], the geometric method was proposed as means 

of obtaining the inverse kinematics solution of the 

NAO robot arms. Each of the robotic arms consists of 

four revolute joints. The way to obtain the inverse 

kinematics solution is initiated by the decomposition 

of the spatial geometry of the NAO robot arms into 

multiple plane geometries. From these decomposed 

plane geometries, the trigonometric equations can be 

formulated to figure out the joint angles for the joint 

actuators. This method is typically used for simple 

robot structures, such as the planar robots whose joint 

axes are parallel [18, 19] and the spatial robots with a 

few connected links and joints [17]. Hence, the 

research [20, 21] proposed the algebraic method for 

solving the inverse kinematics of the NAO robot arms, 

each of which has five revolute joints. In this case, 

the process of solving the inverse kinematics is 

started with the formulation of forward kinematics. 

The result of forward kinematics is a transformation 

matrix whose elements are trigonometric equations. 

The inverse kinematics solution can be obtained by 

extracting and simplifying trigonometric equations. 

In the other research [22, 23], to avoid the difficulty 

in solving inverse kinematics, they did not involve all 

the joints and preferred to sacrifice one or more joints 

in the robot. Unfortunately, this can reduce the 

number of degrees of freedom in the robot.  

Even though the analytical methods have been 

widely applied to solve the inverse kinematics, there 

are remaining problems with the analytical methods. 

One such remaining problem is multiplicity. This is 

because the analytical methods can produce multiple 

solutions in terms of joint angles. The system should 

be able to choose a single correct one for each joint. 

The mistake of choosing the correct joint angles for 

the joints causes the robot unable to perform desired 

motions. In addition to the multiplicity problem, the 

analytical methods have strict requirements related to 

the robot structure, so they are only applicable to a 

certain robot structure. In accordance with Pieper’s 

criterion [24], the inverse kinematics solution can be 

achieved by the analytical methods when the robotic 

arms have a spherical wrist whose three consecutive 

revolute joint axes intersect at the same point. Most 

industrial robotic arms, such as Denso VP6242 [25], 

Kuka KR Agilus [26], and Motoman GP180 [27], 

conform to that criterion. However, the structure of 

the NAO robot arms does not conform to Pieper’s 

criterion. To meet the criterion, the research [20, 21] 

modified the kinematic chain in the NAO robot arms 

by means of shifting the last joint to the preceding 
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joint position without any change to their physical 

hardware. Otherwise, the analytical solution for the 

inverse kinematics of the NAO robot arms is very 

difficult to achieve.  

In comparison with the analytical methods, the 

computational methods are more flexible for solving 

the inverse kinematics problem because they are not 

dependent on robot structures. One computational 

method to solve the inverse kinematics is Jacobian. 

In this method, the relation between the joint space 

and cartesian space is represented by the Jacobian 

matrix [28]. The inverse kinematics solution can be 

then obtained by the inverse of the Jacobian matrix 

whose operation is conducted until the loss function 

approximates zero. Some previous research used the 

Jacobian to solve the inverse kinematics of the NAO 

robot arms [29-31]. Besides, the alternative method 

for solving the inverse kinematics is metaheuristic 

algorithms. Some metaheuristic algorithms, such as 

the artificial bee colony [32], and firefly algorithm 

[33], particle swarm optimization [34-36], have been 

applied for solving the inverse kinematics problem. 

These algorithms require some random initialization 

to guide their search to obtain an optimal solution. 

The optimal solution for the inverse kinematics can 

be achieved by minimizing their objective function. 

Similar to the previous one, the process of obtaining 

the inverse kinematics solution is iteratively carried 

out until their objective function is close to zero. In 

addition to the aforementioned methods, the inverse 

kinematics problem can be also solved by the neural 

network. The way to build the neural network-based 

inverse kinematics is by the training process, which 

is the process of teaching the neural network with the 

dataset. The neural network is such a data-driven 

modeling technique that it is flexible for modeling the 

inverse kinematics. Because of its flexibility and 

learning ability, the neural network can handle the 

problems of the inverse kinematics, starting from the 

simple robots [37, 38] to the robots with complex 

structures [39-41]. The inverse kinematics solution 

resulted from the neural network is expressed in the 

neural network architecture that defines the mapping 

from the cartesian space to the joint space. 

However, the computational methods mentioned 

above have the remaining problems. In the Jacobian, 

the inverse kinematics solution can be only achieved 

when the Jacobian matrix is invertible. The Jacobian 

matrix is invertible when it is a square matrix whose 

determinant is not zero. The research conducted by 

[29-31] used the pseudoinverse technique as means 

of obtaining the inverse kinematics solution, but this 

technique has no mechanism to handle the problem 

of singularity. In the singular state, the inverse of the 

Jacobian matrix does not exist and thus the obtained 

inverse kinematics solution becomes unacceptable. 

