
Received:  June 13, 2023.     Revised: July 4, 2023.                                                                                                          275 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.24 

 

 
Walk-Spread Algorithm: A Fast and Superior Stochastic Optimization 

 

Purba Daru Kusuma1*          Anggunmeka Luhur Prasasti1 

 
1Computer Engineering, Telkom University, Indonesia 

* Corresponding author’s Email: purbodaru@telkomuniversity.ac.id 

 

 
Abstract: This work offers a new stochastic optimization i.e., a metaheuristic algorithm combining both direction-

based search and neighbourhood search called as walk-spread algorithm (WSA). These two types of searches become 

the inspiration for its name where the term walk represents the direction-based search while the term spread represents 

the neighbourhood search. There are two direction-based searches performed in every iteration where each search 

produces a single child. Meanwhile, there are two neighbourhood searches performed in every iteration where each 

search produces several children. The global best unit becomes the first reference while two shuffled units become the 

second reference in performing the direction-based search. Meanwhile, the local search space of the first 

neighbourhood search is wide while the second one is narrow. The 23 classic functions are chosen as the assessment 

of WSA where WSA is confronted with the five latest metaheuristics: mixed leader-based optimization (MLBO), 

golden search optimization (GSO), pelican optimization algorithm (POA), zebra optimization algorithm (ZOA), and 

attack-leave optimization (ALO). The assessment result shows that the offered WSA achieves the acceptable result so 

fast. Moreover, WSA is also superior to these five confronters by outperforming MLBO, GSO, POA, ZOA, and ALO 

in 23, 23, 22, 21, and 21 functions respectively. 

Keywords: Metaheuristic, Optimization, Coati optimization algorithm, Stochastic. 

 

 

1. Introduction 

Optimization can be defined as an effort to find the 

best solution among a certain number of available 

solutions to related problems. Optimization has 

become a popular study for many decades due to its 

highly related nature to human activities whether 

these problems are personal, institutional, or state-

level problems. In general, optimization is constructed 

by three aspects: objective, decision variables, and 

constraints [1]. 

In the context of optimization, metaheuristic 

algorithms have become the popular method. 

Metaheuristics has been used extensively in many 

optimization studies in many fields. In the energy 

system, metaheuristics have been implemented such 

as for designing the PID-controller in the brushless 

direct current motor control system [2], designing a 

power system stabilizer for the multi-machine power 

system [3], optimizing the economic power dispatch 

in the microgrid power system [4]. In the 

telecommunication system, metaheuristics have been 

used to improve the efficiency of MIMO based 5G 

networks [5], enhancing the spectral efficiency in 

massive MIMO systems [6], improving intrusion 

detection in the cloud and IoT networks [7], and so on. 

In biomedical studies, metaheuristics have been 

implemented, for example, to optimize the number of 

layers in the convolutional neural network for EEG 

signal to detect epilepsy [8], detect epileptic seizure 

[9], improve the accuracy of breast cancer detection 

[10], and so on. 

In recent years, there are a lot of new 

metaheuristics have been introduced. The swarm 

intelligence becomes the favorite baseline for 

developing these metaheuristics. Many of these 

metaheuristics were claimed as nature inspired 

metaheuristics where the animal behavior during 

foraging or mating becomes the most popular 

inspiration. The examples of these animal-inspired 

metaheuristics are cat and mouse-based optimizer 

(CMBO) [11], clouded leopard optimization (CLO) 

[12], chameleon swam algorithm (CSA) [13], cheetah 
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optimizer (CO) [14], coati optimization algorithm 

(COA) [15], zebra optimization algorithm (ZOA) [16], 

fennec fox optimization (FFA) [17], golden jackal 

optimization (GJO) [18], Komodo mlipir algorithm 

(KMA) [19], snow leopard optimization algorithm 

(SLOA) [20], northern goshawk optimization (NGO) 

[21], osprey optimization algorithm (OOA) [22], 

pelican optimization algorithm (POA) [23], red fox 

optimization algorithm (RFO) [24], reptile search 

algorithm (RSA) [25], squirrel search optimizer 

(SSO) [26], Tasmanian devil optimization (TDO) [27], 

and so on. 

Several metaheuristics do not use metaphors or are 

called metaphor-free metaheuristics. Several 

metaheuristics use the term leader representing their 

main reference, especially in their direction-based 

search. Examples of them are mixed leader-based 

optimizers (MLBO) [28], multi leader optimizer 

(MLO) [29], three influential member-based 

optimizers (TIMBO) [1], and hybrid leader-based 

optimizer (HLBO) [30]. On the other hand, some 

metaheuristics pointed their core strategy for their 

name, such as total interaction algorithm (TIA) [31], 

attack-leave optimizer (ALO) [32], quad tournament 

optimizer (QTO) [33], average and subtraction-based 

optimizer (ASBO) [34], golden search optimizer 

(GSO) [35], and so on. 

