
Received:  June 26, 2023.     Revised: July 20, 2023.                                                                                                        449 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.39 

 

 

Enhanced Global Path Planning Efficiency by Bidirectional A*, Gradient 

Descent, and Orientation Interpolation Algorithms 

 

Zuhair A. Ahmed1*          Safanah M. Raafat1 

 
1University of Technology, Iraq 

* Corresponding author’s Email: cse.20.27@grad.uotechnology.edu.iq 

 

 
Abstract: This paper presents an innovative approach to global path planning (GPP) that uniquely integrates an 

enhanced Bidirectional A* search algorithm, gradient descent smoothing, and orientation filter interpolation. These 

methods are applied within a quadratic approximation-based potential field and global cost map. The key idea is 

successfully integrating these powerful techniques, ensuring minimal impact on computational time while enhancing 

path size and smoothness. Rigorous testing in environments like the Amazon web services (AWS) RoboMaker 

Hospital Gazebo environment and the sections at the control and systems engineering building at Iraq’s University of 

Technology (CSE-UOT) in Iraq shows significant improvement over existing planners like wavefront GPP and robot 

operating system (ROS) default GPP. The proposed algorithm reduced pathfinding time by approximately 60.3% and 

path size by 9.0%. These findings highlight the efficiency of the proposed global planner, suggesting it as a robust 

solution for autonomous robotic navigation in complex architectural scenarios. 

Keywords: Global path planning, Bidirectional A*, Gradient descent smoothing, Orientation filter interpolation, 

Mobile robotics. 

 

 

1. Introduction 

In mobile robotics, achieving autonomous 

navigation represents a formidable challenge that 

encompasses the determination and execution of an 

optimal trajectory from the robot’s current position to 

a predestined location [1]. The execution of 

autonomous navigation in mobile robots involves a 

set of critical tasks that include creating accurate 

maps of the environment, precise localization of the 

robot’s pose, sophisticated motion planning, and 

efficient trajectory tracking [2]. 

Motion planning, a core aspect of this process, 

aims to create a comprehensive path preventing 

collisions while maneuvering from the robot’s 

current location to its desired destination. The 

algorithms underpinning this process are principally 

classified into global path planners (GPPs) and real-

time obstacle avoidance algorithms, commonly 

called local planners [3]. In path planning, GPPs 

utilize an offline model or a static environmental map 

to compute an optimal path from the robot’s current 

location to its goal. These global paths provide an 

overarching strategy for navigation, facilitating long-

range decisions. Meanwhile, local planners operate 

dynamically, determining the robot’s motion in real 

time by harnessing sensory data. This mechanism 

enables the robot to adapt to any unforeseen obstacles 

or changes in the environment, ensuring effective 

short-range decisions and immediate collision 

avoidance. 

Path planning’s effectiveness is gauged using 

metrics like path length, turning angle, computation 

time, and risk factor. However, most existing 

algorithms exhibit limitations, such as paths that are 

too close to obstacles or unnecessarily long paths due 

to right-angle turns, compromising the planned path’s 

robustness and reducing the mobile robot’s speed [4]. 

In mobile robotics, the A* algorithm stands as a 

reputable tool for path planning, especially in static 

environments where its performance excels [5]. 

However, as map complexity and size grow, this 

algorithm’s efficiency is curtailed, leading to 

increased computational demands and prolonged 
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processing time [6]. Multiple strategies have been 

proposed to refine the performance of the A* 

algorithm, encompassing a myriad of heuristic 

algorithms, including genetic algorithms (GA), 

simulated annealing algorithms (SA), ant colony 

algorithms (AOC), and particle swarm algorithms 

(PSO) [7, 8]. Each of these algorithms exhibits its 

unique strengths and challenges. For instance, GA is 

prone to premature convergence [9]. At the same time, 

SA and AOC struggle with slow convergence speed, 

with the latter also prone to becoming ensnared in 

local optima [10]. Furthermore, attempts to enhance 

the efficacy of path planning have resulted in various 

techniques and strategies, like introducing a “safety 

distance” constraint in unmanned surface vehicles 

(USVs) path planning. However, such methods 

frequently neglect to account for map obstacles [11]. 

