
Received: June 16, 2023. Revised: July 26, 2023. 523

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

An Improved Performance of the Designed Robotic Motion Control for NAO

Robot Arms Using Hybrid Neural Network-Jacobian

Arif Nugroho1 Eko Mulyanto Yuniarno1,2 Mauridhi Hery Purnomo1,2,3*

1Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
2Department of Computer Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia

3University Center of Excellence on Artificial Intelligence for Healthcare and Society (UCE AIHeS), Indonesia

* Corresponding author’s Email: hery@ee.its.ac.id

Abstract: Inverse kinematics plays a significant role in the robotic motion control. The flexible way to formulate the

inverse kinematics can be achieved by using a neural network. The drawback of the neural network-based inverse

kinematics is that it has no feedback mechanism to compensate for the remaining error. To improve its performance,

further development should be conducted. In the design of the robotic motion control for the NAO robot arms, this

paper proposed a new approach that combines the neural network-based inverse kinematics with the Jacobian. This

combination yields a closed-loop control system. This control system utilizes the neural network as the feedforward

controller and the Jacobian as the feedback controller. In particular, the neural network-based inverse kinematics has

a function to estimate a set of required joint angles for the joint actuators, and the Jacobian function is to compensate

for the remaining error of the neural network-based inverse kinematics in the estimation of joint angles. By using this

proposed approach, we obtained more accurate joint angles for controlling the joint actuators. The comparison result

showed that the averaged MSE for the particle swarm optimization (PSO) was 3.47 x 10-3 rad, 1.19 x 10-3 rad for the

neural network, and 3.72 x 10-5 rad for the proposed approach. The performance comparison result indicated that our

proposed approach has a lower averaged MSE than the other ones. Accordingly, the result of this research confirmed

that our proposed approach can provide more accurate joint angles for controlling the joint actuators such that the

robot’s end-effector can be driven along the desired path in the cartesian space.

Keywords: Robotic motion control, NAO robot arms, Inverse kinematics, Neural network, Jacobian, Closed-loop

control system.

1. Introduction

The articulated robots have received widespread

attention in modern robot applications. One reason is

that the articulated robots contain more degrees of

freedom (DOF) than any other robot such that they

have more flexibility in the movement. The presence

of multiple joints in the articulated robots produces a

number of degrees of freedom. The other reason for

using the articulated robots is due to their versatility.

The articulated robots have been extensively applied

for several industrial applications, such as welding

[1], painting [2], and assembling [3]. It is important

to note, the articulated robots are not limited only to

industrial robots but also to other robots that contain

multiple joints, including the bio-inspired robot [4],

surgery robot [5], humanoid robot [6], and so on.

NAO robot is the kind of articulated robot that

physically resembles the human body structure due to

containing a head, two arms, and two legs. This robot

contains multiple revolute joints, all of which are

represented by servo motors. These servo motors are

so-called joint actuators. Physically, this robot is

available in two models: NAO H25 and NAO H21.

The main difference between the two is the number

of joints and the type of end-effector on their arms.

For each arm, the NAO H25 has five joints and a

prehensile hand as the end-effector, while the NAO

H21 has four joints and a non-prehensile hand as the

end-effector [7, 8]. Accordingly, the robotic arms of

the NAO H25 have more degrees of freedom than

mailto:hery@ee.its.ac.id

Received: June 16, 2023. Revised: July 26, 2023. 524

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

those of the NAO H21. For the other body parts, the

number of joints and the type of end-effector are the

same. For that reason, this research will be focused

on the robotic arms of the NAO H25.

To design the robotic motion control, we require

to formulate robot kinematics. The robot kinematics

relates to the transformation from the joint space to

the cartesian space and vice versa [9]. Related to the

robot kinematics, there are two kinematics models:

forward and inverse kinematics [10]. The forward

kinematics is concerned with the mapping from the

joint space, where the control action is executed, to

the cartesian space, which is the robot’s workspace.

The forward kinematics is specifically utilized to find

the robot’s end-effector position and orientation

based on a specific set of joint variables. In revolute

joints, the joint variables are expressed in the joint

angles. In contrast to the forward kinematics, the

inverse kinematics deals with the mapping from the

cartesian space to the joint space. The inverse

kinematics has a function to determine a set of joint

angles based on the given position and orientation of

the robot’s end-effector. The joint angles resulted

from the inverse kinematics are required to control

the joint actuators. The inverse kinematics has high

nonlinearity, so it is more complex than the forward

kinematics.

In spite of its complexity, the inverse kinematics

has an important role in the robotic motion control. It

should be noted that most tasks to be performed by

robotic arms are specified in the cartesian space,

whereas the control action is carried out in the joint

space. That is why we need the inverse kinematics.

For instance, in the manipulation task [11, 12], the

robotic arms are supposed to drive their end-effector

to attain the desired objects and then move them to

another location in the cartesian space. In this task,

the desired targets are defined in the cartesian space,

and the inverse kinematics is required to find a set of

appropriate joint angles to control the joint actuators

so that the robot’s end-effector can be directed to the

desired targets. In addition to the manipulation task,

path tracking is another task that requires the inverse

kinematics role. In the task of path tracking [13, 14],

the robotic arms should be able to move their end-

effector along a predetermined path in the cartesian

space. This path is typically formed by a sequence of

desired target points in the cartesian space. In this

task, the inverse kinematics is also utilized to figure

out the required joint angles for controlling the joint

actuators in order that the robot’s end-effector can be

driven to follow the desired path in the cartesian

space. Based on the applications, it is clear that the

inverse kinematics plays a vital role in the planning

and execution of robotic motions. The analytical and

computational methods are the two techniques that

can be applied to solve the inverse kinematics [15].

The analytical method is principally divided into

geometric and algebraic methods [16]. In this study

[17], the geometric method was proposed as means

of obtaining the inverse kinematics solution of the

NAO robot arms. Each of the robotic arms consists of

four revolute joints. The way to obtain the inverse

kinematics solution is initiated by the decomposition

of the spatial geometry of the NAO robot arms into

multiple plane geometries. From these decomposed

plane geometries, the trigonometric equations can be

formulated to figure out the joint angles for the joint

actuators. This method is typically used for simple

robot structures, such as the planar robots whose joint

axes are parallel [18, 19] and the spatial robots with a

few connected links and joints [17]. Hence, the

research [20, 21] proposed the algebraic method for

solving the inverse kinematics of the NAO robot arms,

each of which has five revolute joints. In this case,

the process of solving the inverse kinematics is

started with the formulation of forward kinematics.

The result of forward kinematics is a transformation

matrix whose elements are trigonometric equations.

The inverse kinematics solution can be obtained by

extracting and simplifying trigonometric equations.

In the other research [22, 23], to avoid the difficulty

in solving inverse kinematics, they did not involve all

the joints and preferred to sacrifice one or more joints

in the robot. Unfortunately, this can reduce the

number of degrees of freedom in the robot.

Even though the analytical methods have been

widely applied to solve the inverse kinematics, there

are remaining problems with the analytical methods.

One such remaining problem is multiplicity. This is

because the analytical methods can produce multiple

solutions in terms of joint angles. The system should

be able to choose a single correct one for each joint.

The mistake of choosing the correct joint angles for

the joints causes the robot unable to perform desired

motions. In addition to the multiplicity problem, the

analytical methods have strict requirements related to

the robot structure, so they are only applicable to a

certain robot structure. In accordance with Pieper’s

criterion [24], the inverse kinematics solution can be

achieved by the analytical methods when the robotic

arms have a spherical wrist whose three consecutive

revolute joint axes intersect at the same point. Most

industrial robotic arms, such as Denso VP6242 [25],

Kuka KR Agilus [26], and Motoman GP180 [27],

conform to that criterion. However, the structure of

the NAO robot arms does not conform to Pieper’s

criterion. To meet the criterion, the research [20, 21]

modified the kinematic chain in the NAO robot arms

by means of shifting the last joint to the preceding

Received: June 16, 2023. Revised: July 26, 2023. 525

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

joint position without any change to their physical

hardware. Otherwise, the analytical solution for the

inverse kinematics of the NAO robot arms is very

difficult to achieve.