A new metaheuristic can also be constructed by 

modifying the existing metaheuristic or hybridizing 

some metaheuristics. The distributed bi-behaviors 

crow search algorithm (DB-CSA) [36] was developed 

by enriching the original form of CSA with two 

Gaussian beta functions. The modified honey badger 

algorithm (MHBA) is developed from the original 

form of the honey badger algorithm by embedding the 

opposition-based learning strategy [37]. The extended 

stochastic coati optimizer (ESCO) was developed 

from the original form of COA by expanding the 

searching strategy and the reference used in its 

direction-based search [38]. 

There are several existing problems and challenges 

despite the massive development of metaheuristics. 

The first problem is that each metaheuristic still has 

weakness although it has offered significant 

improvement. This circumstance is related to the no-

free-lunch theory that states that although a 

metaheuristic is powerful in solving some problems, 

its performance is mediocre or poor in solving other 

problems [33]. The second problem is many 

metaheuristics need extensive iteration to achieve its 

acceptable performance. Many metaheuristics were 

implemented in the high maximum iteration to solve 

their use cases in their first introduction. For example, 

in its first introduction, CSA is tested with a maximum 

iteration set to 1,000 and the swarm size is set to 30 

[13]. Meanwhile, the swarm size is set to 30 while the 

maximum iteration is set to 200 in the first 

introduction of GJO [18]. It means that there is a 

challenge to develop a metaheuristic that is superior 

in the low maximum iteration circumstance. 

Meanwhile, various stochastic methods are available 

but have not been explored yet. Based on this 

circumstance, the third challenge is the opportunity to 

explore stochastic methods to develop a more 

powerful metaheuristic. The fourth problem is that 

many metaheuristics were developed by using 

metaphors as novelty [39]. This approach is often 

criticized as an effort to hide the mere distinct novelty 

of the proposed metaheuristics [39]. 

Based on these problems or challenges, the 

objective of this work is to offer a new metaheuristic 

that is more powerful than the existing ones. This 

work is also the continuation of the authors’ effort on 

continuing the research in artificial intelligence, 

especially in the development of metaheuristics.  

The novelty of this work is mainly in offering a 

new swarm-based metaheuristic that is free from 

metaphors and provides fast and superior performance 

by implementing multiple searches. Meanwhile, the 

contributions of this work are as follows. 

 

• WSA is designed as a fast and superior 

metaheuristic to tackle many kinds of optimization 

problems. 

• The strategy designed for WSA is then formalized 

through algorithm and mathematical model. 

• The performance of WSA is assessed through 

simulation using 23 classic functions as theoretical 

problems.  

• The performance of WSA is confronted with the 

five latest metaheuristics: MLBO, GSO, POA, 

ZOA, and ALO. 

• The hyper-parameter test is performed to evaluate 

the significance of the adjusted parameters to the 

performance improvement. 

 

The continuation of this paper is arranged as 

follows. Section two presents the literature review 

regarding some metaheuristics proposed in recent 

years. Then, the description and formalization of the 

offered WSA are described in section three. The 

performance assessment of WSA and its related 

results is presented in section four. The discussion 

regarding the findings, complexity, and limitations is 

explained in section five. Finally, the conclusion and 

the prospects regarding future studies based on this 

work are provided in section six. 
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2. Related works 

Metaheuristics has two perspectives. Based on the 

computer science perspective, metaheuristics is a 

searching method. Meanwhile, based on the operation 

research perspective, a metaheuristic is an 

optimization method. As a searching method, 

metaheuristics is performed by iterating its strategy 

until the stopping criteria are reached. There are two 

possible stopping criteria. First, the goal or destination 

has been achieved. Second, the maximum iteration 

has been reached. Meanwhile, as an optimization 

method, metaheuristics are performed to achieve the 

best solution among a set of possible solutions [30]. 

This quality of the solution is measured based on the 

given objective function. The set of possible solutions 

can be finite like in combinatorial problems or 

integer-based numerical problems or infinite like in 

floating-point numbers based on numerical problems. 

Metaheuristic is constructed based on the 

stochastic approach. Based on this approach, 

metaheuristics does not guarantee to find the global 

optimal solution but only the quasi-optimal one [1]. 

The advantage of this approach is metaheuristics is 

feasible enough to be implemented to solve 

optimization problems with limited computation 

resources [32]. It is different from many greedy-based 

approaches that trace all possible solutions, so it needs 

excessive computation resources. Moreover, 

metaheuristics is known for its flexibility because it 

can be implemented to solve various problems with 

less customization [18]. This advantage comes from 

its nature that abstracts the problem formulation and 

complexity and focuses on three aspects: objective 

function, constraint (boundary), and decision 

variables [32]. 

In general, metaheuristics performs two strategies: 

exploration and exploitation. Exploration is also 

known as diversification while exploitation is also 

known as intensification. Exploration is the effort to 

improve the solution by searching for new solutions 

within the search space [13]. Exploration is also 

designed to overcome the local optimal circumstance. 

Exploitation is the effort to improve the solution 

within the narrow search space [13]. Exploitation is 

important in the high precision problem to avoid the 

solution being thrown away from the global optimal 

area once it is detected. 