Another approach employs smoothing techniques for 

collision avoidance as a distinct phase between global 

and local planning or during local planning. These 

techniques, albeit functional, have the adverse effect 

of increasing the computational burden on the robotic 

system [12]. Despite the strides made in augmenting 

the A* algorithm’s performance, like the utilization 

of varied heuristic functions [13], expanding the 

search neighborhood [14], and refining the cost 

function [15], most of these advancements tend to 

optimize either efficiency or robustness but seldom 

both [16]. This introduces a challenge as an effective 

path-planning algorithm ought to concurrently 

maintain a balance between efficiency and robustness 

[17]. Some notable attempts at enhancement include 

Zhang et al.’s implementation of a regular hexagonal 

grid [18], the breaking of the single-step grid shape 

restriction by the Theta* algorithm [19], and Ju et 

al.’s Weighted JPS algorithm. While these 

advancements have significantly improved the A* 

algorithm’s efficiency and path length, they have not 

satisfactorily addressed robustness, leading to paths 

that are too close to obstacles, contain numerous 

inflection points, and involve excessive right-angle 

turns [19]. 

Several works have attempted to address these 

limitations. Although the conventional relaxed 

version of the A* algorithm is efficient [20], it often 

results in paths that are not smooth or not feasible for 

real-world implementation [21]. Another work 

enhanced the A* algorithm by integrating it with a 

potential field and cost map, which often improved 

the found path’s quality, but it often increased the 

computational time significantly [22]. Furthermore, 

some works have focused on smoothing the path, 

such as the default ROS GPP and the Wavefront GPP  

[23]. While effective in generating smoother paths, 

these methods often result in longer paths and 

increased computational time. 

Given these challenges, this paper proposes an 

approach that aims to balance efficiency and 

robustness in the context of mobile robotics path 

planning. A comprehensive GPP that integrates 

several strategies in response to these issues has been 

proposed. These include a quadratic approximation 

method for calculating potential values of the 

potential field (PF), Bidirectional A* for efficient 

pathfinding, discrete gradient descent for interpolated 

path, and linear interpolation for filtering waypoints’ 

orientations. 

The proposed GPP addresses these limitations by 

amalgamating several strategies, offering a reliable, 

feasible, quick, and computationally efficient 

solution. Its effectiveness has been demonstrated 

using the robot operating system (ROS)-based 

TurtleBot3 burger (TB3B) robot in a navigation test, 

underscoring the practicability of the paths generated 

by the proposed planner. 

The remainder of this paper is structured as 

follows: The proposed GPP algorithm is described in 

section 2. Section 3 delves into the experimental 

design and evaluation metrics. Section 4 assesses the 

proposed algorithm’s performance, compares it to 

other algorithms in realistic environments using the 

developed benchmark tool, and discusses the results. 

Lastly, the conclusions are presented in the final 

section. 

2. Proposed work 

The GPP structure in Fig. 1 proposes a unique 

amalgamation of five sequential techniques. These 

techniques work harmoniously to generate an optimal, 

pre-smoothed global path for a differential drive 

mobile robot to navigate in a complex, real-world 

environment, represented as an occupancy grid map 

(OGM). The subsequent sections elucidate a 

distinctive strategy that merges algorithmic 

procedures with mathematical principles to compute 

the most efficient path for the robot. 

2.1 Global cost map configuration 

In robotic path planning, cost map configuration 

is pivotal, influencing the robot’s recognition of and 

interaction with obstacles. The robot discerns 

obstacles through their associated high costs, thus 

enabling it to circumnavigate these barriers 

efficiently. Cost values will be allocated to the 

individual cells in the OGM, contingent on their 

distance from obstacles. For illustrative purposes, Fig. 

2. depicts an example of an OGM containing a 

cantered obstacle. In contrast, Fig. 2.b displays its 

corresponding global cost map layer and grayscale  
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Figure. 1 Proposed GPP structure 

 

gradient surrounding the obstacle in the map’s central 

region, illustrating the varying cost values in 

proximity to these obstacles.  

Initially, the cost map layer is derived from an 

OGM layer, which portrays the environment in terms 

of free spaces, occupied areas, and unknown regions. 

The OGM undergoes initialization, whereby cost 

values are allotted to cells based on their distances 

from obstacles. The categorization of cells is 

illustrated in Fig. 3 as follows: 

 

• Free cost cells: These cells are allotted a 

value of 0, denoting areas without obstacles, 

allowing the robot to move without 

hindrance. 

• Inflation cost cells: These cells are attributed 

values ranging from 1 to 127, indicating their 

proximity to obstacles. The closer a cell is to 

an obstacle, the higher its inflation cost. 

• Circumscribed cost cells: These cells have an 

assigned value of 128, delineating the 

obstacles’ boundaries. 

• Inscribed cost cells: With a value of 253, 

these cells indicate spaces where the robot’s 

radius can fit within the cell. 

• Lethal cost cells: These cells bear a value of 

254 and signify the presence of obstacles that 

are impassable for the robot. 