In comparison with the analytical methods, the

computational methods are more flexible for solving

the inverse kinematics problem because they are not

dependent on robot structures. One computational

method to solve the inverse kinematics is Jacobian.

In this method, the relation between the joint space

and cartesian space is represented by the Jacobian

matrix [28]. The inverse kinematics solution can be

then obtained by the inverse of the Jacobian matrix

whose operation is conducted until the loss function

approximates zero. Some previous research used the

Jacobian to solve the inverse kinematics of the NAO

robot arms [29-31]. Besides, the alternative method

for solving the inverse kinematics is metaheuristic

algorithms. Some metaheuristic algorithms, such as

the artificial bee colony [32], and firefly algorithm

[33], particle swarm optimization [34-36], have been

applied for solving the inverse kinematics problem.

These algorithms require some random initialization

to guide their search to obtain an optimal solution.

The optimal solution for the inverse kinematics can

be achieved by minimizing their objective function.

Similar to the previous one, the process of obtaining

the inverse kinematics solution is iteratively carried

out until their objective function is close to zero. In

addition to the aforementioned methods, the inverse

kinematics problem can be also solved by the neural

network. The way to build the neural network-based

inverse kinematics is by the training process, which

is the process of teaching the neural network with the

dataset. The neural network is such a data-driven

modeling technique that it is flexible for modeling the

inverse kinematics. Because of its flexibility and

learning ability, the neural network can handle the

problems of the inverse kinematics, starting from the

simple robots [37, 38] to the robots with complex

structures [39-41]. The inverse kinematics solution

resulted from the neural network is expressed in the

neural network architecture that defines the mapping

from the cartesian space to the joint space.

However, the computational methods mentioned

above have the remaining problems. In the Jacobian,

the inverse kinematics solution can be only achieved

when the Jacobian matrix is invertible. The Jacobian

matrix is invertible when it is a square matrix whose

determinant is not zero. The research conducted by

[29-31] used the pseudoinverse technique as means

of obtaining the inverse kinematics solution, but this

technique has no mechanism to handle the problem

of singularity. In the singular state, the inverse of the

Jacobian matrix does not exist and thus the obtained

inverse kinematics solution becomes unacceptable.

In this state, the robot can lose one or more degrees

of freedom in the workspace [42]. Consequently, the

robot is not able to move its end-effector to a certain

direction in the cartesian workspace. Meanwhile, the

drawback of the metaheuristic algorithms deals with

their vulnerability to the starting point. Note that the

metaheuristic algorithms are stochastic optimization

that requires some random initializations to obtain an

optimal solution. It means that their convergence to

the optimal solution highly depends on the initial

guess and if the initial guess is not appropriate, these

algorithms may not find the best solution. Moreover,

these metaheuristic algorithms are also vulnerable to

premature convergence, which is a state when their

objective function becomes trapped in local minima

[43]. Because of this condition, the obtained inverse

kinematics solution is not acceptable. Different from

the previous methods, the neural network can learn

from the data through the training process. Once the

training is done, the trained neural network requires

no iterative processes to find the inverse kinematics

solution. In addition, the problem such as singularity

and multiplicity does not exist in the neural network.

That is why, in the design of robotic motion control,

many researchers [37-41] preferred to use the neural

network. It is important to note, the neural network-

based inverse kinematics structure is feedforward so

it is classified as the open-loop control system. The

shortcoming of this control system has no feedback

mechanism to compensate for the remaining error.

In this paper, we focus on the design of robotic

motion control for the NAO robot arms. The main

contributions of this paper are listed as follows:

(1) The robotic motion control that we designed in

this research adheres to the closed-loop control

system,

(2) In the design of the robotic motion control, we

proposed a novel approach by using the neural

network-based inverse kinematics combined

with the Jacobian,

(3) The forward kinematics of the NAO robot arms

that we formulated in this research can be used as

means of creating the dataset for training the

neural network-based inverse kinematics,

(4) The neural network-based inverse kinematics

that acts as the feedforward controller can yield a

set of joint angles for the joint actuators, while

the Jacobian that acts as the feedback controller

can helpfully decrease the remaining error of the

neural network-based inverse kinematics,

(5) Our designed robotic motion control can result in

more accurate joint angles for controlling the

joint actuators such that the robot’s end-effector

can be directed to the desired targets.

Received: June 16, 2023. Revised: July 26, 2023. 526

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

Table 1. The joint operational ranges

No Joint Name Range (rad)

1 LShoulder Pitch -2.0857 to 2.0857

2 LShoulder Roll -0.3142 to 1.3265

3 LElbow Yaw -2.0857 to 2.0857

4 LElbow Roll -1.5446 to -0.0349

5 LWrist Yaw -1.8238 to 1.8238

6 RShoulder Pitch -2.0857 to 2.0857

7 RShoulder Roll -1.3265 to 0.3142

8 RElbow Yaw -2.0857 to 2.0857

9 RElbow Roll 0.0349 to 1.5446

10 RWrist Yaw -1.8238 to 1.8238

The rest of this paper is organized as follows:

section 2 provides the forward kinematics model of

the NAO robot arms. Section 3 proposes the design

of robotic motion control. The results and discussion

are presented in section 4, and section 5 contains the

conclusion and direction for future research.

2. Forward kinematics of NAO robot arms

In this section, the discussion will be focused on

forward kinematics. The forward kinematics studies

the transformation from the joint space, in which the

control action is carried out, to the cartesian space,

which is the robot’s workspace. The joint actuators

that operate in the joint space can be controlled to

move the robot’s end-effector in the cartesian space.

As shown in Table 1, the joint actuators in the NAO

robot arms have different operational ranges, all of

which operate in radians [7]. By controlling the joint

actuators, the robot’s end-effector can be directed to

various locations in the cartesian space. In addition to

being controllable, these joint actuators are also

equipped with embedded sensors to read their joint

angular positions. By using the forward kinematics,

the information about the joint angular positions can

be then utilized to find out the robot’s end-effector

locations in the cartesian space [44]. Furthermore, the

forward kinematics is commonly utilized as the

prerequisite in solving the inverse kinematics. The

forward kinematics plays a crucial role, so it must be

formulated correctly.

The forward kinematics is typically represented

by a single transformation matrix. It can be obtained

by multiplying a set of transformation matrices, each

of which is the result of the transformation between

two adjacent coordinate frames. This transformation

is started from the base coordinate frame to the end-

effector. The torso located in the center of the NAO

robot body is defined as the base coordinate frame.

To denote the transformation between two adjacent

coordinate frames, we use Denavit-Hartenberg (DH)

parameters. These parameters are 𝑎𝑖−1, 𝛼𝑖−1, 𝑑𝑖, and

Figure. 1 Coordinate frames in the NAO’s left arm

𝜃𝑖. The 𝑎𝑖−1 parameter denotes the distance between

𝑧𝑖−1 axis and 𝑧𝑖 axis measured along 𝑥𝑖−1 axis, while

the 𝛼𝑖−1 parameter is the angle between 𝑧𝑖−1 axis and

𝑧𝑖 axis measured about 𝑥𝑖−1 axis. The 𝑑𝑖 parameter

represents the distance between 𝑥𝑖−1 axis and 𝑥𝑖 axis

measured along 𝑧𝑖 axis, and then the 𝜃𝑖 parameter is

the angle between 𝑥𝑖−1 axis and 𝑥𝑖 axis measured

about 𝑧𝑖 axis. By using these parameters, the general

transformation matrix equation resulted from the

transformation between two neighboring coordinate

frames can be defined as [42]

𝑇𝑖
𝑖−1 = 𝑅𝑋(𝛼𝑖−1)𝐷𝑋(𝑎𝑖−1)𝑅𝑍(𝜃𝑖)𝐷𝑍(𝑑𝑖) (1)

𝑇𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1

𝑠𝜃𝑖 𝑐𝛼𝑖−1 𝑐𝜃𝑖 𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑑𝑖 𝑠𝛼𝑖−1

𝑠𝜃𝑖 𝑠𝛼𝑖−1 𝑐𝜃𝑖 𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑑𝑖 𝑐𝛼𝑖−1

0 0 0 1

]

where 𝑠 and 𝑐 denote 𝑠𝑖𝑛 and 𝑐𝑜𝑠, respectively.