Separation of exploration and exploitation 

becomes ambiguous due to the massive development 

of swarm-based metaheuristics. The swarm-based 

metaheuristic lays on the direction-based search as 

their main strategy. The step size of the unit depends 

on the distance between the unit and its reference. The 

farther this distance, the probability of walking effort 

becomes higher. Meanwhile, the iteration-controlled 

neighborhood search implemented in many swarm-

based metaheuristics strengthens this circumstance. In 

the early iteration, the local search space is wide, and 

this space is reduced during the iteration. This strategy 

represents the shift between exploration to 

exploitation. The variety among swarm-based 

metaheuristics can be traced by observing the number 

of strategies (searches) implemented in them, the 

reference used in the direction-based search, the 

mechanism in the neighborhood search if any, and the 

acceptance strategy due to improvement or stagnation. 

The review of several latest metaheuristics is 

presented in Table 1. The summarized mechanic of 

the offered metaheuristic is presented in the last row 

of Table 1. 

The review in Table 1 depicts the variety of 

strategies or combinations of strategies performed in 

every metaheuristic. Many metaheuristics perform 

multiple searches within several phases rather than a 

single-phase single-search strategy. The maximum 

number of phases is three. Meanwhile, neighborhood 

search becomes the secondary complement of the 

direction-based search. Moreover, some 

metaheuristics perform only a single neighborhood 

search while others do not perform a neighborhood 

search. 

Based on this review, there is still an available 

opportunity to propose a new swarm-based 

metaheuristic. The position of this work is proposing 

a new metaheuristic with multiple searches performed 

in more than three (four) phases. This offered 

metaheuristic performs two neighborhood searches 

rather than only one or no neighborhood search.  

3. Model 

WSA is designed to become a superior 

metaheuristic by achieving acceptable solution fast. 

This motivation is then transformed into two core 

strategies. The first strategy is the direction-based 

search called "walk". The second strategy is the 

neighborhood search called "spread". This multiple 

search strategy becomes common in the latest 

metaheuristics because of its advantage in taking the 

strength of each implemented strategy and covering 

the weakness of each implemented strategy. In WSA, 

the walk is performed first before spread. Like many 

latest metaheuristics too, WSA also implements a 

strict acceptance procedure where a new solution is 

accepted to replace the older one only if the 

improvement takes place. 
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Table 1. Comparison among shortcoming metaheuristics that mimic animal behaviour. 

No Metaheuristic Detailed Strategy 

1 MLBO [28] MLBO contains a single phase. It performs one direction-based search. The reference is the 

mixture between the best unit and a shuffled unit within the space. This dominance of this 

mixture is controlled by the iteration. The direction depends on the reference's quality. The strict 

acceptance is implemented. 

2 GSO [35] GSO contains a single phase. It performs one direction-based search. The reference is the global 

best unit and the local best unit. In each iteration, the worst unit is replaced by a shuffled one. 

The strict acceptance is not implemented. 

3 POA [23] POA contains two phases. In the first phase, the direction-based search is performed. The 

reference is a shuffled unit within the space. The direction depends on the reference’s quality. 

In the second phase, the iteration-controlled local search is performed. The local space is 

narrow. The strict acceptance is implemented. 

4 ZOA [16] ZOA contains two phases. In the first phase, the direction-based search toward the global best 

unit is performed. In the second phase, there are two possible searches. The first one is the 

direction-based search toward a shuffled unit among the swarm. The second one is the iteration-

controlled neighbourhood search with a narrow space in the beginning. The decision between 

the first and the second searches is determined uniformly. The strict acceptance is implemented. 

5 ALO [32] ALO contains three phases. The first two phases are mandatory. The third phase is optional. In 

the first phase, the direction-based search is performed either by the walk of the corresponding 

unit toward the best unit or by the best unit avoiding the corresponding unit. In the second phase, 

the direction-based search is performed either by the walk of the corresponding unit avoiding 

the target or by the target avoiding the corresponding unit. The target can be the middle between 

the best unit and a shuffled unit in the swarm or the middle between two shuffled units in the 

swarm. In the third phase, a full random search is performed. The strict acceptance is 

implemented. 

6 FFA [17] FFA contains two phases. In the first phase, the iteration-controlled neighbourhood search with 

a narrow space, in the beginning, is performed. In the second phase, the direction-based search 

is performed where the reference is a shuffled unit within the swarm. The direction is 

determined by the relative quality of the reference. The strict acceptance is implemented. 

7 ESCO [38] ESCO contains three phases. In the first phase, the direction-based search toward the best unit 

or relative to a shuffled unit within the space is performed. In the second phase, the direction-

based search of the corresponding unit relative to the reference or direction-based search of the 

reference relative to the corresponding unit is performed. The reference is a shuffled unit within 

the swarm. In the third phase, the iteration-controlled neighbourhood search with wide space, 

in the beginning, is performed. The strict acceptance is implemented. 