In this state, the robot can lose one or more degrees 

of freedom in the workspace [42]. Consequently, the 

robot is not able to move its end-effector to a certain 

direction in the cartesian workspace. Meanwhile, the 

drawback of the metaheuristic algorithms deals with 

their vulnerability to the starting point. Note that the 

metaheuristic algorithms are stochastic optimization 

that requires some random initializations to obtain an 

optimal solution. It means that their convergence to 

the optimal solution highly depends on the initial 

guess and if the initial guess is not appropriate, these 

algorithms may not find the best solution. Moreover, 

these metaheuristic algorithms are also vulnerable to 

premature convergence, which is a state when their 

objective function becomes trapped in local minima 

[43]. Because of this condition, the obtained inverse 

kinematics solution is not acceptable. Different from 

the previous methods, the neural network can learn 

from the data through the training process. Once the 

training is done, the trained neural network requires 

no iterative processes to find the inverse kinematics 

solution. In addition, the problem such as singularity 

and multiplicity does not exist in the neural network. 

That is why, in the design of robotic motion control, 

many researchers [37-41] preferred to use the neural 

network. It is important to note, the neural network-

based inverse kinematics structure is feedforward so 

it is classified as the open-loop control system. The 

shortcoming of this control system has no feedback 

mechanism to compensate for the remaining error.  

In this paper, we focus on the design of robotic 

motion control for the NAO robot arms. The main 

contributions of this paper are listed as follows: 

(1) The robotic motion control that we designed in 

this research adheres to the closed-loop control 

system, 

(2) In the design of the robotic motion control, we 

proposed a novel approach by using the neural 

network-based inverse kinematics combined 

with the Jacobian, 

(3) The forward kinematics of the NAO robot arms 

that we formulated in this research can be used as 

means of creating the dataset for training the 

neural network-based inverse kinematics, 

(4) The neural network-based inverse kinematics 

that acts as the feedforward controller can yield a 

set of joint angles for the joint actuators, while 

the Jacobian that acts as the feedback controller 

can helpfully decrease the remaining error of the 

neural network-based inverse kinematics, 

(5) Our designed robotic motion control can result in 

more accurate joint angles for controlling the 

joint actuators such that the robot’s end-effector 

can be directed to the desired targets.  
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Table 1. The joint operational ranges 

No Joint Name Range (rad) 

1 LShoulder Pitch -2.0857 to 2.0857 

2 LShoulder Roll -0.3142 to 1.3265 

3 LElbow Yaw -2.0857 to 2.0857 

4 LElbow Roll -1.5446 to -0.0349 

5 LWrist Yaw -1.8238 to 1.8238 

6 RShoulder Pitch -2.0857 to 2.0857 

7 RShoulder Roll -1.3265 to 0.3142 

8 RElbow Yaw -2.0857 to 2.0857 

9 RElbow Roll 0.0349 to 1.5446 

10 RWrist Yaw -1.8238 to 1.8238 

 

The rest of this paper is organized as follows: 

section 2 provides the forward kinematics model of 

the NAO robot arms. Section 3 proposes the design 

of robotic motion control. The results and discussion 

are presented in section 4, and section 5 contains the 

conclusion and direction for future research.  

2. Forward kinematics of NAO robot arms 

In this section, the discussion will be focused on 

forward kinematics. The forward kinematics studies 

the transformation from the joint space, in which the 

control action is carried out, to the cartesian space, 

which is the robot’s workspace. The joint actuators 

that operate in the joint space can be controlled to 

move the robot’s end-effector in the cartesian space. 

As shown in Table 1, the joint actuators in the NAO 

robot arms have different operational ranges, all of 

which operate in radians [7]. By controlling the joint 

actuators, the robot’s end-effector can be directed to 

various locations in the cartesian space. In addition to 

being controllable, these joint actuators are also 

equipped with embedded sensors to read their joint 

angular positions. By using the forward kinematics, 

the information about the joint angular positions can 

be then utilized to find out the robot’s end-effector 

locations in the cartesian space [44]. Furthermore, the 

forward kinematics is commonly utilized as the 

prerequisite in solving the inverse kinematics. The 

forward kinematics plays a crucial role, so it must be 

formulated correctly. 

The forward kinematics is typically represented 

by a single transformation matrix. It can be obtained 

by multiplying a set of transformation matrices, each 

of which is the result of the transformation between 

two adjacent coordinate frames. This transformation 

is started from the base coordinate frame to the end-

effector. The torso located in the center of the NAO 

robot body is defined as the base coordinate frame. 

To denote the transformation between two adjacent 

coordinate frames, we use Denavit-Hartenberg (DH) 

parameters. These parameters are 𝑎𝑖−1, 𝛼𝑖−1, 𝑑𝑖, and  

 

 
Figure. 1 Coordinate frames in the NAO’s left arm 

 

𝜃𝑖. The 𝑎𝑖−1 parameter denotes the distance between 

𝑧𝑖−1 axis and 𝑧𝑖 axis measured along 𝑥𝑖−1 axis, while 

the 𝛼𝑖−1 parameter is the angle between 𝑧𝑖−1 axis and 

𝑧𝑖  axis measured about 𝑥𝑖−1  axis. The 𝑑𝑖  parameter 

represents the distance between 𝑥𝑖−1 axis and 𝑥𝑖 axis 

measured along 𝑧𝑖 axis, and then the 𝜃𝑖 parameter is 

the angle between 𝑥𝑖−1  axis and 𝑥𝑖  axis measured 

about 𝑧𝑖 axis. By using these parameters, the general 

transformation matrix equation resulted from the 

transformation between two neighboring coordinate 

frames can be defined as [42] 