2.1 Forward kinematics of NAO’s left arm

The NAO’s left arm is physically composed of a

set of rigid links connected by five joint actuators.
The connected rigid links by the joint actuators form

a kinematic chain with the NAO’s left hand as the

end-effector. To formulate the forward kinematics of

the NAO’s left arm, we require to initially attach a set

of coordinate frames from the torso to the end-

effector. The attachment of these coordinate frames

is performed at the zero posture: the standing NAO

robot with straight legs and arms pointing forward.

All of the coordinate frames that we attached to the

NAO’s left arm can be seen in Fig. 1.

Based on Fig. 1, the coordinate frame located in

the torso has three axes, where the 𝑥-axis is pointing

forward, the 𝑦-axis is pointing to the left, and the 𝑧-

axis is vertical. Then to reach its adjacent coordinate

frame, the current coordinate frame located in the

torso should be translated along the shoulder offset in

Received: June 16, 2023. Revised: July 26, 2023. 527

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

Table 2. DH parameters for the NAO’s left arm

Frame 𝜽𝒊 𝜶𝒊−𝟏 𝒂𝒊−𝟏 𝒅𝒊

LShoulder Pitch 𝜃1 −𝜋/2 0 0

LShoulder Roll 𝜃2

+ 𝜋/2

𝜋/2 0 0

LElbow Yaw 𝜃3 𝜋/2 𝑙3 𝑙4

LElbow Roll 𝜃4 −𝜋/2 0 0

LWrist Yaw 𝜃5 𝜋/2 0 𝑙5

Figure. 2 Coordinate frames in the NAO’s right arm

the direction of the 𝑦0-axis (𝑙1), and then followed by

the translation along the shoulder offset in the

direction of the 𝑧0-axis (𝑙2). This transformation can

be represented as

𝑇0
𝑇𝑠 = [

1 0 0 0
0 1 0 𝑙1
0 0 1 𝑙2
0 0 0 1

] (2)

The transformation should be then continued to

the other coordinate frames, from the shoulder pitch

to the wrist yaw. Such transformations produce a set

of DH parameters, as presented in Table 2.

By plugging the DH parameters into the general

transformation matrix Eq. (1), we can obtain a set of

transformation matrices as follows:

𝑇1
0 = [

𝑐𝑜𝑠 𝜃1 −𝑠𝑖𝑛 𝜃1 0 0
0 0 1 0

−𝑠𝑖𝑛 𝜃1 −𝑐𝑜𝑠 𝜃1 0 0
0 0 0 1

] (3)

𝑇2
1 = [

−𝑠𝑖𝑛 𝜃2 −𝑐𝑜𝑠 𝜃2 0 0
0 0 −1 0

𝑐𝑜𝑠 𝜃2 −𝑠𝑖𝑛 𝜃2 0 0
0 0 0 1

] (4)

𝑇3
2 = [

𝑐𝑜𝑠 𝜃3 −𝑠𝑖𝑛 𝜃3 0 𝑙3
0 0 −1 −𝑙4

𝑠𝑖𝑛 𝜃3 𝑐𝑜𝑠 𝜃3 0 0
0 0 0 1

] (5)

𝑇4
3 = [

𝑐𝑜𝑠 𝜃4 −𝑠𝑖𝑛 𝜃4 0 0
0 0 1 0

−𝑠𝑖𝑛 𝜃4 −𝑐𝑜𝑠 𝜃4 0 0
0 0 0 1

] (6)

𝑇5
4 = [

𝑐𝑜𝑠 𝜃5 −𝑠𝑖𝑛 𝜃5 0 0
0 0 −1 −𝑙5

𝑠𝑖𝑛 𝜃5 𝑐𝑜𝑠 𝜃5 0 0
0 0 0 1

] (7)

To reach the left hand, the coordinate frame

located in the wrist yaw must be initially aligned by

using a clockwise rotation on the 𝑥5-axis by 𝜋/2 and

a clockwise rotation on the 𝑧5 -axis by 𝜋/2. This

aligned coordinate frame should be then translated

along the hand offset in the direction of the 𝑥6-axis

(𝑙6), and then followed by a translation along the hand

offset in the opposite direction of the 𝑧6 -axis (𝑙7).

This transformations can be represented as

𝑇𝐿𝐻
5 = [

0 1 0 0
0 0 1 −𝑙7
1 0 0 𝑙6
0 0 0 1

] (8)

The forward kinematics of the NAO’s left arm

can be eventually obtained by multiplying a set of the

transformation matrices.

𝑇𝐿𝐻
𝑇𝑠 = 𝑇0

𝑇𝑠 𝑇1
0 𝑇2

1 𝑇3
2 𝑇4

3 𝑇5
4 𝑇𝐿𝐻

5 (9)

2.2 Forward kinematics of NAO’s right arm

The NAO’s right arm contains serial rigid links

connected by five joint actuators. This configuration

forms a kinematic chain with the NAO’s right hand

as the end-effector. The kinematics structure of the

right arm in a humanoid robot is typically symmetric

to that of the left arm. But, the kinematics structure of

the NAO robot arms is not fully symmetric since the

physical arrangement between the left shoulder pitch

and right shoulder pitch joints is not reflected to each

other. To formulate the forward kinematics of the

NAO’s right arm, the first step is to attach a set of

coordinate frames from the torso to the end-effector,

as depicted in Fig. 2.

The coordinate frame attachment is started from

the torso. To reach its neighboring coordinate frame,

the coordinate frame in the torso must be translated

along the shoulder offset in the opposite direction of

the 𝑦0-axis (𝑙1) and then followed by a translation

along the shoulder offset in the direction of the 𝑧0-

axis (𝑙2). This transformation can be represented as

Received: June 16, 2023. Revised: July 26, 2023. 528

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

Table 3. DH parameters for the NAO’s right arm

Frame 𝜽𝒊 𝜶𝒊−𝟏 𝒂𝒊−𝟏 𝒅𝒊

RShoulder

Pitch

𝜃1 −𝜋/2 0 0

RShoulder Roll 𝜃2

− 𝜋/2

𝜋/2 0 0

RElbow Yaw 𝜃3 −𝜋/2 𝑙3 𝑙4

RElbow Roll 𝜃4 𝜋/2 0 0

RWrist Yaw 𝜃5 −𝜋/2 0 𝑙5

𝑇0
𝑇𝑠 = [

1 0 0 0
0 1 0 −𝑙1
0 0 1 𝑙2
0 0 0 1

] (10)

Then the sequential transformation between two

adjacent coordinate frames from the shoulder pitch to

the wrist yaw can yield a set of DH parameters, as

shown in Table 3.