8 CLO [12] CLO contains two phases. In the first phase, the direction-based search is relative to a shuffled 

unit within the swarm where the direction is determined based on the relative quality of the 

reference. In the second phase, the iteration-controlled neighbourhood search is performed 

where the space declines logarithmically. 

9 TIMBO [1] TIMBO contains three phases. In the first phase, the direction-based search toward the best unit 

is performed. In the second phase, the direction-based search to avoid the worst unit is 

performed. In the third phase, the direction-based search relative to the mean unit is performed. 

The strict acceptance is implemented. 

10 OOA [22] OOA contains two phases. First, the direction-based search toward a shuffled unit from a set of 

better units within the swarm is performed. Second, the iteration-controlled neighbourhood 

search with wide space, in the beginning, is performed. The space declines logarithmically. The 

strict acceptance is implemented. 

12 this work WSA contains four phases. First, the direction-based search toward the best unit is performed. 

Second, the direction-based search toward the mean of two shuffled units is performed. Third, 

the iteration-controlled neighbourhood search with wide space, in the beginning, is performed. 

Fourth, the iteration-controlled neighbourhood search with a narrow space in the beginning is 

performed. 

 

WSA is developed based on swarm intelligence. It 

means that WSA contains a certain number of units 

that represent the solutions. Each unit acts 

autonomously to find an acceptable solution.  

The walk strategy consists of two walks. The first 

walk is walking toward the global best unit. The 

global best unit is a unit that stores the best solution 

among all units so far during the iteration. The second  
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algorithm 1: walk-spread algorithm 

1 output: ub  

2 begin 

3   for all u in U 

4     generate initial u using Eq. (1) and Eq. (2) 

5     update ub using Eq. (3) 

6   end for 

7   for t=1 to tm 

8     for all u in U 

9       first walk using Eq. (4) 

10       update u using Eq. (5) 

11       update ub using Eq. (3) 

12       second walk using Eq. (6) and Eq. (8) 

13       update u using Eq. (5) 

14       update ub using Eq. (3) 

15       first spread using Eq. (9) 

16       find best child using Eq. (10) 

17       update u using Eq. (5) 

18       update ub using Eq. (3) 

19       perform the second spread using Eq. (11) 

20       find the best child using Eq. (10) 

21       update u using Eq. (5) 

22       update ub using Eq. (3) 

23     end for 

24   end for 

25 end 

 

walk is walking toward the target unit which is in the 

middle between two units shuffled from the set of 

units. It is different from many metaheuristics that the 

walking direction relative to the shuffled unit is either 

toward or away depending on the quality comparison 

between the target and the corresponding unit. Each 

walk generates one child only.  

The first walk represents the effort to improve the 

quality of the corresponding unit. The assumption is 

that moving toward the global best unit may take the 

lead toward a better solution. This first walk is 

designed absolutely to tackle the unimodal problem 

because a unimodal problem has only a single optimal 

solution. It means that the probability of improvement 

is higher by moving toward a better solution. 

The second walk represents the effort to diversify 

the search so that the second walk can be seen as 

diversification. The two shuffled units can be better or 

worse than the corresponding unit. The location of the 

target, which is in the middle of these two units, can 

be near or far from the corresponding unit. This 

diversification effort is different from the 

diversification effort performed by the spread 

searches which is presented later. This strategy makes 

the second walk still can trace inside the search space 

without being limited by the iteration. 

The spread strategy contains two spreads. The first 

spread is spread inside a wider space. On the other 

hand, the second spread is spread inside a narrower 

space. The searching radius of the second spread is 

only one percent of the first spread. Multiple spread 

children are generated in every spread. Then, the best 

spread child is chosen to become the child in each 

spread.  

The search space of these two spreads declines as 

the iteration goes on. This strategy represents the 

gradual shift from diversification to intensification. 

But the first spread provides a higher degree of 

diversification than the second spread due to its longer 

radius. 

This concept is then transformed into a formal 

procedure. This formal procedure is represented by 

the algorithm of WSA which is presented in 

pseudocode in algorithm 1 and Eq. (1) to Eq. (11) 

which represents the formalization of the detail 

process. The annotations of the formal presentation of 

WSA are presented below. 

 

bl  lower boundary 

bu upper boundary 

bw width of the boundary 

c child 

C set of children 

cs spread child 

Cs set of spread children 

d dimension 

f objective function 

r uniform random 

t iteration 

tm maximum iteration 

u unit 

U set of units 

ub global best unit 

us shuffled unit 

ut targeted unit 

 

WSA is divided into two stages: initialization and 

iteration. The initialization is presented from line 2 to 

line 6 in algorithm 1. On the other hand, the iteration 

is presented from line 7 to line 24. As common in 

metaheuristics, the initial unit is produced uniformly 

inside the search space. Meanwhile, the improvement 

is performed during the iteration stage. In the end, the 

global best unit becomes the final solution.  