 

An exponential decay function ensures a gradual 

decrease in cost values as the distance from obstacles 

increases. The cost function is expressed as: 

 

𝐶 =  𝑒−𝛼 (𝑑𝑜𝑏𝑠−𝑟𝑖𝑛𝑠) 𝑉𝑙𝑒𝑡ℎ𝑎𝑙               (1) 

 

where: 

𝐶 : The cost assigned to a specific grid cell. 

𝛼 : A scale factor regulating the rate of decay. 

𝑑𝑜𝑏𝑠 : The distance from the nearest obstacle. 

𝑟𝑖𝑛𝑠 : The inscribed radius of the robot. 

𝑉𝑙𝑒𝑡ℎ𝑎𝑙 : The default lethal cost value, typically set at 

254. 

This methodology integrates a buffer zone around 

obstacles, designated as the “fatal zone.” This zone is 

assigned the highest cost value of 253-128, ensuring 

the robot maintains a safe berth from obstacles, 

thereby averting collisions. The cost values 

surrounding this fatal zone do not appear consistent, 

and it is updated based on the exponential decay 

function described in Eq. (1). Global cost map 

facilitates efficient path planning while minimizing 

the risk of collisions. 

2.2 PF calculation 

In robotic navigation and path planning, 

computing PF is essential. It involves setting up a 

virtual environment represented by a grid where each 

cell has a potential value. These potentials help guide 

the robot to its destination while avoiding obstacles. 

PFs are composed of two main components: 

attractive and repulsive potentials, 𝑈𝑎𝑡𝑡  and 𝑈𝑟𝑒𝑝 , 

respectively. The attractive potential is linked to the 

goal, drawing the robot towards it. The repulsive 

potential is associated with obstacles, pushing the 

robot away from them to avoid collisions. The total 

potential U is a combination of these two potentials 

[24]: 

 

U =  𝑈𝑎𝑡𝑡 +  𝑈𝑟𝑒𝑝                    (2) 

 

The attractive potential is generally proportional 

to the square of the distance to the goal: 

 

𝑈𝑎𝑡𝑡  =  
1

2
 𝜁 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐺𝑜𝑎𝑙2            (3) 

 

Repulsive potential 𝑈𝑟𝑒𝑝  is inversely 

proportional to the square of the distance to the 

obstacles: 

 

𝑈𝑟𝑒𝑝  =  
1

2
𝜂 [

1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒
]

2

           (4) 

 

where 𝜁 and 𝜂 are positive constants representing 

the strengths of the attractive and repulsive potentials, 

respectively. 

However, the PF method may encounter issues 

such as trapping the robot in local minima [25]. To 

address these issues and improve the responsiveness 

of the PF to the environment’s spatial layout, 

researchers can utilize advanced methods like the 

Quadratic approximation for grid potentials. In the  
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Occupancy grid map
 

(a) 

Global cost map
 

(b) 

Figure. 2 Illustration of: (a) OGM layer and (b) Global 

cost map layer. 

 
Lethal cost: 254

Inscribed cost: 253

Circumscribed cost: 128

Inflation cost: 1-127

Free cost: 0

 
Figure. 3 Cells value categorization of the global cost 

map 

 

Quadratic approximation for grid potentials, a 

second-degree polynomial is used to approximate the 

potential value of a cell 𝑃(𝑛)  based on its 

neighboring cells and a cost value using variables, 𝑡𝑎, 

ℎ𝑓, and 𝑑𝑐 [26]. It is more adaptive, considering each 

cell’s spatial configuration and costs. Here is what 

each variable represents: 

 

• 𝑡𝑎 : This means the minimum potential among 

the neighboring cells of the cell 𝑛. It signifies the 

lowest potential value around the cell, used as a 

baseline for calculating its potential. 

• ℎ𝑓 : This represents the cost of the current cell 𝑛. 

It could be considered a neutral cost or proximity 

to obstacles. It is an integral part of calculating 

the new potential, considering the inherent 

difficulty or ease in moving through the cell. 

• 𝑑𝑐 : This is the relative cost between the lowest 

neighboring potentials. It provides a measure of 

the variation in potential among the adjacent 

cells. This value helps determine how much the 

current cell’s potential should be influenced by 

its surroundings. 