 

𝑇𝑖
𝑖−1 = 𝑅𝑋(𝛼𝑖−1)𝐷𝑋(𝑎𝑖−1)𝑅𝑍(𝜃𝑖)𝐷𝑍(𝑑𝑖)     (1) 

𝑇𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1

𝑠𝜃𝑖  𝑐𝛼𝑖−1 𝑐𝜃𝑖  𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑑𝑖  𝑠𝛼𝑖−1

𝑠𝜃𝑖 𝑠𝛼𝑖−1 𝑐𝜃𝑖  𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑑𝑖  𝑐𝛼𝑖−1

0 0 0 1

] 

 

where 𝑠 and 𝑐 denote 𝑠𝑖𝑛 and 𝑐𝑜𝑠, respectively.  

2.1 Forward kinematics of NAO’s left arm  

The NAO’s left arm is physically composed of a 

set of rigid links connected by five joint actuators. 
The connected rigid links by the joint actuators form 

a kinematic chain with the NAO’s left hand as the 

end-effector. To formulate the forward kinematics of 

the NAO’s left arm, we require to initially attach a set 

of coordinate frames from the torso to the end-

effector. The attachment of these coordinate frames 

is performed at the zero posture: the standing NAO 

robot with straight legs and arms pointing forward. 

All of the coordinate frames that we attached to the 

NAO’s left arm can be seen in Fig. 1.  

Based on Fig. 1, the coordinate frame located in 

the torso has three axes, where the 𝑥-axis is pointing 

forward, the 𝑦-axis is pointing to the left, and the 𝑧-

axis is vertical. Then to reach its adjacent coordinate 

frame, the current coordinate frame located in the 

torso should be translated along the shoulder offset in  
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Table 2. DH parameters for the NAO’s left arm 

Frame 𝜽𝒊 𝜶𝒊−𝟏 𝒂𝒊−𝟏 𝒅𝒊 

LShoulder Pitch 𝜃1 −𝜋/2 0 0 

LShoulder Roll 𝜃2

+ 𝜋/2 

𝜋/2 0 0 

LElbow Yaw 𝜃3 𝜋/2 𝑙3 𝑙4 

LElbow Roll 𝜃4 −𝜋/2 0 0 

LWrist Yaw 𝜃5 𝜋/2 0 𝑙5 

 

 
Figure. 2 Coordinate frames in the NAO’s right arm 

 

the direction of the 𝑦0-axis (𝑙1), and then followed by 

the translation along the shoulder offset in the 

direction of the 𝑧0-axis (𝑙2). This transformation can 

be represented as 

 

𝑇0
𝑇𝑠 = [

1 0 0 0
0 1 0 𝑙1
0 0 1 𝑙2
0 0 0 1

]   (2) 

 

The transformation should be then continued to 

the other coordinate frames, from the shoulder pitch 

to the wrist yaw. Such transformations produce a set 

of DH parameters, as presented in Table 2.  

By plugging the DH parameters into the general 

transformation matrix Eq. (1), we can obtain a set of 

transformation matrices as follows: 

 

𝑇1
0 = [

𝑐𝑜𝑠 𝜃1 −𝑠𝑖𝑛 𝜃1 0 0
0 0 1 0

−𝑠𝑖𝑛 𝜃1 −𝑐𝑜𝑠 𝜃1 0 0
0 0 0 1

]  (3) 

 

𝑇2
1 = [

−𝑠𝑖𝑛 𝜃2 −𝑐𝑜𝑠 𝜃2 0 0
0 0 −1 0

𝑐𝑜𝑠 𝜃2 −𝑠𝑖𝑛 𝜃2 0 0
0 0 0 1

]  (4) 

 

𝑇3
2 = [

𝑐𝑜𝑠 𝜃3 −𝑠𝑖𝑛 𝜃3 0 𝑙3
0 0 −1 −𝑙4

𝑠𝑖𝑛 𝜃3 𝑐𝑜𝑠 𝜃3 0 0
0 0 0 1

]  (5) 

 

𝑇4
3 = [

𝑐𝑜𝑠 𝜃4 −𝑠𝑖𝑛 𝜃4 0 0
0 0 1 0

−𝑠𝑖𝑛 𝜃4 −𝑐𝑜𝑠 𝜃4 0 0
0 0 0 1

]  (6) 

 

𝑇5
4 = [

𝑐𝑜𝑠 𝜃5 −𝑠𝑖𝑛 𝜃5 0 0
0 0 −1 −𝑙5

𝑠𝑖𝑛 𝜃5 𝑐𝑜𝑠 𝜃5 0 0
0 0 0 1

]  (7) 

 

To reach the left hand, the coordinate frame 

located in the wrist yaw must be initially aligned by 

using a clockwise rotation on the 𝑥5-axis by 𝜋/2 and 

a clockwise rotation on the 𝑧5 -axis by 𝜋/2.  This 

aligned coordinate frame should be then translated 

along the hand offset in the direction of the 𝑥6-axis 

(𝑙6), and then followed by a translation along the hand 

offset in the opposite direction of the 𝑧6 -axis (𝑙7). 