 

𝑢𝑖,𝑗 = 𝑏𝑙,𝑗 + 𝑟(0,1). 𝑏𝑤,𝑗   (1) 

 

𝑏𝑤,𝑗 = 𝑏𝑢,𝑗 − 𝑏𝑙,𝑗    (2) 

 

𝑢𝑏′ = {
𝑢𝑖, 𝑓(𝑢𝑖) < 𝑓(𝑢𝑏)

𝑢𝑏 , 𝑒𝑙𝑠𝑒
   (3) 
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Eq. (1) to Eq. (3) are used in the initialization stage. 

Eq. (1) states that the initial unit is produced 

uniformly within the search space. It means that there 

is equal opportunity in the search space to be chosen 

as the initial unit. Eq. (2) is used to determine the 

range or width of the boundary of the certain 

dimension j. Eq. (3) states the strict acceptance 

procedure for updating the global best unit. 

 

𝑐𝑗 = 𝑢𝑖,𝑗 + 𝑟(0,1). (𝑢𝑏,𝑗 − 2𝑢𝑖,𝑗)  (4) 

 

𝑢𝑖,𝑗
′ = {

𝑐𝑗, 𝑓(𝑐𝑗) < 𝑓(𝑢𝑖,𝑗)

𝑢𝑖,𝑗, 𝑒𝑙𝑠𝑒
   (5) 

 

Eq. (4) shows the use of the global best unit as the 

reference in the first walk. Eq. (4) also shows the 

uniform random motion of the corresponding unit 

toward the global best unit. Meanwhile, Eq. (5) 

indicates the strict acceptance procedure of updating 

the corresponding unit, where the child can replace its 

parent only when the improvement takes place.  

 

𝑢𝑠1, 𝑢𝑠2 = 𝑟(𝑈)    (6) 

 

𝑢𝑡,𝑗 =
𝑢𝑠1,𝑗+𝑢𝑠2,𝑗

2
    (7) 

 

𝑐𝑗 = 𝑢𝑖,𝑗 + 𝑟(0,1). (𝑢𝑡,𝑗 − 2𝑢𝑖,𝑗)  (8) 

 

Eq. (6) to Eq. (8) are used in the second walk. Eq. 

(6) states that two units are uniformly shuffled from 

the set of units (swarm). It means that every unit has 

an equal opportunity to be chosen. There is also a 

probability that both shuffled units are the same. Eq. 

(7) states that the targeted unit is placed in the middle 

between the two shuffled units. Eq. (8) states that the 

child of the second walk is produced based on the 

motion of the corresponding unit toward the targeted 

unit.  

 

𝑐𝑠,𝑘,𝑗 = 𝑢𝑖,𝑗 + 𝑟(−1,1). 𝑏𝑤,𝑗. (1 −
𝑡

𝑡𝑚
)  (9) 

 

𝑐 = 𝑐𝑠 ∈ 𝐶𝑠, min(𝑓(𝑐𝑠))   (10) 

 

Eq. (9) states the neighborhood search adopted in 

the first spread. Variable k in Eq. (9) and Eq. (11) 

represents the index of the child produced in the 

spread search. It means that there are certain number 

of children produced in the spread search. Eq. (9) also 

indicates that the search area is reduced as the iteration 

goes on. Meanwhile, Eq. (10) shows that the best-

spread children will be chosen as the selected child 

which is then compared with the corresponding unit 

in the replacement procedure. 

 

𝑐𝑠,𝑘,𝑗 = 𝑢𝑖,𝑗 + 0.01. 𝑟(−1,1). 𝑏𝑤,𝑗. (1 −
𝑡

𝑡𝑚
)  (11) 

 

Eq. (11) is used for the second spread search. 

Different from the first spread, Eq. (11) shows that the 

radius of the search space in the second search is only 

one percent of the radius of the search space in the first 

search. 

4. Simulation and result 

The performance of WSA is then assessed through 

simulation. In this work, the 23 classic functions are 

chosen as the problems. These 23 functions can be 

split into three groups. The first group consists of 

seven high dimension unimodal functions. As a 

unimodal function, each function in the first group has 

only one optimal solution. The second group consists 

of six high-dimension multimodal functions. As a 

multimodal function, each function in the second 

group has more than one optimal solution so that the 

metaheuristic can be locked in the local optimal 

solution without being able to escape. The third group 

consists of ten fixed-dimension multimodal functions. 

Although in general the dimension of the fixed 

dimension multimodal functions is low, these 

functions are still difficult to overcome. A detailed 

description of these 23 functions can be found in 

Table 2. 

In this assessment, WSA is confronted with the 

five latest metaheuristics. These five metaheuristics 

are MLBO, GSO, POA, ZOA, and ALO. In this 

simulation, the swarm size is set to 5 while the 

maximum iteration is set to 10. Both ratios in ALO are 

set to 0.5. The spread children size in WSA is set to 5. 

This setting makes the effort to find an acceptable 

solution difficult, especially when the dimension of 

the functions in the first and second group is high 

enough. The first simulation result of the first to third 

groups can be seen in Table 3 to Table 5 consecutively.  

Table 3 depicts that the performance of WSA is 

superior compared to all these five confronting 

metaheuristics. WSA sits on the first rank in solving 

all seven high-dimension unimodal functions. 