By feeding the DH parameters into the general

transformation matrix Eq. (1), we can generate a set

of transformation matrices as follows:

𝑇1
0 = [

𝑐𝑜𝑠 𝜃1 −𝑠𝑖𝑛 𝜃1 0 0
0 0 1 0

−𝑠𝑖𝑛 𝜃1 −𝑐𝑜𝑠 𝜃1 0 0
0 0 0 1

] (11)

𝑇2
1 = [

𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 𝜃2 0 0
0 0 −1 0

−𝑐𝑜𝑠 𝜃2 𝑠𝑖𝑛 𝜃2 0 0
0 0 0 1

] (12)

𝑇3
2 = [

𝑐𝑜𝑠 𝜃3 −𝑠𝑖𝑛 𝜃3 0 𝑙3
0 0 1 𝑙4

−𝑠𝑖𝑛 𝜃3 −𝑐𝑜𝑠 𝜃3 0 0
0 0 0 1

] (13)

𝑇4
3 = [

𝑐𝑜𝑠 𝜃4 −𝑠𝑖𝑛 𝜃4 0 0
0 0 −1 0

𝑠𝑖𝑛 𝜃4 𝑐𝑜𝑠 𝜃4 0 0
0 0 0 1

] (14)

𝑇5
4 = [

𝑐𝑜𝑠 𝜃5 −𝑠𝑖𝑛 𝜃5 0 0
0 0 1 𝑙5

−𝑠𝑖𝑛 𝜃5 −𝑐𝑜𝑠 𝜃5 0 0
0 0 0 1

] (15)

To reach the right hand, the current coordinate

frame located in the right wrist yaw must be initially

aligned by using a counterclockwise rotation on the

𝑥5-axis by 𝜋/2 and a counterclockwise rotation on

the 𝑧5 -axis by 𝜋/2. This aligned coordinate frame

should be then translated along the hand offset in the

direction of the 𝑥6 -axis (𝑙6) and followed by the

translation along the hand offset in the opposite

direction of the 𝑧6 -axis (𝑙7) . Such transformations

can be represented as

𝑇𝑅𝐻
5 = [

0 −1 0 0
0 0 −1 𝑙7
1 0 0 𝑙6
0 0 0 1

] (16)

The forward kinematics of the NAO’s right arm

can be generated by the multiplication of a set of the

transformation matrices.

𝑇𝑅𝐻
𝑇𝑠 = 𝑇0

𝑇𝑠 𝑇1
0 𝑇2

1 𝑇3
2 𝑇4

3 𝑇5
4 𝑇𝑅𝐻

5 (17)

2.3 Forward kinematics verification

Verification needs to be performed to reveal the

correctness of the forward kinematics of the NAO’s

arms. As mentioned earlier, the result of the forward

kinematics is represented in a transformation matrix.

This transformation matrix can be decomposed into

the translation matrix and rotation matrix. The 3×1

translation matrix denotes the end-effector position,

and the 3×3 rotation matrix denotes the end-effector

orientation. The end-effector position is defined as

the position of the NAO’s hands with respect to the

torso, and the end-effector orientation is referred to

as the orientation of the NAO’s hands frame relative

to the torso’s coordinate frame.

As previously mentioned, the attachment of the

coordinate frames is performed at the zero posture. It

is such a posture when all of the joint angles in the

NAO robot are zero radians. By plugging these joint

angles into the forward kinematics Eq. (9) and Eq.

(17), we can obtain the transformation matrix whose

elements contain the position and orientation of the

end-effector. In this verification, the transformation

matrix resulted from the forward kinematics should

yield the end-effector position and orientation that

corresponds to the NAO zero posture (see Fig. 3).

The verification result reveals that the position of

the end-effector in the transformation matrix Eq. (18-

19) is equal to the position of the end-effector in the

NAO zero posture. Additionally, the rotational

identity matrix indicates that the coordinate frame of

the NAO’s hands aligns with the torso’s coordinate

frame. It indicates that the forward kinematics of the

NAO robot arms has been formulated correctly.

𝑇𝐿𝐻
𝑇𝑠 = [

𝑟11 𝑟12 𝑟13 𝑃𝑥

𝑟21 𝑟22 𝑟23 𝑃𝑦

𝑟31 𝑟32 𝑟33 𝑃𝑧

0 0 0 1

] = [

1 0 0 218.7
0 1 0 113
0 0 1 87.69
0 0 0 1

]

(18)

Received: June 16, 2023. Revised: July 26, 2023. 529

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

(a)

(b)

Figure. 3 NAO zero posture: (a) front view, (b) top view

𝑇𝑅𝐻
𝑇𝑠 = [

𝑟11 𝑟12 𝑟13 𝑃𝑥

𝑟21 𝑟22 𝑟23 𝑃𝑦

𝑟31 𝑟32 𝑟33 𝑃𝑧

0 0 0 1

] = [

1 0 0 218.7
0 1 0 −113
0 0 1 87.69
0 0 0 1

]

(19)

3. The design of robotic motion control

3.1 Neural network-based inverse kinematics

The neural network has the ability to learn from

the data, so its application can be addressed on any

problem, including the inverse kinematics problem.

In this research, the inverse kinematics problem will

be solved by the neural network. To build the neural

network-based inverse kinematics, we require a set of

data. The dataset used in this research originates from

a number of robotic poses. It should be known that

these robotic poses are generated from various

configurations of the joints in the NAO robot arms.

Therefore, by extracting these robotic poses, we can

obtain the data containing a set of the joint angles:

shoulder pitch (𝜃1), shoulder roll (𝜃2), elbow yaw (𝜃3),

elbow roll (𝜃4), and wrist yaw (𝜃5).

Figure. 4 Neural network-based inverse kinematics

As depicted in Fig. 4, the process of generating

the dataset can be then continued by plugging a set of

the joint angles into the forward kinematics Eq. (9)

and Eq. (17). As a result, we obtain the data that

contains the end-effector position and orientation in

the cartesian workspace. This data is represented in

the transformation matrix, in which the end-effector

position is denoted as [𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧] and the end-effector

orientation is denoted as {[𝑟11, 𝑟12, 𝑟13], [𝑟21, 𝑟22, 𝑟23],

[𝑟31, 𝑟32, 𝑟33]}. However, among nine rotation matrix

elements, only three elements are independent [45].

It means that the rotation matrix gives a redundant

description for the end-effector orientation. Instead,

we used the rotation vectors [𝑅𝑥, 𝑅𝑦, 𝑅𝑧] to describe

the end-effector orientation. To convert the rotation

matrix to the rotation vectors, we use the following

equations [46]

𝜙 = arccos (
𝑟11+𝑟22+𝑟33−1

2
) (20)

[

𝑎𝑥

𝑎𝑦

𝑎𝑧

] =
1

2 sin𝜙
[

𝑟32 − 𝑟23

𝑟13 − 𝑟31

𝑟21 − 𝑟12

] (21)

[

𝑅𝑥

𝑅𝑦

𝑅𝑧

] = 𝜙 [

𝑎𝑥

𝑎𝑦

𝑎𝑧

] (22)

The dataset that we generated to build the neural

network-based inverse kinematics consists of 10000

input-output pairs. The input parameters are the end-

effector position and orientation [𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧 , 𝑅𝑥, 𝑅𝑦 , 𝑅𝑧],

while the output parameters are a set of joint angles

[𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5]. This dataset will be split into three

separate datasets: training dataset, validation dataset,

and testing dataset. In this case, 60% of the data will

be allocated for the training dataset, 20% for the

validation dataset, and the remaining 20% for the

testing dataset. Each dataset has a different function.

The training dataset is utilized for training the neural

network. The validation dataset is used to validate the

neural network performance during the training

Received: June 16, 2023. Revised: July 26, 2023. 530

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

process. The obtained information from this process

helps us in tuning and choosing the neural network’s

hyperparameters. The testing dataset is another set of

data used to test how well the performance of the

trained neural network. Contrary to the training and

validation datasets, the testing dataset contains data

that it has never seen during the training process.

These datasets must be normalized by using Eq. (23)

before being fed into the neural network.