 

If the relative cost 𝑑𝑐  between the lowest 

neighboring potentials is greater than or equal to the 

cost ℎ𝑓, the potential 𝑃(𝑛) is calculated as: 

 

𝑃(𝑛)  =  𝑡𝑎 +  ℎ𝑓                    (5) 

 

Otherwise, the potential is calculated as follows: 

 

𝑃(𝑛) =  𝑡𝑎 +  

 ℎ𝑓 [−0.2301(
𝑑𝑐

ℎ𝑓
)2 + 0.5307 (

𝑑𝑐

ℎ𝑓
) + 0.7040]      (6) 

 

moreover, it can be further generalized as: 

 

𝑃(𝑋) =  a𝑋2 +  bX + c           (7) 

 

where 𝑋 represents the cell’s position, and a, b, 

and c are coefficients determined based on the 

potentials of the neighboring cells. 

These equations are derived for efficient and 

adaptive estimation of the potential of a cell in a grid. 

Eq. (5) is a more straightforward estimation when the 

variation in potential among the neighbors, 𝑑𝑐 , is 

high. Eq. (6) is a more adaptive estimation, 

considering the low potential of  𝑑𝑐 . Using 𝑡𝑎 , ℎ𝑓 , 

and 𝑑𝑐, in this manner, helps to make the PF more 

responsive to the spatial configuration of the 

environment. It enables smoother and more efficient 

paths for robot navigation. 

Fig. 4 provides a visual representation of the (a) 

OGM, (b) the associated global cost map, and (c) the 

PF map. The strength of the attractive potential 

increases as we approach the goal, while the repulsive 

potential is notably pronounced around the two 

central obstacles. This graphical representation offers 

crucial insights into how PFs navigate the robot 

through the environment. 

In addition, Fig. 5 depicts a flowchart that 

elucidates the sequential procedure employed in  
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(a) 

 
(b) 

 
(c) 

Figure. 4 Visual representation of OGM, global cost map, 

and the PF map: (a) OGM visualization, (b) Global cost 

map visualization, and (c) OGM visualization 

 
Figure. 5 Workflow of PF calculation via quadratic 

approximation 

 

calculating the PF. The discretization of the 

configuration space initiates the process into a grid 

structure. Following this, the attractive and repulsive 

potentials are derived. The culmination of this 

sequence involves calculating the total potential 

through Quadratic approximation. 

Notably, adopting Quadratic approximation for 

grid potentials results in a more refined and precise 

estimation of the PF. However, this refinement is 

accompanied by an escalation in computational 

resource requirements. Therefore, a judicious 

equilibrium must be maintained between 

computational accuracy and efficiency. 

2.3 Bidirectional A* algorithm 

This paper adopts a variation of the widely 

regarded A* search algorithm, namely the 

Bidirectional A* search algorithm. Distinct from the 

traditional A*, the Bidirectional A* initiates search 

concurrently from both the start and goal nodes, 

resulting in two simultaneous, opposing searches. 
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The first search progresses forward from the start 

node, while the second progresses backward from the 

goal. The point at which these searches meet or 

overlap signifies that a path has been established [27]. 

This Bidirectional strategy yields significant 

efficiency enhancements compared to the traditional 

A* algorithm, particularly in expansive search spaces. 

The algorithm can reduce the search area and lessen 

the computational burden. Nonetheless, it adheres to 

the fundamental principle of the A* algorithm, which 

is to minimize the sum of the actual cost from the start 

node to a given node and the heuristic estimated cost 

from that node to the goal. 

Mathematically, the total cost function, 𝑓(𝑛), for 

a given node 𝑛 in the A* algorithm is defined as the 

sum of the actual cost, 𝑔(𝑛), from the start node to 𝑛 

and the heuristic estimated cost, ℎ(𝑛), from 𝑛 to the 

goal. This relationship can be represented as: 

 

𝑓(𝑛) =  𝑔(𝑛) + ℎ(𝑛)               (8) 

 

In the Bidirectional A* algorithm, two distinct 

cost values are maintained for each node. The actual 

cost from the start node to 𝑛 , 𝑓1(𝑛). The actual cost 

from 𝑛  to the goal node 𝑓2(𝑛) . Subsequently, the 

forward and backward costs for each node 𝑛  are 

defined as 𝑔1(𝑛) and𝑓2(𝑛), respectively, and can be 

represented as: 

 

𝑓1(𝑛) =  𝑔1(𝑛) + ℎ(𝑛)            (9) 

 

𝑓2(𝑛) =  𝑔2(𝑛) + ℎ(𝑛)         (10) 

 

This work employs the Manhattan distance as the  

 

 
Figure. 6 Bidirectional A* search with gradient descent 

heuristic, a common choice for grid-based 

environments where movement is restricted to 

horizontal and vertical directions. The search process 

concludes when the forward and backward paths 

intersect, at which point the total costs (𝑓
1
(𝑛) and 

𝑓
2
(𝑛)), are minimal, ensuring the minimization of 

the total cost for the complete path from the start to 

the goal. Fig. 6 provides a graphical illustration 

related to this subsection and continues the example 

in Fig. 4. It demonstrates the forward and backward 

searching spaces in the Bidirectional A* algorithm 

and visually highlights where the best cells from both 

searches meet. Incorporation of the Bidirectional A* 

algorithm is anticipated to bolster the robustness and 

efficiency of pathfinding in the proposed system. 