Moreover, WSA can find the global optimal solution 

in solving Sphere and Schwefel 2.22. WSA becomes 

the only one metaheuristic that is placed on the first 

rank in solving six functions (Sphere, Schwefel 1.2, 

Schwefel 2.21, Rosenbrock, Step, and Quartic). 

Meanwhile, WSA is accompanied by ZOA, and ALO 

on the first rank in solving Schwefel 2.22. 

Table 3 indicates that these six metaheuristics can 

be split into two groups based on their performance in 

solving high-dimension unimodal functions. The first 
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Table 2. A description of the 23 functions including the equation, dimension, space/boundary, and the target. 

No Function Model Dim Space Target 

1 Sphere ∑ 𝑥𝑖
2𝑑

𝑖=1   40 [-100, 100] 0 

2 Schwefel 2.22 ∑ |𝑥𝑖|
𝑑
𝑖=1 +∏ |𝑥𝑖|

𝑑
𝑖=1   40 [-100, 100] 0 

3 Schwefel 1.2 ∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )

2𝑑
𝑖=1   40 [-100, 100] 0 

4 Schwefel 2.21 max{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑}  40 [-100, 100] 0 

5 Rosenbrock ∑ (100(𝑥𝑖+1 + 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)𝑑−1

𝑖=1   40 [-30, 30] 0 

6 Step ∑ (𝑥𝑖 + 0.5)2𝑑−1
𝑖=1   40 [-100, 100] 0 

7 Quartic ∑ 𝑖𝑑
𝑖=1 𝑥𝑖

4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1]  40 [-1.28, 1.28] 0 

8 Schwefel ∑ −𝑥𝑖 sin(√|𝑥𝑖|)
𝑑
𝑖=1   40 [-500, 500] -16,759 

9 Ratsrigin 10𝑑 + ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝑑
𝑖=1   40 [-5.12, 5.12] 0 

10 Ackley 
−20 ⋅ 𝑒𝑥𝑝 (−0.2 ⋅ √

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) −

𝑒𝑥𝑝 (
1

𝑑
∑ cos 2𝜋𝑥𝑖
𝑑
𝑖=1 ) + 20 + 𝑒𝑥𝑝(1)  

40 

[-32, 32] 0 

11 Griewank 
1

4000
∑ 𝑥𝑖

2𝑑
𝑖=1 −∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑑

𝑖=1 +1 40 [-600, 600] 0 

12 Penalized 

𝜋

𝑑
{10 sin(𝜋𝑦1) + ∑ ((𝑦𝑖 − 1)2(1 +𝑑−1

𝑖=1

10𝑠𝑖𝑛2(𝜋𝑦𝑖+1))) + (𝑦𝑑 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10,100,4)
𝑑
𝑖=1   

40 

[-50, 50] 0 

13 Penalized 2 

0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ ((𝑥𝑖 − 1)2(1 +𝑑−1
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑑 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑑))} +

∑ 𝑢(𝑥𝑖 , 5,100,4)
𝑑
𝑖=1   

40 

[-50, 50] 0 

14 
Shekel 
Foxholes (

1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗)
62

𝑖=1

25
𝑗=1 )

−1

  2 [-65, 65] 1 

15 Kowalik ∑ (𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

)
2

11
𝑖=1   4 [-5, 5] 0.0003 

16 
Six Hump 
Camel 

4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1
6 + 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥2
4  2 [-5, 5] -1.0316 

17 Branin (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos(𝑥1) + 10  2 [-5, 5] 0.398 

18 
Goldstein-
Price 

(1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 +

6𝑥1𝑥2 + 3𝑥2
2)). (30 + (2𝑥1 − 3𝑥2)

2(18 − 32𝑥1 +

12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2))  

2 [-2, 2] 3 

19 Hartman 3 −∑ (𝑐𝑖𝑒𝑥𝑝 (−∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2
)𝑑

𝑗=1 ))4
𝑖=1   3 [1, 3] -3.86 

20 Hartman 6 −∑ (𝑐𝑖𝑒𝑥𝑝 (−∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2
)𝑑

𝑗=1 ))4
𝑖=1   

6 
[0, 1] -3.32 

21 Shekel 5 −∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2
+ 𝛽𝑖

𝑑
𝑗=1 )

−1
5
𝑖=1   

4 [0, 10] -10.153 

22 Shekel 7 −∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2
+ 𝛽𝑖

𝑑
𝑗=1 )

−1
7
𝑖=1   

4 [0, 10] -10.402 

23 Shekel 10 −∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2
+ 𝛽𝑖

𝑑
𝑗=1 )

−1
10
𝑖=1    

4 [0, 10] -10.536 
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Table 3. Fitness score comparison in solving high dimension unimodal functions. 