𝑧 =
𝑥−𝜇

𝜎
 (23)

where 𝑧 denotes the normalized data, 𝑥 is the feature

data, 𝜇 is the mean of the feature data, and 𝜎 is the

standard deviation.

Based on the input and output parameters in the

dataset, the neural network-based inverse kinematics

will contain six neurons in the input layer and five

neurons in the output layer. In between the input and

output layers, there are hidden layers. Through the

training process, we can adjust the neural network’s

hyperparameters to find the appropriate number of

hidden layers and their neurons. During the training

process, the training dataset and validation dataset

should be fed into the neural network. The training

should be conducted until both the training loss and

validation loss functions converge to zero [47].

The neural network architecture for the inverse

kinematics is a fully connected neural network. Note

that the neural network-based inverse kinematics has

such a feedforward structure that it is classified as

feedforward controller. Fig. 5 shows the relationship

between the input and output in this control system.

The control system whose outputs is not involved in

the control action is known as the open-loop control

system [48]. The drawback of this control system is

that it has no feedback mechanism to overcome the

remaining error in the estimation of joint angles.

3.2 Neural network-based inverse kinematics

combined with Jacobian

For achieving better performance, we designed a

robotic motion control that conforms to the closed-

loop control system. As shown in Fig. 6, this robotic

motion control is established by the neural network-

based inverse kinematics combined with Jacobian.

The neural network-based inverse kinematics acts as

the feedforward controller, while the Jacobian acts as

the feedback controller. In particular, the neural

network-based inverse kinematics has a function to

generate a set of joint angles (𝜃) based on the given

position and orientation of the end-effector (𝑥). The

inclusion of the Jacobian in the design of the robotic

Figure. 5 Open-loop control system

Figure. 6 Closed-loop control system

motion control is to minimize the remaining error of

the neural network-based inverse kinematics.

In this way, we can generate more accurate joint

angles for controlling the joint actuators. Note that

this control system is principally made up of two

different controllers, so this can be classified as a

hybrid control system.

Contrary to the open-loop control system, this

control system has a feedback signal. This feedback

signal contains data from the output that is sent back

to be compared with the reference input. To provide

the feedback signal, a set of the joint angles resulted

from the neural network-based inverse kinematics

should be initially fed into the forward kinematics to

obtain the actual position and orientation of the end-

effector (𝑥0). Then by comparing it with the desired

position and orientation of the end-effector (𝑥), we

can find its difference (Δ𝑥 = 𝑥 − 𝑥0). This difference

will be then utilized to obtain the corrective action.

This corrective action is represented in terms of the

displacement of the joint angles (Δ𝜃). Note that the

relationship between the displacement of the joint

angles (Δ𝜃) and the displacement of the end-effector

position and orientation (Δ𝑥) can be defined as

Δ𝑥 = 𝐽 Δ𝜃 (24)

Received: June 16, 2023. Revised: July 26, 2023. 531

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

[

Δ𝑃𝑥

Δ𝑃𝑦

Δ𝑃𝑧

Δ𝑅𝑥

Δ𝑅𝑦

Δ𝑅𝑧]

=

[

𝜕𝑃𝑥

𝜕𝜃1

𝜕𝑃𝑥

𝜕𝜃2

𝜕𝑃𝑥

𝜕𝜃3

𝜕𝑃𝑥

𝜕𝜃4

𝜕𝑃𝑥

𝜕𝜃5

𝜕𝑃𝑦

𝜕𝜃1

𝜕𝑃𝑦

𝜕𝜃2

𝜕𝑃𝑦

𝜕𝜃3

𝜕𝑃𝑦

𝜕𝜃4

𝜕𝑃𝑦

𝜕𝜃5

𝜕𝑃𝑧

𝜕𝜃1

𝜕𝑃𝑧

𝜕𝜃2

𝜕𝑃𝑧

𝜕𝜃3

𝜕𝑃𝑧

𝜕𝜃4

𝜕𝑃𝑧

𝜕𝜃5

𝜕𝑅𝑥

𝜕𝜃1

𝜕𝑅𝑥

𝜕𝜃2

𝜕𝑅𝑥

𝜕𝜃3

𝜕𝑅𝑥

𝜕𝜃4

𝜕𝑅𝑥

𝜕𝜃5

𝜕𝑅𝑦

𝜕𝜃1

𝜕𝑅𝑦

𝜕𝜃2

𝜕𝑅𝑦

𝜕𝜃3

𝜕𝑅𝑦

𝜕𝜃4

𝜕𝑅𝑦

𝜕𝜃5

𝜕𝑅𝑧

𝜕𝜃1

𝜕𝑅𝑧

𝜕𝜃2

𝜕𝑅𝑧

𝜕𝜃3

𝜕𝑅𝑧

𝜕𝜃4

𝜕𝑅𝑧

𝜕𝜃5]

[

Δ𝜃1

Δ𝜃2

Δ𝜃3

Δ𝜃4

Δ𝜃5]

Thereafter, the corrective action can be obtained

by means of calculating the displacement of the joint

angles (Δ𝜃). This can be conducted by inverting the

Jacobian matrix. To avoid the singularity, we use a

technique called damped least squares (DLS) [49], as

in the following equation

Δ𝜃 = 𝐽𝑇(𝐽𝐽𝑇 + 𝜆2𝐼)−1Δ𝑥 (25)

where 𝐽 denotes the Jacobian matrix, 𝐼 is the identity

matrix, 𝐽𝑇 is the Jacobian matrix transpose, and 𝜆 is a

non-zero damping constant.

Eventually, the required joint angles for driving

the robot’s end-effector to the desired targets can be

obtained by

𝜃 = 𝜃 + Δ𝜃 (26)

4. Result and discussion

4.1 Neural network architecture for inverse

kinematics

It is important to note that the dataset to build a

neural network-based inverse kinematics comprises

the input-output pairs. In this case, the input data is

the position and orientation of the end-effector in the

cartesian space, while the output data is a set of joint

angles whose operation is in the joint space. Due to

containing the input-output pairs, this is classified as

supervised learning. The objective of this learning is

to find the neural network architecture that defines

the relationship model between the input and output.

This relationship model is called the neural network-

based inverse kinematics. The experiment has been

conducted to find the neural network-based inverse

kinematics.

From the experimental result, we can obtain the

neural network architecture for inverse kinematics, as

depicted in Fig. 7. In this architecture, this neural

Figure. 7 Neural network architecture for inverse

kinematics

Table 4. Hyperparameters

Hyperparameters Value

Learning rate 0.001

Epoch 2000

Optimizer Adam

Loss function MSE

network-based inverse kinematics has six neurons in

the input layer and five neurons in the output layer.

Between the input and output layers, there are three

hidden layers, each of which contains 48 neurons,

120 neurons, and 60 neurons. In the last two hidden

layers, we used the dropout whose value is 0.05. The

activation function we used for the hidden layers is

sigmoid and for the output layer is linear activation.

The linear activation is employed in the output layer

because this is a regression problem whose outputs

are continuous values, not discrete labels as in the

classification problem. In addition, the other neural

network’s hyperparameters can be seen in Table 4.

4.2 The validation of the trained neural network-

based inverse kinematics

The neural network-based inverse kinematics is a

fundamental aspect in the design of robotic motion

control, so its performance must be validated. In this

validation, we will check whether this trained neural

network suffers from overfitting. Overfitting is such

a condition where the neural network performs well

on the training data but cannot perform satisfactorily

on other data. It is because the neural network tends

to memorize the training data instead of learning from

it. Consequently, the neural network is unable to give

accurate predictions and cannot perform well on new

data. Overfitting can be identified during the training

process. It can be conducted by comparing the

training loss and the validation loss. The trained

neural network is said not to be overfitting when the

Received: June 16, 2023. Revised: July 26, 2023. 532

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

(a)

(b)

Figure. 8 Neural network validation: (a) NAO’s left arm,

and (b) NAO’s right arm

training loss and the validation loss converge to zero

[47]. Fig. 8 shows that both the training loss and the

validation loss synchronously converge to zero. This

means that our trained neural network-based inverse

kinematics does not suffer from overfitting.