This optimization is especially vital in complex 

environments where expeditious and effective 

pathfinding is paramount. 

2.4 Discrete gradient descent for path generation 

The path generation phase employs a discrete 

variant of the gradient descent algorithm. This 

technique assimilates the principles of gradient 

descent to yield a path conducive to fluid robot 

movements and efficient evasion of obstacles. The 

algorithm iteratively progresses toward the steepest 

descent by utilizing the PF. 

The mathematical description of the gradient 

descent algorithm is as follows [28]: Given a PF P (x, 

y), where (x, y) denote the coordinates of a cell, the 

gradient of the PF at point (x, y) is expressed by the 

vector: 

 

∇P(𝑥, 𝑦) =  [
∂P

∂x
 ,

∂P

∂y
]                 (11) 

 

This vector indicates the direction of the steepest 

ascent in the PF. The negative gradient, which 

corresponds to the steepest descent, is used to move 

toward the goal. The negative of the gradient is taken: 

 

∇P(𝑥, 𝑦) =  [−
∂P

∂x
 , −

∂P

∂y
]                 (12) 

 

The subsequent position on the path ( 𝑥𝑛𝑒𝑥𝑡 t, 

𝑦𝑛𝑒𝑥𝑡 ) is determined from the current position 

(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡) by: 

 

𝑥𝑛𝑒𝑥𝑡 = 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −  δ 
∂P

∂x
                (13) 

 

𝑦𝑛𝑒𝑥𝑡 = 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −  δ 
∂P

∂y
                       (14) 

 

here, δ is a positive constant dictating the step 
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size. 

This iterative process commences at the goal and 

retrogresses to the starting position, with each step 

advancing toward the steepest descent. The result is a 

smooth, continuous path aligned with the PFs 

gradient. In practical terms, this path represents an 

interpolation of the steepest descent in the PF, 

ensuring a feasible and efficient trajectory for the 

robot. 

Crucially, the derivatives ∂P/∂x and ∂P/∂y are 

approximated using finite differences in the 

implementation, as the PF is discretized. This 

adaptation renders the gradient descent algorithm 

compatible with path generation in discrete spaces 

typical in robotic path planning. Furthermore, the 

discrete gradient descent method operates within the 

framework of the ROS GPP. Fig. 6 also offers a 

graphical illustration of the discrete gradient descent 

process in path generation. The Figure elucidates the 

smooth path obtained through this algorithm, 

emphasizing the PF interpolation of the steepest 

descent in the PF. The discrete gradient descent 

algorithm generates smooth paths in discrete 

environments. It is a viable solution for robotic path 

planning that necessitates natural robot movements 

and strategic obstacle circumvention.  

2.5 Linear interpolation of orientation 

In the terminal phase of the methodology, 

orientation filtering is implemented through linear 

interpolation, centering primarily on the yaw angle 

amid waypoints. From a mathematical standpoint, the 

linear interpolation of an angle 𝜃 situated between 𝜃1 

and 𝜃2 can be articulated as: 

 

𝜃 = (1 − t) 𝜃1 +  t 𝜃2             (15) 

 

here, t is a scalar that spans from 0 to 1. When t 

assumes the value of 0, 𝜃 equals 𝜃1, and conversely, 

when t is 1, 𝜃 equates to  𝜃2. 

Incorporating linear interpolation for orientation 

filtering is a critical component within a broader 

framework that amalgamates a constellation of 

cutting-edge robotic path-planning paradigms. This 

holistic strategy cultivates a pragmatic and 

efficacious resolution for global path planning. 

Orientation filtering, particularly the yaw angle, 

ensures seamless transitions between waypoints, 

rendering the robotic movements more natural and 

streamlined. It is particularly imperative in complex 

environments where the robot is tasked with 

maneuvering around obstacles to reach its destination 

most efficiently. The orientation filtering by linear 

interpolation is visually exemplified in Fig. 7. This  
 

 
Figure. 7 Orientation interpolation 

 

illustration highlights the transitioning of the 

orientation through linear interpolation from an 

initial 0-degree orientation to a 90-degree orientation. 

This depiction brings the continuity and smoothness 

introduced by employing linear interpolation for 

orientation filtering to the fore. 