This transformations can be represented as 

 

𝑇𝐿𝐻
5 = [

0 1 0 0
0 0 1 −𝑙7
1 0 0 𝑙6
0 0 0 1

]   (8) 

 

The forward kinematics of the NAO’s left arm 

can be eventually obtained by multiplying a set of the 

transformation matrices. 

 

𝑇𝐿𝐻
𝑇𝑠 = 𝑇0

𝑇𝑠 𝑇1
0 𝑇2

1 𝑇3
2 𝑇4

3 𝑇5
4 𝑇𝐿𝐻

5                 (9) 

2.2 Forward kinematics of NAO’s right arm 

The NAO’s right arm contains serial rigid links 

connected by five joint actuators. This configuration 

forms a kinematic chain with the NAO’s right hand 

as the end-effector. The kinematics structure of the 

right arm in a humanoid robot is typically symmetric 

to that of the left arm. But, the kinematics structure of 

the NAO robot arms is not fully symmetric since the 

physical arrangement between the left shoulder pitch 

and right shoulder pitch joints is not reflected to each 

other. To formulate the forward kinematics of the 

NAO’s right arm, the first step is to attach a set of 

coordinate frames from the torso to the end-effector, 

as depicted in Fig. 2. 

The coordinate frame attachment is started from 

the torso. To reach its neighboring coordinate frame, 

the coordinate frame in the torso must be translated 

along the shoulder offset in the opposite direction of 

the 𝑦0-axis (𝑙1) and then followed by a translation 

along the shoulder offset in the direction of the 𝑧0-

axis (𝑙2). This transformation can be represented as   
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Table 3. DH parameters for the NAO’s right arm 

Frame 𝜽𝒊 𝜶𝒊−𝟏 𝒂𝒊−𝟏 𝒅𝒊 

RShoulder 

Pitch 

𝜃1 −𝜋/2 0 0 

RShoulder Roll 𝜃2

− 𝜋/2 

𝜋/2 0 0 

RElbow Yaw 𝜃3 −𝜋/2 𝑙3 𝑙4 

RElbow Roll 𝜃4 𝜋/2 0 0 

RWrist Yaw 𝜃5 −𝜋/2 0 𝑙5 

 

𝑇0
𝑇𝑠 = [

1 0 0 0
0 1 0 −𝑙1
0 0 1 𝑙2
0 0 0 1

]                (10) 

 

Then the sequential transformation between two 

adjacent coordinate frames from the shoulder pitch to 

the wrist yaw can yield a set of DH parameters, as 

shown in Table 3. 

By feeding the DH parameters into the general 

transformation matrix Eq. (1), we can generate a set 

of transformation matrices as follows: 

 

𝑇1
0 = [

𝑐𝑜𝑠 𝜃1 −𝑠𝑖𝑛 𝜃1 0 0
0 0 1 0

−𝑠𝑖𝑛 𝜃1 −𝑐𝑜𝑠 𝜃1 0 0
0 0 0 1

]        (11) 

 

𝑇2
1 = [

𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 0 0
0 0 −1 0

−𝑐𝑜𝑠 𝜃2 𝑠𝑖𝑛 𝜃2 0 0
0 0 0 1

]         (12) 

 

𝑇3
2 = [

𝑐𝑜𝑠 𝜃3 −𝑠𝑖𝑛 𝜃3 0 𝑙3
0 0 1 𝑙4

−𝑠𝑖𝑛 𝜃3 −𝑐𝑜𝑠 𝜃3 0 0
0 0 0 1

]       (13) 

 

𝑇4
3 = [

𝑐𝑜𝑠 𝜃4 −𝑠𝑖𝑛 𝜃4 0 0
0 0 −1 0

𝑠𝑖𝑛 𝜃4 𝑐𝑜𝑠 𝜃4 0 0
0 0 0 1

]         (14) 

 

𝑇5
4 = [

𝑐𝑜𝑠 𝜃5 −𝑠𝑖𝑛 𝜃5 0 0
0 0 1 𝑙5

−𝑠𝑖𝑛 𝜃5 −𝑐𝑜𝑠 𝜃5 0 0
0 0 0 1

]       (15) 

 

To reach the right hand, the current coordinate 

frame located in the right wrist yaw must be initially 

aligned by using a counterclockwise rotation on the 

𝑥5-axis by 𝜋/2 and a counterclockwise rotation on 

the 𝑧5 -axis by 𝜋/2.  This aligned coordinate frame 

should be then translated along the hand offset in the 

direction of the 𝑥6 -axis ( 𝑙6 ) and followed by the 

translation along the hand offset in the opposite 

direction of the 𝑧6 -axis (𝑙7) . Such transformations 

can be represented as 

 

𝑇𝑅𝐻
5 = [

0 −1 0 0
0 0 −1 𝑙7
1 0 0 𝑙6
0 0 0 1

]                          (16) 

 

The forward kinematics of the NAO’s right arm 

can be generated by the multiplication of a set of the 

transformation matrices. 

 

𝑇𝑅𝐻
𝑇𝑠 = 𝑇0

𝑇𝑠 𝑇1
0 𝑇2

1 𝑇3
2 𝑇4

3 𝑇5
4 𝑇𝑅𝐻

5                 (17) 

2.3 Forward kinematics verification 

Verification needs to be performed to reveal the 

correctness of the forward kinematics of the NAO’s 

arms. As mentioned earlier, the result of the forward 

kinematics is represented in a transformation matrix. 