4.3 The performance comparison of three

different approaches

In this research, the performance of the designed

robotic motion control by three different approaches

will be compared in terms of providing a set of joint

angles for the joint actuators. The first approach is

particle swarm optimization (PSO), as conducted by

this research [34-36]. Particle swarm optimization is

one such metaheuristic algorithm that is powerful and

easy to implement since it has fewer parameters

compared to the other metaheuristic algorithms. In

this approach, a swarm is a collection of particles in

a search space. Each particle in a swarm represents a

candidate solution, in this case, a set of joint angles.

Initially, these joint angles are randomly determined

for each particle. By feeding the joint angles into the

forward kinematics, we can calculate the actual end-

effector locations of each particle. Each particle has a

cost function calculated via the distance between the

desired and actual end-effector locations. Once we

have the cost function of all the particles, we can then

sort them and find the minimum one among all the

particles. This process should be conducted until the

distance between the desired and actual end-effector

locations converges to zero. As explained in [36], the

particle with the lowest cost function is the optimal

solution for the inverse kinematics.

Meanwhile, the second approach is the neural

network-based inverse kinematics. Because of its

learning ability, most research used this approach

[37-41]. Different from this approach, the approach

we proposed in this research is the neural network-

based inverse kinematics combined with Jacobian.

To demonstrate their performance, a set of desired

targets to be reached by the robot’s end-effector are

given in the cartesian space, as depicted in Fig. 10.

This data is taken from a few data collections in the

testing dataset. In this demonstration, the designed

robotic motion control by the three approaches is

supposed to generate a set of joint angles required to

place the robot’s end-effector to the desired targets.

The joint paths resulted from the continuous motion

from one set of joint angles to another can be seen in

Fig. 9. The performance comparison results showed

that the designed robotic motion control by using our

proposed approach can provide more accurate joint

angles than the other ones. Therefore, the joint paths

obtained from the continuous motion from one set of

joint angles to another are closer to the desired joint

paths.

In addition to comparing their joint paths, we also

measure their mean squared error (MSE). It is

necessary to reveal which robotic motion control has

the lowest error in the estimation of the joint angles.

Table 5 shows the performance comparison between

three different approaches. Based on the comparison

results, the averaged MSE for the particle swarm

optimization was 3.47 x 10-3 rad and 1.19 x 10-3 rad

for the neural network. It indicates that the neural

network has better performance than particle swarm

optimization because it has a lower averaged MSE.

The particle swarm optimization is such a stochastic

optimization that needs some random initializations,

so its convergence to the desired solution is highly

dependent on the initial guess. This approach cannot

find an optimal solution when the initial guess is not

appropriately selected. That is why most researchers

preferred to use the neural network for solving the

inverse kinematics problem. Nevertheless, compared

with the neural network-based inverse kinematics,

our proposed approach has a lower averaged MSE

(3.72 x 10-5). This is because our proposed approach

has the feedback mechanism to compensate for the

remaining error. The presence of the Jacobian in our

Received: June 16, 2023. Revised: July 26, 2023. 533

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Received: June 16, 2023. Revised: July 26, 2023. 534

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

 (i) (j)

Figure. 9 Joint paths: (a) the left shoulder pitch, (b) the right shoulder pitch, (c) the left shoulder roll, (d) the right

shoulder roll, (e) the left elbow yaw, (f) the right elbow yaw, (g) the left elbow roll, (h) the right elbow roll, (i) the left

wrist yaw, and (j) the right wrist yaw

Table 5. Performance comparison result

No Joint Name
MSE (rad)

PSO [36] Neural Network [41] Proposed Approach

1. LShoulder Pitch 1.52 x 10-3 6.59 x 10-4 3.14 x 10-5

2. LShoulder Roll 3.41 x 10-3 9.44 x 10-4 2.88 x 10-5

3. LElbow Yaw 4.03 x 10-3 1.42 x 10-3 4.55 x 10-5

4. LElbow Roll 4.59 x 10-3 2.60 x 10-4 3.23 x 10-5

5. LWrist Yaw 2.72 x 10-3 1.03 x 10-3 4.61 x 10-5

6. RShoulder Pitch 7.05 x 10-4 9.93 x 10-4 3.17 x 10-5

7. RShoulder Roll 1.99 x 10-3 9.91 x 10-4 3.04 x 10-5

8. RElbow Yaw 4.53 x 10-3 2.25 x 10-3 4.72 x 10-5

9. RElbow Roll 5.52 x 10-3 7.56 x 10-4 3.18 x 10-5

10. RWrist Yaw 5.72 x 10-3 2.68 x 10-3 4.65 x 10-5

The Averaged MSE 3.47 x 10-3 1.19 x 10-3 3.72 10-5

proposed approach is to reduce the remaining error of

the neural network. As a result, we obtained more

accurate joint angles for the joint actuators. From

Table 5, the performance comparison results stated

that, among three different approaches, our proposed

approach has the smallest averaged MSE.

4.4 The effectiveness of the proposed approach

In this research, the demonstration was carried

out with three different approaches. In the previous

section, we demonstrated how the designed robotic

motion control by the three different approaches can

generate the joint paths as a result of the continuous

motion from one set of the joint angles to another. In

this section, we will demonstrate whether a set of the

obtained joint angles can place the robot’s end-

effector to the desired targets. It should be noted that

a series of the desired targets to be reached by the

robot’s end-effector can form the cartesian paths, as

illustrated in Fig. 10. In a simple way, to illustrate the

robot’s end-effector movement in achieving the

desired targets, we can feed a set of these obtained

joint angles into the forward kinematics Eq. (9) and

Eq. (17). By doing so, we can obtain the data points

containing the end-effector locations in the cartesian

space. By connecting these data points sequentially,

we can visualize the cartesian path resulted from the

robot’s end-effector movement. Then, by comparing

the cartesian paths obtained from the three different

approaches, we can notice how well they perform.

Through this demonstration, we can find out which

one performs better.

From the simulation results in Fig. 10, although

the designed robotic motion control by the particle

swarm optimization (PSO) and the neural network-

based inverse kinematics can generate a set of the

joint angles to drive the robot’s end-effector in the

cartesian space, the cartesian paths resulted from the

movement of the robot’s end-effector still deviated

from the desired path. It is because the required joint

angles to drive the robot’s end-effector are not so

close to the desired targets. Therefore, for obtaining

better performance, we designed the robotic motion

control by using the neural network-based inverse

kinematics integrated with Jacobian. The inclusion of

Received: June 16, 2023. Revised: July 26, 2023. 535

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

(a)

(b)

Figure. 10 Cartesian path resulted from the end-effector movement: (a) the left arm and (b) the right arm

the Jacobian in the design of the robotic motion

control can helpfully minimize the remaining error of

the neural network-based inverse kinematics, thus

producing more accurate joint angles. As a result, the

cartesian path resulted from the movement of the

robot’s end-effector is very close to the desired path.

In addition to possessing a lower averaged MSE, the

cartesian path obtained from our proposed approach

is closer to the desired target path. It confirmed the

effectiveness of our proposed approach.