As the culmination of a sophisticated 

methodology that combines quadratic approximation 

for PFs, Bidirectional A* for pathfinding, discrete 

gradient descent for path generation, and linear 

interpolation for orientation filtering, this final stage 

enhances the overall reliability, feasibility, 

expediency, and computational efficiency of the 

proposed global path-planning algorithm. The 

following sections of this article will furnish 

experimental evidence underpinning the 

effectiveness of the proposed methodology in robotic 

path planning. 

3. Experimental design and evaluation 

metrics 

3.1 Experimental environments 

The performance of the proposed GPP was 

evaluated using the TB3B with an optimal 

configuration through Gmapping, as detailed in 

previous work [29]. This evaluation involved the 

generation of three benchmark occupancy grid maps 

OGMs, as depicted in Fig. 8.  

Fig. 8 illustrates the experimental environments 

and the properties of TB3B. The primary benchmark 

map was the Amazon Web Services (AWS) 

RoboMaker Hospital Gazebo environment [30]. This 

environment skillfully replicates a real-world  
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(a)  

 
(b)  

 
(c)  

 
(d)  

360 Laser 

Distance Sensor 

(LDS-01)

LDS-01 to USB 

driver

Raspberry Pi 4 

(RPI4-4GB)

DYNAMIXEL

XL430-W250

LIPO Battery 

11.1V 1,800mAh

OpenCR-01

Size (L x W x H) 138mm x 178mm x 192mm
 

(e)  

Figure. 8 Experimental environments and TB3B 

properties (a) AWS hospital environment (b) OGM of 

AWS hospital environment (c) OGM of CSE-UOT 

environment 1st floor (d) OGM of CSE-UOT 

environment 2nd floor and (e) TB3B in a corridor of CSE-

UOT environment 2nd floor [29]  

 

 

Table 2. Dimensions of the experimental environments 

Environment 

Longest 

length 

(m) 

Longest 

width 

(m) 

AWS Hospital environment 55 24 

CSE-UOT environment 

1st floor 
60 17 

CSE-UOT environment 

2nd floor 
60 17 

 

 

hospital setting, with rooms of varying sizes, curved 

and straight walls, and multiple obstructions (see Fig. 

8.a and Fig. 8.b). 

Additionally, two OGMs were used, representing 

distinct sections of the Control and Systems 

Engineering building at Iraq’s University of 

Technology (CSE-UOT). These environments, 

characterized by a complex network of long, winding, 

straight, and curved corridors (see Fig. 8.c and Fig. 

8.d), added complexity to the testing framework. 

The start and goal points, which were 

significantly separated and embedded within these 

intricate layouts, were carefully chosen to test the 

proposed GPP. The dimensions of these 

environmental maps, expressed in meters (m), are 

approximately tabulated in Table 1. 

3.2 Evaluation metrics 

A bespoke benchmarking tool was employed to 

compare several GPPs in-depth. This tool is tailored 

to gauge the efficiency of GPPs in terms of path size 

(PS), planning time (PT), and visual inspection. 

PS: the first metric to indicate the complexity of 

the paths generated by the algorithms is PS. It is 

gauged by measuring the number of waypoints that 

constitute the paths. This metric serves as a surrogate 

for the physical path length. It alleviates the 

complexities associated with precise path length 

measurement in various environments. Using PS as a 

metric provides a standard for direct comparison 

among different planners without considering the 

methods by which the waypoints are generated. 

PT: PT is the second metric employed as 

instrumental in quantifying the duration expended by 

each GPP in generating viable paths. This metric is 

invaluable as it can evaluate the planners’ 

responsiveness in real-time applications where 

expedient decision-making is paramount. 

Visual inspection: The third metric entails a 

qualitative analysis as a visual inspection of the paths 

generated by each algorithm. This evaluation is 

accomplished through visualizations that depict the 

quality of the paths. Visualization inspection is 

integral as it reveals potential issues such as collisions 
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with obstacles or unnecessarily convoluted paths. 

Moreover, it provides an intuitive understanding of 

path navigability, smoothness, and adherence to 

environmental constraints. 

A comprehensive and rigorous benchmark tool is 

established for comparing different global path-

planning algorithms by employing PS, PT, and 

visualization inspection as evaluation metrics. This 

evaluation paradigm is particularly pertinent for 

realistic environments and robot configurations, 

shedding light on the practical applicability and 

performance of the algorithms under a diverse array 

of conditions. 

4. Results and discussions 

The proposed GPP algorithm was intensively 

evaluated. The investigation was initiated by 

analyzing the enhanced A* algorithm before the 

application of smoothing. This was followed by the 

incorporation of gradient descent smoothing and 

orientation filter interpolation, which culminated in 

the final form of the proposed GPP algorithm. This 

refined algorithm was then subjected to a thorough 

evaluation process. 