This transformation matrix can be decomposed into 

the translation matrix and rotation matrix. The 3×1 

translation matrix denotes the end-effector position, 

and the 3×3 rotation matrix denotes the end-effector 

orientation. The end-effector position is defined as 

the position of the NAO’s hands with respect to the 

torso, and the end-effector orientation is referred to 

as the orientation of the NAO’s hands frame relative 

to the torso’s coordinate frame. 

As previously mentioned, the attachment of the 

coordinate frames is performed at the zero posture. It 

is such a posture when all of the joint angles in the 

NAO robot are zero radians. By plugging these joint 

angles into the forward kinematics Eq. (9) and Eq. 

(17), we can obtain the transformation matrix whose 

elements contain the position and orientation of the 

end-effector. In this verification, the transformation 

matrix resulted from the forward kinematics should 

yield the end-effector position and orientation that 

corresponds to the NAO zero posture (see Fig. 3). 

The verification result reveals that the position of 

the end-effector in the transformation matrix Eq. (18-

19) is equal to the position of the end-effector in the 

NAO zero posture. Additionally, the rotational 

identity matrix indicates that the coordinate frame of 

the NAO’s hands aligns with the torso’s coordinate 

frame. It indicates that the forward kinematics of the 

NAO robot arms has been formulated correctly. 

  

𝑇𝐿𝐻
𝑇𝑠 = [

𝑟11 𝑟12 𝑟13 𝑃𝑥

𝑟21 𝑟22 𝑟23 𝑃𝑦

𝑟31 𝑟32 𝑟33 𝑃𝑧

0 0 0 1

 ] = [

1 0 0 218.7
0 1 0 113
0 0 1 87.69
0 0 0 1

 ] 

(18) 
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(a) 

 
(b) 

Figure. 3 NAO zero posture: (a) front view, (b) top view 

 

𝑇𝑅𝐻
𝑇𝑠 = [

𝑟11 𝑟12 𝑟13 𝑃𝑥

𝑟21 𝑟22 𝑟23 𝑃𝑦

𝑟31 𝑟32 𝑟33 𝑃𝑧

0 0 0 1

 ] = [

1 0 0 218.7
0 1 0 −113
0 0 1 87.69
0 0 0 1

 ] 

(19) 

3. The design of robotic motion control 

3.1 Neural network-based inverse kinematics 

The neural network has the ability to learn from 

the data, so its application can be addressed on any 

problem, including the inverse kinematics problem. 

In this research, the inverse kinematics problem will 

be solved by the neural network. To build the neural 

network-based inverse kinematics, we require a set of 

data. The dataset used in this research originates from 

a number of robotic poses. It should be known that 

these robotic poses are generated from various 

configurations of the joints in the NAO robot arms. 

Therefore, by extracting these robotic poses, we can 

obtain the data containing a set of the joint angles: 

shoulder pitch (𝜃1), shoulder roll (𝜃2), elbow yaw (𝜃3), 

elbow roll (𝜃4), and wrist yaw (𝜃5). 

 

 

Figure. 4 Neural network-based inverse kinematics 

 

As depicted in Fig. 4, the process of generating 

the dataset can be then continued by plugging a set of 

the joint angles into the forward kinematics Eq. (9) 

and Eq. (17). As a result, we obtain the data that 

contains the end-effector position and orientation in 

the cartesian workspace. This data is represented in 

the transformation matrix, in which the end-effector 

position is denoted as [𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧] and the end-effector 

orientation is denoted as {[𝑟11, 𝑟12, 𝑟13], [ 𝑟21, 𝑟22, 𝑟23], 

[ 𝑟31, 𝑟32, 𝑟33]}. However, among nine rotation matrix 

elements, only three elements are independent [45]. 

It means that the rotation matrix gives a redundant 

description for the end-effector orientation. Instead, 

we used the rotation vectors [𝑅𝑥, 𝑅𝑦, 𝑅𝑧] to describe 

the end-effector orientation. To convert the rotation 

matrix to the rotation vectors, we use the following 

equations [46] 

 

𝜙 = arccos (
𝑟11+𝑟22+𝑟33−1

2
)              (20) 

 

[

𝑎𝑥

𝑎𝑦

𝑎𝑧

] =
1

2 sin𝜙
[

𝑟32 − 𝑟23

𝑟13 − 𝑟31

𝑟21 − 𝑟12

]                  (21) 

 

[

𝑅𝑥

𝑅𝑦

𝑅𝑧

] = 𝜙 [

𝑎𝑥

𝑎𝑦

𝑎𝑧

]                                  (22) 

 

The dataset that we generated to build the neural 

network-based inverse kinematics consists of 10000 

input-output pairs. The input parameters are the end-

effector position and orientation [𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧 , 𝑅𝑥, 𝑅𝑦 , 𝑅𝑧], 

while the output parameters are a set of joint angles 

[𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5]. This dataset will be split into three 

separate datasets: training dataset, validation dataset, 

and testing dataset. In this case, 60% of the data will 

be allocated for the training dataset, 20% for the 

validation dataset, and the remaining 20% for the 

testing dataset. Each dataset has a different function. 