4 Conclusion

This paper proposed a new approach to enhance

the performance of the designed robotic motion

control for the NAO robot arms. In the design of the

robotic motion control, the approach we proposed in

this research is the neural network-based inverse

kinematics combined with the Jacobian. In this case,

the neural network-based inverse kinematics plays as

the feedforward controller whose function is to

estimate a set of joint angles, whereas the Jacobian

that acts as the feedback controller is responsible for

reducing the remaining error of the neural network-

based inverse kinematics in the estimation of the joint

angles. In this way, we can obtain more precise joint

angles for controlling the joint actuators such that the

robot’s end-effector can be driven along the desired

path in the cartesian space. According to the

performance comparison results, among the three

different approaches, our proposed approach has a

better performance due to the fact that it has a lower

averaged MSE in the estimation of the joint angles.

For further research, we will design and develop the

Received: June 16, 2023. Revised: July 26, 2023. 536

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

robotic motion control for cooperative multi-agent

systems.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Arif Nugroho: conceptualization, methodology,

formal analysis, data curation, writing–original draft

preparation and editing. Eko Mulyanto Yuniarno:

methodology, formal analysis, validation, writing–

review. Mauridhi Hery Purnomo: conceptualization,

validation, supervision, writing–review.

Acknowledgments

We would like to sincerely express our gratitude

to the Ministry of Research, Technology, and Higher

Education of the Republic of Indonesia for providing

financial support through the PMDSU (Pendidikan

Magister menuju Doktor untuk Sarjana Unggul)

scholarship.

References

[1] X. Chen, A. G. Dharmawan, S. Foong, and G. S.

Soh, “Seam tracking of large pipe structures for

an agile robotic welding system mounted on

scaffold structures”, Robot. Comput.-Integr.

Manuf., Vol. 50, pp. 242–255, 2018, doi:

10.1016/j.rcim.2017.09.018.

[2] B. Zhang, J. Wu, L. Wang, and Z. Yu, “Accurate

dynamic modeling and control parameters

design of an industrial hybrid spray-painting

robot”, Robot. Comput.-Integr. Manuf., Vol. 63,

p. 101923, 2020, doi:

10.1016/j.rcim.2019.101923.

[3] F. Li, Q. Jiang, W. Quan, S. Cai, R. Song, and Y.

Li, “Manipulation Skill Acquisition for Robotic

Assembly Based on Multi-Modal Information

Description”, IEEE Access, Vol. 8, pp. 6282–

6294, 2020, doi:

10.1109/ACCESS.2019.2934174.

[4] A. Raj and A. Thakur, “Dynamically feasible

trajectory planning for Anguilliform-inspired

robots in the presence of steady ambient flow”,

Robot. Auton. Syst., Vol. 118, pp. 144–158, 2019,

doi: 10.1016/j.robot.2019.05.001.

[5] H. J. Shin, H. K. Yoo, J. H. Lee, S. R. Lee, K.

Jeong, and H. S. Moon, “Robotic single-port

surgery using the da Vinci SP® surgical system

for benign gynecologic disease: A preliminary

report”, Taiwan. J. Obstet. Gynecol., Vol. 59, No.

2, pp. 243–247, 2020, doi:

10.1016/j.tjog.2020.01.012.

[6] D. Kulic, G. Venture, K. Yamane, E. Demircan,

I. Mizuuchi, and K. Mombaur,

“Anthropomorphic Movement Analysis and

Synthesis: A Survey of Methods and

Applications”, IEEE Trans. Robot., Vol. 32, No.

4, pp. 776–795, 2016, doi:

10.1109/TRO.2016.2587744.

[7] A. Robotics, “H25 - Joints - V3.3 — Aldebaran

Software 2.1.0.18 documentation”, 2014,

https://fileadmin.cs.lth.se/robot/nao/doc/family/

nao_h25/joints_h25_v33.html#h25-joints-v33

(accessed Aug. 16, 2021).

[8] A. Robotics, “H21 - Joints - V3.3 — Aldebaran

Software 2.1.0.18 documentation”, 2014,

https://fileadmin.cs.lth.se/robot/nao/doc/family/

nao_h21/joints_h21_v33.html#h21-joints-v33

(accessed Aug. 16, 2021).

[9] N. Kofinas, “Forward and Inverse Kinematics

for the NAO Humanoid Robot”, Technical

University of Crete, Greece, 2012. [Online].

Available:

https://www.cs.umd.edu/~nkofinas/Projects/Ko

finasThesis.pdf

[10] S. Kucuk and Z. Bingul, “Robot Kinematics:

Forward and Inverse Kinematics”, in Industrial

Robotics: Theory, Modelling and Control, S.

Cubero, Ed., Pro Literatur Verlag, Germany /

ARS, Austria, 2006, doi: 10.5772/5015.

[11] M. Dahari and J. D. Tan, “Forward and inverse

kinematics model for robotic welding process

using KR-16KS KUKA robot”, in 2011 Fourth

International Conference on Modeling,

Simulation and Applied Optimization, Kuala

Lumpur, Malaysia, pp. 1–6, 2011. doi:

10.1109/ICMSAO.2011.5775598.

[12] S. Qiu and M. R. Kermani, “Inverse Kinematics

of High Dimensional Robotic Arm-Hand

Systems for Precision Grasping”, J. Intell. Robot.

Syst., Vol. 101, No. 4, p. 70, 2021, doi:

10.1007/s10846-021-01349-7.

[13] A. R. J. Almusawi, L. C. Dülger, and S. Kapucu,

“A New Artificial Neural Network Approach in

Solving Inverse Kinematics of Robotic Arm

(Denso VP6242)”, Comput. Intell. Neurosci.,

Vol. 2016, pp. 1–10, 2016, doi:

10.1155/2016/5720163.

[14] A. V. S. S. Somasundar and G. Yedukondalu,

“Robotic path planning and simulation by

jacobian inverse for industrial applications”,

Procedia Comput. Sci., Vol. 133, pp. 338–347,

2018, doi: 10.1016/j.procs.2018.07.042.

[15] A. T. Hasan and H. M. A. A. A. Assadi,

“Performance Prediction Network for Serial

Manipulators Inverse Kinematics Solution

Passing Through Singular Configurations”, Int.

Received: June 16, 2023. Revised: July 26, 2023. 537

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

J. Adv. Robot. Syst., Vol. 7, No. 4, p. 36, 2010,

doi: 10.5772/10492.

[16] O. M. Omisore, S. Han, L. Ren, N. Zhang, K.

Ivanov, A. Elazab, and L. Wang, “Non-iterative

geometric approach for inverse kinematics of

redundant lead-module in a radiosurgical snake-

like robot”, Biomed. Eng. OnLine, Vol. 16, No.

1, p. 93, 2017, doi: 10.1186/s12938-017-0383-2.

[17] T. Zhu, Q. Zhao, W. Wan, and Z. Xia, “Robust

Regression-Based Motion Perception for Online

Imitation on Humanoid Robot”, Int. J. Soc.

Robot., Vol. 9, No. 5, pp. 705–725, 2017, doi:

10.1007/s12369-017-0416-9.

[18] R. V. N. Kumar and R. Sreenivasulu, “Inverse

Kinematics (IK) Solution of a Robotic

Manipulator using PYTHON”, J. Mechatron.

Robot., Vol. 3, No. 1, pp. 542–551, 2019, doi:

10.3844/jmrsp.2019.542.551.

[19] L. Sardana, M. K. Sutar, and P. M. Pathak, “A

geometric approach for inverse kinematics of a

4-link redundant In-Vivo robot for biopsy”,

Robot. Auton. Syst., Vol. 61, No. 12, pp. 1306–

1313, Dec. 2013, doi:

10.1016/j.robot.2013.09.001.

[20] S. A. Nugroho, A. S. Prihatmanto, and A. S.

Rohman, “Design and implementation of

kinematics model and trajectory planning for

NAO humanoid robot in a tic-tac-toe board

game”, In: Proc. of 2014 IEEE 4th International

Conference on System Engineering and

Technology (ICSET), Bandung, Indonesia: IEEE,

pp. 1–7, 2014, doi:

10.1109/ICSEngT.2014.7111783.