4.1 Quantitative analysis 

The evaluation commenced with critically 

analyzing the enhanced A* algorithm’s performance 

in its unsmoothed state. This preliminary phase (1st 

evaluation phase) rigorously assessed three variations 

of the algorithm: The proposed Bidirectional A* 

integrated with a global cost and PF maps versus A* 

integrated with a global cost and PF maps [22], and 

the conventional Relaxed A* [20]. PT and PS were 

employed as performance measures, detailed in Table 

2. 

The empirical data in Table 2 highlights the 

significant optimization of the A* algorithm when a 

global cost map and PF map are included, with the 

Bidirectional variant showcasing superior 

enhancements in PT and PS. This phase provides a 

benchmark for comparing the enhanced A* algorithm 

against its contemporaries. 

The 2nd evaluation phase, presented in Table 3, 

builds upon the first by incorporating gradient 

descent and linear interpolation into the enhanced A* 

algorithm to constitute the final proposed GPP. This 

phase concentrates on the improvements attained 

through path smoothing, which expedites 

communication with the local planner, leading to 

more fluid robot trajectories in complex 

environments. 

Tables 4 and 5, meanwhile, present the 

performance metrics from the 1st and 2nd validation  

 

Table 2. Performance metrics of enhanced GPP without 

smoothing for the 1st evaluation phase 

GPP 
PT 

(Sec) 

PS 

(Waypoints) 

Bidirectional A* with 

global cost map and PF 

map 

0.101448 1323 

A* with a global cost map 

and PF map 
0.376148 1391 

A* without a global cost 

map and PF map 
2.789501 1731 

 

 
Table 3. Performance metrics of enhanced GPP with 

smoothing 2nd evaluation phase 

GPP 
PT 

(Sec) 

PS 

(Waypoints) 

Proposed GPP 0.065486 2165 

Wavefront GPP 0.103634 2859 

ROS Default GPP 0.236587 2928 

 

 
Table 4. Performance metrics in 1st validation 

GPP 
PT 

(Sec) 

PS 

(Waypoints) 

Proposed GPP 0.107653 4351 

Wavefront GPP 0.192431 4373 

ROS Default GPP 0.806832 4480 

 

 

Table 5. Performance metrics in 2nd validation 

GPP 
T 

(Sec) 

PS 

(Waypoints) 

Proposed GPP 0.124785 5088 

Wavefront GPP 0.192135 5097 

ROS Default GPP 0.937977 5100 

 

 

stages, respectively. The proposed GPP algorithm is 

benchmarked against the Wavefront GPP [23]  and 

the ROS Default GPP [31] in varying environments, 

such as AWS Hospital and CSE-UOT. 

The empirical data spanning these tables 

substantiate the proposed GPP algorithm’s superior 

performance concerning PT and PS. Across the tables, 

an average improvement of roughly 60.3% in PT and 

9.0% in PS were registered, compared to Wavefront 

and ROS Default GPPs. 

4.2 Qualitative analysis 

A qualitative evaluation of the proposed GPP 

algorithm was conducted alongside the quantitative 

assessment. This involved visual inspections of the 

paths generated by the algorithm and those produced  
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Start

Goal

Bidirectional A* with global cost map and potential field
A* wihth global cost map and potential field

A* wihtout global cost map and potential field

 
Figure. 10 Visual inspection and comparison of 1st phase 

 

Start

Goal

Proposed GPP
Wavefront GPP

ROS Default GPP

 
Figure. 10 Visual inspection and comparison of the 2nd 

phase 

 

by wavefront GPP and ROS default GPP. Fig. 9 to 12 

visually compare the first and second evaluation 

phases and the first and second validations, 

respectively. 

The visual analysis affirms the superior 

performance of the proposed GPP algorithm, which 

creates more streamlined and well-aligned paths, 

especially noticeable within corridors and doorways. 

In contrast, the wavefront GPP and ROS default GPP 

paths exhibited excessive curvature and suboptimal 

alignments, particularly in complex environments 

and over long distances. 

 

Start

Goal

Proposed GPP
Wavefront GPP

ROS Default GPP

 
Figure. 11 Visual inspections and comparison of 1st 

validation 

 

Proposed GPP
Wavefront GPP

ROS Default GPP

Start

Goal

 
Figure. 12 Visual inspections and comparison of 1st 

validation 

 

The proposed GPP algorithm’s performance was 

compared to existing methods to highlight its 

scientific contribution. The algorithm’s superior 

performance can be attributed to the unique 

integration of an enhanced Bidirectional A* search 

algorithm, gradient descent smoothing, and 

orientation filter interpolation. These methods, 

applied within a quadratic approximation-based 

potential field and global cost map, address the 

limitations and drawbacks of existing methods 
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discussed earlier in the paper. 