The training dataset is utilized for training the neural 

network. The validation dataset is used to validate the 

neural network performance during the training 
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process. The obtained information from this process 

helps us in tuning and choosing the neural network’s 

hyperparameters. The testing dataset is another set of 

data used to test how well the performance of the 

trained neural network. Contrary to the training and 

validation datasets, the testing dataset contains data 

that it has never seen during the training process. 

These datasets must be normalized by using Eq. (23) 

before being fed into the neural network. 

 

𝑧 =
𝑥−𝜇

𝜎
                                                    (23) 

 

where 𝑧 denotes the normalized data, 𝑥 is the feature 

data, 𝜇 is the mean of the feature data, and 𝜎 is the 

standard deviation. 

Based on the input and output parameters in the 

dataset, the neural network-based inverse kinematics 

will contain six neurons in the input layer and five 

neurons in the output layer. In between the input and 

output layers, there are hidden layers. Through the 

training process, we can adjust the neural network’s 

hyperparameters to find the appropriate number of 

hidden layers and their neurons. During the training 

process, the training dataset and validation dataset 

should be fed into the neural network. The training 

should be conducted until both the training loss and 

validation loss functions converge to zero [47]. 

The neural network architecture for the inverse 

kinematics is a fully connected neural network. Note 

that the neural network-based inverse kinematics has 

such a feedforward structure that it is classified as 

feedforward controller. Fig. 5 shows the relationship 

between the input and output in this control system. 

The control system whose outputs is not involved in 

the control action is known as the open-loop control 

system [48]. The drawback of this control system is 

that it has no feedback mechanism to overcome the 

remaining error in the estimation of joint angles.  

3.2 Neural network-based inverse kinematics 

combined with Jacobian  

For achieving better performance, we designed a 

robotic motion control that conforms to the closed-

loop control system. As shown in Fig. 6, this robotic 

motion control is established by the neural network-

based inverse kinematics combined with Jacobian. 

The neural network-based inverse kinematics acts as 

the feedforward controller, while the Jacobian acts as 

the feedback controller. In particular, the neural 

network-based inverse kinematics has a function to 

generate a set of joint angles (𝜃) based on the given 

position and orientation of the end-effector (𝑥). The 

inclusion of the Jacobian in the design of the robotic  

 

 
Figure. 5 Open-loop control system 

 

 
Figure. 6 Closed-loop control system 

 

motion control is to minimize the remaining error of 

the neural network-based inverse kinematics.  

In this way, we can generate more accurate joint 

angles for controlling the joint actuators. Note that 

this control system is principally made up of two 

different controllers, so this can be classified as a 

hybrid control system. 

Contrary to the open-loop control system, this 

control system has a feedback signal. This feedback 

signal contains data from the output that is sent back 

to be compared with the reference input. To provide 

the feedback signal, a set of the joint angles resulted 

from the neural network-based inverse kinematics 

should be initially fed into the forward kinematics to 

obtain the actual position and orientation of the end-

effector (𝑥0). Then by comparing it with the desired 

position and orientation of the end-effector (𝑥), we 

can find its difference (Δ𝑥 = 𝑥 − 𝑥0). This difference 

will be then utilized to obtain the corrective action. 

This corrective action is represented in terms of the 

displacement of the joint angles (Δ𝜃). Note that the 

relationship between the displacement of the joint 

angles (Δ𝜃) and the displacement of the end-effector 

position and orientation (Δ𝑥) can be defined as 

 

Δ𝑥 = 𝐽 Δ𝜃                                                    (24) 
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Δ𝜃1

Δ𝜃2

Δ𝜃3

Δ𝜃4

Δ𝜃5]
 
 
 
 

 

 

Thereafter, the corrective action can be obtained 

by means of calculating the displacement of the joint 

angles (Δ𝜃). This can be conducted by inverting the 

Jacobian matrix. To avoid the singularity, we use a 

technique called damped least squares (DLS) [49], as 

in the following equation  

 

Δ𝜃 = 𝐽𝑇(𝐽𝐽𝑇 + 𝜆2𝐼)−1Δ𝑥                          (25) 

 

where 𝐽 denotes the Jacobian matrix, 𝐼 is the identity 

matrix, 𝐽𝑇 is the Jacobian matrix transpose, and 𝜆 is a 

non-zero damping constant. 

Eventually, the required joint angles for driving 

the robot’s end-effector to the desired targets can be 

obtained by  

 

𝜃 = 𝜃 + Δ𝜃                                             (26) 

4. Result and discussion 

4.1 Neural network architecture for inverse 

kinematics 

It is important to note that the dataset to build a 

neural network-based inverse kinematics comprises 

the input-output pairs. In this case, the input data is 

the position and orientation of the end-effector in the 

cartesian space, while the output data is a set of joint 

angles whose operation is in the joint space. Due to 

containing the input-output pairs, this is classified as 

supervised learning. The objective of this learning is 

to find the neural network architecture that defines 

the relationship model between the input and output. 

This relationship model is called the neural network-

based inverse kinematics. The experiment has been 

conducted to find the neural network-based inverse 

kinematics.  