[21] N. Kofinas, E. Orfanoudakis, and M. G.

Lagoudakis, “Complete Analytical Forward and

Inverse Kinematics for the NAO Humanoid

Robot”, J. Intell. Robot. Syst., Vol. 77, No. 2, pp.

251–264, 2015, doi: 10.1007/s10846-013-0015-

4.

[22] M. Zhang, J. Chen, X. Wei, and D. Zhang,

“Work chain-based inverse kinematics of robot

to imitate human motion with Kinect”, ETRI J.,

Vol. 40, No. 4, pp. 511–521, 2018, doi:

10.4218/etrij.2018-0057.

[23] A. K. Singh, P. Chakraborty, and G. C. Nandi,

“Sketch drawing by NAO humanoid robot”, In:

Proc. of TENCON 2015 - 2015 IEEE Region 10

Conference, Macao, pp. 1–6, 2015, doi:

10.1109/TENCON.2015.7373001.

[24] Y. Wang, C. Zhao, X. Wang, P. Zhang, P. Li,

and H. Liu, “Inverse Kinematics of a 7-DOF

Spraying Robot with 4R 3-DOF Non-spherical

Wrist”, J. Intell. Robot. Syst., Vol. 101, No. 4, p.

68, 2021, doi: 10.1007/s10846-021-01338-w.

[25] D. Robotics, “Denso VP6242 Specification”,

[Online]. Available:

https://www.densorobotics.com/products/5-6-

axis/vp-series/

[26] K. Robotics, “Kuka KR AGILUS Specification”,

[Online]. Available: https://www.kuka.com/en-

de/products/robot-systems/industrial-robots/kr-

agilus

[27] Y. M. Robotics, “Yaskawa Motoman GP180

Specification”, [Online]. Available:

https://www.motoman.com/en-

us/products/robots/industrial/assembly-

handling/gp-series/gp180

[28] R. N. Jazar, “Theory of Applied Robotics:

Kinematics, Dynamics, and Control”, Second

Edition. Boston, MA: Springer US, 2010, doi:

10.1007/978-1-4419-1750-8.

[29] S. Mukherjee, D. Paramkusam, and S. K.

Dwivedy, “Inverse Kinematics of a NAO

Humanoid Robot using Kinect to Track and

Imitate Human Motion”, In: Proc. of

International Conference on Robotics,

Automation, Control and Embedded Systems,

India, p. 7, 2015.

[30] A. K. Singh, N. Baranwal, and G. C. Nandi,

“Development of a self reliant humanoid robot

for sketch drawing”, Multimed. Tools Appl., Vol.

76, No. 18, pp. 18847–18870, 2017, doi:

10.1007/s11042-017-4358-x.

[31] M. Alibeigi, “Inverse Kinematics Based Human

Mimicking System using Skeletal Tracking

Technology”, J Intell Robot Syst, p. 19, 2017.

[32] L. Zhang and N. Xiao, “A novel artificial bee

colony algorithm for inverse kinematics

calculation of 7-DOF serial manipulators”, Soft

Comput., Vol. 23, No. 10, pp. 3269–3277, May

2019, doi: 10.1007/s00500-017-2975-y.

[33] S. Dereli and R. Köker, “Calculation of the

inverse kinematics solution of the 7-DOF

redundant robot manipulator by the firefly

algorithm and statistical analysis of the results in

terms of speed and accuracy”, Inverse Probl. Sci.

Eng., Vol. 28, No. 5, pp. 601–613, 2020, doi:

10.1080/17415977.2019.1602124.

[34] H. Deng and C. Xie, “An improved particle

swarm optimization algorithm for inverse

kinematics solution of multi-DOF serial robotic

manipulators”, Soft Comput., Vol. 25, No. 21, pp.

13695–13708, Nov. 2021, doi: 10.1007/s00500-

021-06007-6.

[35] L. Yiyang, J. Xi, B. Hongfei, W. Zhining, and S.

Liangliang, “A General Robot Inverse

Kinematics Solution Method Based on

Improved PSO Algorithm”, IEEE Access, Vol. 9,

Received: June 16, 2023. Revised: July 26, 2023. 538

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.45

pp. 32341–32350, 2021, doi:

10.1109/ACCESS.2021.3059714.

[36] Ö. Ekrem and B. Aksoy, “Trajectory planning

for a 6-axis robotic arm with particle swarm

optimization algorithm”, Eng. Appl. Artif. Intell.,

Vol. 122, p. 106099, 2023, doi:

10.1016/j.engappai.2023.106099.

[37] A. N. Sharkawy and S. S. Khairullah, “Forward

and Inverse Kinematics Solution of A 3-DOF

Articulated Robotic Manipulator Using

Artificial Neural Network”, Int. J. Robot.

Control Syst., Vol. 3, No. 2, pp. 330–353, 2023,

doi: 10.31763/ijrcs.v3i2.1017.

[38] Y. Bai, M. Luo, and F. Pang, “An Algorithm for

Solving Robot Inverse Kinematics Based on

FOA Optimized BP Neural Network”, Appl. Sci.,

Vol. 11, No. 15, p. 7129, 2021, doi:

10.3390/app11157129.

[39] J. Lu, T. Zou, and X. Jiang, “A Neural Network

Based Approach to Inverse Kinematics Problem

for General Six-Axis Robots”, Sensors, Vol. 22,

No. 22, p. 8909, 2022, doi: 10.3390/s22228909.

[40] V. Kramar, O. Kramar, and A. Kabanov, “An

Artificial Neural Network Approach for Solving

Inverse Kinematics Problem for an

Anthropomorphic Manipulator of Robot SAR-

401”, Machines, Vol. 10, No. 4, p. 241, 2022,

doi: 10.3390/machines10040241.

[41] C. Lee and D. An, “AI-Based Posture Control

Algorithm for a 7-DOF Robot Manipulator”,

Machines, Vol. 10, No. 8, p. 651, 2022, doi:

10.3390/machines10080651.

[42] J. J. Craig, Introduction to Robotics: Mechanics

and Control, 3rd international ed. England:

Pearson Higher Education, 2014.

[43] I. Boussaïd, J. Lepagnot, and P. Siarry, “A

survey on optimization metaheuristics”, Inf. Sci.,

Vol. 237, pp. 82–117, 2013, doi:

10.1016/j.ins.2013.02.041.

[44] A. Nugroho, E. M. Yuniarno, and M. H.

Purnomo, “Cooperative Multi-agent for The

End-Effector Position of Robotic Arm Based on

Consensus and PID Controller”, In: Proc. of

2019 IEEE International Conference on

Computational Intelligence and Virtual

Environments for Measurement Systems and

Applications (CIVEMSA), Tianjin, China, pp. 1–

6, 2019, doi:

10.1109/CIVEMSA45640.2019.9071621.

[45] B. Siciliano, L. Sciavicco, L. Villani, and G.

Oriolo, “Robotics: Modelling, Planning, and

Control”, Advanced Textbooks in Control and

Signal Processing, 2008.

[46] “Axis–angle representation - Wikipedia”,

https://en.wikipedia.org/wiki/Axis%E2%80%9

3angle_representation#Rotation_vector

(accessed Aug. 22, 2022).

[47] F. Chollet, “Deep learning with Python”, Shelter

Island, New York: Manning Publications Co,

2018.

[48] K. Ogata, “Modern Control Engineering”, 5th

Edition. Prentice Hall, 2009.

[49] O. M. Omisore, S. Han, L. Ren, A. Elazab, L.

Hui, T. Abdelhamid, N. A. Azeez, and L. Wang,

“Deeply-learnt damped least-squares (DL-DLS)

method for inverse kinematics of snake-like

robots”, Neural Netw., Vol. 107, pp. 34–47,

2018, doi: 10.1016/j.neunet.2018.06.018.