F Parameter MLBO [28] GSO [35] POA [23] ZOA [16] ALO [32] WSA 

1 mean 2.5530x104 3.8435x104 6.6357x104 7.0338 0.9054 0.0000 

std deviation 4.3123x103 9.6503x103 8.1432x103 3.6704 1.9713 0.0000 

mean rank 4 5 6 3 2 1 

2 mean 5.9598x1039 1.007x1051 4.3972x1052 0.0000 0.0000 0.0000 

std deviation 2.9197x1040 3.480x1051 2.0114x1053 0.0000 0.0000 0.0000 

mean rank 4 5 6 1 1 1 

3 mean 7.8350x104 9.9661x104 2.0073x105 3.0828x103 2.8545x102 1.1704 

std deviation 5.1611x104 4.6754x104 4.3396x104 1.8938x103 6.9426x102 2.1837 

mean rank 4 5 6 3 2 1 

4 mean 5.4222x101 6.2524x101 8.1401x101 3.0322 0.7233 0.0059 

std deviation 7.6946 8.3612 8.0427 1.3067 1.2018 0.0045 

mean rank 4 5 6 3 2 1 

5 mean 3.8558x107 6.8880x107 2.0880x108 1.6702x102 5.4588x101 3.8953x101 

std deviation 1.4816x107 2.7883x107 5.5111x107 1.0706x102 2.5250x101 0.0219 

mean rank 4 5 6 3 2 1 

6 mean 2.6051x104 3.4160x104 6.2066x104 1.4566x101 1.0169x101 7.1884 

std deviation 6.5722x103 6.5626x103 1.1318x104 3.8522 1.5556 0.7056 

mean rank 4 5 6 3 2 1 

7 mean 2.1142x101 5.2466x101 1.1360x102 0.0521 0.0773 0.0139 

std deviation 9.1139 3.4230x101 3.2309x101 0.0383 0.0776 0.0108 

mean rank 4 5 6 2 3 1 

 
Table 4. Fitness score comparison in solving high-dimension multimodal functions. 

F Parameter MLBO [28] GSO [35] POA [23] ZOA [16] ALO [32] WSA 

8 mean -2.5978x103 -2.3994x103 -2.7834x103 -2.2273x103 -3.0893x103 -3.8594x103 

std deviation 4.0180x102 5.7494x102 4.6250x102 4.1126x102 5.2618x102 5.4462x102 

mean rank 4 5 3 6 2 1 

9 mean 3.9262x102 3.9025x102 5.4091x102 2.9173x101 0.3315 0.0000 

std deviation 3.2593x101 4.3429x101 4.1477x101 2.9996x101 0.7854 0.0000 

mean rank 5 4 6 3 2 1 

10 mean 1.7737x101 1.8747x101 2.0059x101 1.0932 0.1360 0.0004 

std deviation 0.6252 0.6492 0.1974 0.4800 0.1117 0.0003 

mean rank 4 5 6 3 2 1 

11 mean 2.2086x102 3.2956x102 6.0419x102 0.8420 0.1910 0.0017 

std deviation 4.8990x101 6.9290x101 1.2595x102 0.3135 0.3327 0.0791 

mean rank 4 5 6 3 2 1 

12 mean 2.9860x107 6.9663x107 3.7985x108 1.1344 1.3619 0.5522 

std deviation 1.6157x107 4.1494x107 1.4446x108 0.2363 0.2235 0.1141 

mean rank 4 5 6 2 3 1 

13 mean 1.0711x108 2.7642x108 9.3875x108 3.9080 3.4569 3.1317 

std deviation 6.6792x107 1.5862x108 2.8594x108 0.3538 0.3375 0.1738 

mean rank 4 5 6 3 2 1 

 

group consists of MLBO, GSO, and POA. On the 

other hand, the second group consists of ZOA, ALO, 

and WSA. The performance of metaheuristics in the 

second group is far better than in the first group. 

Moreover, the performance gap between WSA and 

another two metaheuristics in the second group (ZOA 

and ALO) is also wide in solving Schwefel 1.2. 

Table 4 indicates that WSA is completely superior 

to the other five confronters in solving high-

dimension multimodal functions. WSA is on the first 

rank in solving all six functions (Schwefel, Rastrigin, 

Ackley, Griewank, Penalized, and Penalized 2). 

There is not any other metaheuristic that sits on the 

first rank together with WSA in solving high 

dimension multimodal functions. Moreover, WSA 

can find the global optimal solution in solving 

Rastrigin. 

The performance gap among metaheuristics in 

solving these functions also varies depending on the 

functions. In general, the performance gap between 

the best performer (WSA) and the worst performer 

(MLBO) in solving Schwefel is narrow. Different 

circumstance occurs in two functions (penalized and 

penalized 2). In these two functions, the performance  
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Table 5. Fitness score comparison in solving fixed dimension multimodal functions 