From the experimental result, we can obtain the 

neural network architecture for inverse kinematics, as 

depicted in Fig. 7. In this architecture, this neural  

 

 
Figure. 7 Neural network architecture for inverse 

kinematics 

 
Table 4. Hyperparameters 

Hyperparameters Value 

Learning rate 0.001 

Epoch 2000 

Optimizer Adam 

Loss function MSE 

 

network-based inverse kinematics has six neurons in 

the input layer and five neurons in the output layer. 

Between the input and output layers, there are three 

hidden layers, each of which contains 48 neurons, 

120 neurons, and 60 neurons. In the last two hidden 

layers, we used the dropout whose value is 0.05. The 

activation function we used for the hidden layers is 

sigmoid and for the output layer is linear activation. 

The linear activation is employed in the output layer 

because this is a regression problem whose outputs 

are continuous values, not discrete labels as in the 

classification problem. In addition, the other neural 

network’s hyperparameters can be seen in Table 4. 

4.2 The validation of the trained neural network-

based inverse kinematics 

The neural network-based inverse kinematics is a 

fundamental aspect in the design of robotic motion 

control, so its performance must be validated. In this 

validation, we will check whether this trained neural 

network suffers from overfitting. Overfitting is such 

a condition where the neural network performs well 

on the training data but cannot perform satisfactorily 

on other data. It is because the neural network tends 

to memorize the training data instead of learning from 

it. Consequently, the neural network is unable to give 

accurate predictions and cannot perform well on new 

data. Overfitting can be identified during the training 

process. It can be conducted by comparing the 

training loss and the validation loss. The trained 

neural network is said not to be overfitting when the  
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(a) 

 
(b) 

Figure. 8 Neural network validation: (a) NAO’s left arm, 

and (b) NAO’s right arm 

 

training loss and the validation loss converge to zero 

[47]. Fig. 8 shows that both the training loss and the 

validation loss synchronously converge to zero. This 

means that our trained neural network-based inverse 

kinematics does not suffer from overfitting. 

4.3 The performance comparison of three 

different approaches 

In this research, the performance of the designed 

robotic motion control by three different approaches 

will be compared in terms of providing a set of joint 

angles for the joint actuators. The first approach is 

particle swarm optimization (PSO), as conducted by 

this research [34-36]. Particle swarm optimization is 

one such metaheuristic algorithm that is powerful and 

easy to implement since it has fewer parameters 

compared to the other metaheuristic algorithms. In 

this approach, a swarm is a collection of particles in 

a search space. Each particle in a swarm represents a 

candidate solution, in this case, a set of joint angles. 

Initially, these joint angles are randomly determined 

for each particle. By feeding the joint angles into the 

forward kinematics, we can calculate the actual end-

effector locations of each particle. Each particle has a 

cost function calculated via the distance between the 

desired and actual end-effector locations. Once we 

have the cost function of all the particles, we can then 

sort them and find the minimum one among all the 

particles. This process should be conducted until the 

distance between the desired and actual end-effector 

locations converges to zero. As explained in [36], the 

particle with the lowest cost function is the optimal 

solution for the inverse kinematics. 

Meanwhile, the second approach is the neural 

network-based inverse kinematics. Because of its 

learning ability, most research used this approach 

[37-41]. Different from this approach, the approach 

we proposed in this research is the neural network-

based inverse kinematics combined with Jacobian. 

To demonstrate their performance, a set of desired 

targets to be reached by the robot’s end-effector are 

given in the cartesian space, as depicted in Fig. 10. 

This data is taken from a few data collections in the 

testing dataset. In this demonstration, the designed 

robotic motion control by the three approaches is 

supposed to generate a set of joint angles required to 

place the robot’s end-effector to the desired targets. 

The joint paths resulted from the continuous motion 

from one set of joint angles to another can be seen in 

Fig. 9. The performance comparison results showed 

that the designed robotic motion control by using our 

proposed approach can provide more accurate joint 

angles than the other ones. Therefore, the joint paths 

obtained from the continuous motion from one set of 

joint angles to another are closer to the desired joint 

paths. 

In addition to comparing their joint paths, we also 

measure their mean squared error (MSE). It is 

necessary to reveal which robotic motion control has 

the lowest error in the estimation of the joint angles. 

Table 5 shows the performance comparison between 

three different approaches. Based on the comparison 

results, the averaged MSE for the particle swarm 

optimization was 3.47 x 10-3 rad and 1.19 x 10-3 rad 

for the neural network. It indicates that the neural 

network has better performance than particle swarm 

optimization because it has a lower averaged MSE. 