The results obtained from the evaluation and 

validation stages demonstrate significant 

improvements in the performance of the proposed 

GPP algorithm. The algorithm’s improved 

performance can be attributed to the unique 

integration of several powerful techniques, ensuring 

minimal impact on computational time while 

enhancing path size and smoothness. The algorithm’s 

ability to generate smoother, environment-adapted 

trajectories underlines its potential for deployment in 

various complex real-world applications. The results 

also highlight the algorithm’s balance between 

efficiency and robustness. 

5. Conclusions 

This paper focused on developing and 

comprehensively evaluating an innovative GPP 

algorithm, which synergistically combined an 

enhanced Bidirectional A* search algorithm with 

gradient descent smoothing and orientation filter 

interpolation. The algorithm was rigorously tested in 

various simulated environments that faithfully 

replicated real-world scenarios, providing insights 

into its practical applications. 

The algorithm’s performance was analyzed using 

a bespoke benchmarking tool, which assessed PT, PS, 

and visual inspection of paths. Gradient descent 

smoothing was integrated, resulting in paths that 

were smoother and better aligned with environmental 

constraints, thereby enhancing the algorithm’s 

communication with the local planner. 

Visual examination corroborated the efficiency of 

the proposed GPP algorithm in generating 

streamlined, environment-adapted paths. This 

superiority was further substantiated quantitatively, 

with significant reductions in path generation time 

and complexity. Notably, compared to the wavefront 

and ROS default GPPs, the proposed algorithm 

demonstrated an average improvement of 

approximately 60.3% in PT and 9.0% in PS. 

The proposed algorithm’s adaptability, 

computational efficiency, and capacity to generate 

high-quality paths underscore its practicability across 

various real-world scenarios. Future research 

avenues include examining the algorithm’s 

performance on different robotic platforms, its 

adaptability to dynamic environments, and potential 

integration with machine learning strategies for 

enhanced adaptability. In summary, this research has 

successfully developed a robust and efficient GPP 

algorithm, setting the stage for further advancements 

and refinements in robotic path planning and 

navigation. 
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List of notations 

Variable Description 

The cost function 

𝐶 The cost assigned to a specific grid cell. 

𝛼 A scale factor regulating the rate of decay 

𝑑𝑜𝑏𝑠 The distance from the nearest obstacle 

𝑟𝑖𝑛𝑠 The inscribed radius of the robot 

𝑉𝑙𝑒𝑡ℎ𝑎𝑙  
The default lethal cost value, typically set 

at 254 

Attractive and repulsive potentials 

U Total potential 

𝑈𝑎𝑡𝑡 Attractive potential 

𝑈𝑟𝑒𝑝 Repulsive potential 

𝜁 Positive constant representing the 

strength of the attractive potential 𝜂 

Quadratic Approximation for Grid Potentials 

𝑃(𝑛) The potential value of a cell 
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𝑡𝑎 
Minimum potential among the 

neighboring cells of the cell n 

ℎ𝑓 Cost of the current cell n 

a, b, c 
Coefficients are determined based on the 

potentials of the neighboring cells. 

X Cell’s position 

Bidirectional A* algorithm 

𝑓(𝑛) The total cost function for a given node n 

𝑔(𝑛) Actual cost from the start node to n 

ℎ(𝑛) 
Heuristic estimated cost from n to the 

goal 

𝑓1(𝑛) 
Actual cost from the start node to n in the 

Bidirectional A* algorithm 

𝑓2(𝑛) 
Actual cost from n to the goal node in the 

Bidirectional A* algorithm 

𝑔1(𝑛) Forward cost for each node n 

𝑓2(𝑛) Backward cost for each node n 

Gradient descent algorithm 

P(𝑥, 𝑦) 
PF where (x, y) denote the coordinates of 

a cell 

∇P(𝑥, 𝑦) The gradient of the PF at point (x, y) 

𝑥𝑛𝑒𝑥𝑡  Subsequent position on the path 

𝑦𝑛𝑒𝑥𝑡  Subsequent position on the path 

δ Positive constant dictating the step size. 

Linear interpolation of an angle θ 

𝜃1 Initial angle 

 𝜃2 Final angle 

𝜃 Angle situated between θ_1 and θ_2 

t Scalar that spans from 0 to 1 
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