The particle swarm optimization is such a stochastic 

optimization that needs some random initializations, 

so its convergence to the desired solution is highly 

dependent on the initial guess. This approach cannot 

find an optimal solution when the initial guess is not 

appropriately selected. That is why most researchers 

preferred to use the neural network for solving the 

inverse kinematics problem. Nevertheless, compared 

with the neural network-based inverse kinematics, 

our proposed approach has a lower averaged MSE 

(3.72 x 10-5). This is because our proposed approach 

has the feedback mechanism to compensate for the 

remaining error. The presence of the Jacobian in our  
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                                                   (i)                                                                                              (j) 

Figure. 9 Joint paths: (a) the left shoulder pitch, (b) the right shoulder pitch, (c) the left shoulder roll, (d) the right 

shoulder roll, (e) the left elbow yaw, (f) the right elbow yaw, (g) the left elbow roll, (h) the right elbow roll, (i) the left 

wrist yaw, and (j) the right wrist yaw 

 

Table 5. Performance comparison result 

No Joint Name 
MSE (rad) 

PSO [36] Neural Network [41] Proposed Approach 

1. LShoulder Pitch 1.52 x 10-3 6.59 x 10-4 3.14 x 10-5 

2. LShoulder Roll 3.41 x 10-3 9.44 x 10-4 2.88 x 10-5 

3. LElbow Yaw 4.03 x 10-3 1.42 x 10-3 4.55 x 10-5 

4. LElbow Roll 4.59 x 10-3 2.60 x 10-4 3.23 x 10-5 

5. LWrist Yaw 2.72 x 10-3 1.03 x 10-3 4.61 x 10-5 

6. RShoulder Pitch 7.05 x 10-4 9.93 x 10-4 3.17 x 10-5 

7. RShoulder Roll 1.99 x 10-3 9.91 x 10-4 3.04 x 10-5 

8. RElbow Yaw 4.53 x 10-3 2.25 x 10-3 4.72 x 10-5 

9. RElbow Roll 5.52 x 10-3 7.56 x 10-4 3.18 x 10-5 

10. RWrist Yaw 5.72 x 10-3 2.68 x 10-3 4.65 x 10-5 

The Averaged MSE 3.47 x 10-3 1.19 x 10-3 3.72  10-5 

 

proposed approach is to reduce the remaining error of 

the neural network. As a result, we obtained more 

accurate joint angles for the joint actuators. From 

Table 5, the performance comparison results stated 

that, among three different approaches, our proposed 

approach has the smallest averaged MSE. 

4.4 The effectiveness of the proposed approach 

In this research, the demonstration was carried 

out with three different approaches. In the previous 

section, we demonstrated how the designed robotic 

motion control by the three different approaches can 

generate the joint paths as a result of the continuous 

motion from one set of the joint angles to another. In 

this section, we will demonstrate whether a set of the 

obtained joint angles can place the robot’s end-

effector to the desired targets. It should be noted that 

a series of the desired targets to be reached by the 

robot’s end-effector can form the cartesian paths, as 

illustrated in Fig. 10. In a simple way, to illustrate the 

robot’s end-effector movement in achieving the 

desired targets, we can feed a set of these obtained 

joint angles into the forward kinematics Eq. (9) and 

Eq. (17). By doing so, we can obtain the data points 

containing the end-effector locations in the cartesian 

space. By connecting these data points sequentially, 

we can visualize the cartesian path resulted from the 

robot’s end-effector movement. Then, by comparing 

the cartesian paths obtained from the three different 

approaches, we can notice how well they perform. 

Through this demonstration, we can find out which 

one performs better. 

From the simulation results in Fig. 10, although 

the designed robotic motion control by the particle 

swarm optimization (PSO) and the neural network-

based inverse kinematics can generate a set of the 

joint angles to drive the robot’s end-effector in the 

cartesian space, the cartesian paths resulted from the 

movement of the robot’s end-effector still deviated 

from the desired path. It is because the required joint 

angles to drive the robot’s end-effector are not so 

close to the desired targets. Therefore, for obtaining 

better performance, we designed the robotic motion 

control by using the neural network-based inverse 

kinematics integrated with Jacobian. The inclusion of  



Received:  June 16, 2023.     Revised: July 26, 2023.                                                                                                        535 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.45 

 

 
(a) 

 
(b) 

Figure. 10 Cartesian path resulted from the end-effector movement: (a) the left arm and (b) the right arm 

 

the Jacobian in the design of the robotic motion 

control can helpfully minimize the remaining error of 

the neural network-based inverse kinematics, thus 

producing more accurate joint angles. As a result, the 

cartesian path resulted from the movement of the 

robot’s end-effector is very close to the desired path. 

In addition to possessing a lower averaged MSE, the 

cartesian path obtained from our proposed approach 

is closer to the desired target path. It confirmed the 

effectiveness of our proposed approach.  

4 Conclusion 

This paper proposed a new approach to enhance 

the performance of the designed robotic motion 

control for the NAO robot arms. In the design of the 

robotic motion control, the approach we proposed in 

this research is the neural network-based inverse 

kinematics combined with the Jacobian. In this case, 

the neural network-based inverse kinematics plays as 

the feedforward controller whose function is to 

estimate a set of joint angles, whereas the Jacobian 

that acts as the feedback controller is responsible for 

reducing the remaining error of the neural network-

based inverse kinematics in the estimation of the joint 

angles. In this way, we can obtain more precise joint 

angles for controlling the joint actuators such that the 

robot’s end-effector can be driven along the desired 

path in the cartesian space. According to the 

performance comparison results, among the three 

different approaches, our proposed approach has a 

better performance due to the fact that it has a lower 

averaged MSE in the estimation of the joint angles. 

For further research, we will design and develop the 
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robotic motion control for cooperative multi-agent 

systems.  
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