F Parameter MLBO [28] GSO [35] POA [23] ZOA [16] ALO [32] WSA 

14 mean 4.8005x101 2.2386x101 2.0911x101 1.0864x101 8.9655 5.3808 

std deviation 7.9242x101 3.9088x101 1.7540x101 7.3965 5.2298 2.5740 

mean rank 6 5 4 3 2 1 

15 mean 0.0899 0.1812 0.0317 0.0196 0.0129 0.0062 

std deviation 0.1505 0.3072 0.0306 0.0302 0.0151 0.0009 

mean rank 5 6 4 3 2 1 

16 mean -0.7183 -0.3793 -0.6421 -0.8747 -0.9657 -1.0232 

std deviation 0.6727 1.6787 0.3858 0.2510 0.1340 0.0207 

mean rank 4 6 5 3 2 1 

17 mean 1.4209 3.6310 1.4279 4.2558 0.8361 0.4429 

std deviation 1.4101 9.0083 1.7952 6.5770 0.5410 0.0600 

mean rank 3 5 4 6 2 1 

18 mean 6.0902x101 3.2553x101 2.6332x101 4.2916x101 1.1362x101 3.5550 

std deviation 1.2649x102 3.3695x101 2.3618x101 4.9601x101 1.0468x101 1.0054 

mean rank 6 4 3 5 2 1 

19 mean -0.0245 -0.0028 -0.0495 -0.0495 -0.0495 -0.0495 

std deviation 0.0201 0.0050 0.0000 0.0000 0.0000 0.0000 

mean rank 5 6 1 1 1 1 

20 mean -2.2604 -1.7900 -2.2634 -1.9980 -2.1933 -2.8831 

std deviation 0.5445 0.5805 0.5852 0.5419 0.4571 0.1267 

mean rank 3 6 2 5 4 1 

21 mean -1.4763 -1.1577 -0.8632 -1.4936 -1.4590 -2.3629 

std deviation 1.3061 0.9596 0.6876 0.7550 1.0957 1.1175 

mean rank 3 5 6 2 4 1 

22 mean -1.5405 -1.9653 -1.2644 -1.3906 -1.4197 -2.3835 

std deviation 0.7052 2.0434 0.9409 0.8406 0.5944 0.6257 

mean rank 3 2 6 5 4 1 

23 mean -1.9938 -1.7958 -1.0988 -1.9236 -1.6338 -2.4865 

std deviation 1.6155 1.6259 0.4287 1.0429 0.6700 0.6488 

mean rank 2 4 6 3 5 1 

 
Table 6. Group-based superiority of WSA. 

Group Number of Functions Where WSA is 

Better 

MLBO 

[28] 

GSO 

[35] 

POA 

[23] 

ZOA 

[16] 

ALO 

[32] 

1 7 7 7 6 6 

2 6 6 6 6 6 

3 10 10 9 9 9 

Total 23 23 22 21 21 

 

gap between functions in the first group (MLBO, 

GSO, and POA) and functions in the second group 

(ZOA, ALO, and WSA) is wide. 

Table 5 indicates the superiority of WSA among 

its five confronters in solving fixed-dimension 

functions. WSA is placed on the first rank in solving 

all ten functions in this third group. WSA becomes 

the top performer in solving nine fixed-dimension 

multimodal functions. Meanwhile, WSA is 

accompanied by three confronters (POA, ZOA, and 

ALO) in solving Hartman 3. 

The performance gap among metaheuristics in 

solving fixed-dimension multimodal functions is not 

so wide as in solving high-dimension functions. The 

wide performance gap between WSA as the best 

performer and the worst performer is wide enough in 

solving Kowalik and Goldstein Price. Otherwise, the 

competition among metaheuristics in solving fixed-

dimension multimodal functions is fierce. 

The result in Table 3 to Table 5 is then 

summarized in Table 6. Table 6 depicts the superior 

result of WSA compared to these five confronters in 

each group of functions. The superiority data is 

obtained based on the number of functions where 

WSA is better than the related metaheuristics. 

Table 6 strengthens the fact that WSA is superior 

to all five confronters. WSA is superior to MLBO and 

GSO by outperforming these two metaheuristics in 

all 23 functions. Meanwhile, WSA outperforms POA, 

ZOA, and ALO in solving 22, 21, and 21 functions 

consecutively. In the functions where WSA fails to 

outperform the confronters, the result is drawn. 

The next assessment is related to the 

hyperparameter assessment. Three parameters are 

assessed: maximum iteration, swarm size, and 

children size. The maximum iteration is set to 20 and  
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Table 7. Relation between maximum iteration and the 

average fitness score. 

F. Average Fitness Score Significantly 

Improved? tm=20 tm=40 

1 0.0000 0.0000 no 

2 0.0000 0.0000 no 

3 0.0000 0.0000 no 

4 0.0000 0.0000 no 

5 3.8959x101 3.8963x101 no 

6 6.0853 4.6018 no 

7 0.0038 0.0026 no 

8 -4.5603x103 -6.3488x103 no 

9 0.0000 0.0000 no 

10 0.0000 0.0000 no 

11 0.0000 0.0000 no 

12 0.2588 0.1185 yes 

13 2.4593 2.0874 no 

14 3.6189 2.3536 no 

15 0.0027 0.0008 yes 

16 -1.0316 -1.0316 no 

17 0.4021 0.3981 no 

18 3.0492 3.0000 no 

19 -0.0495 -0.0495 no 

20 -3.1005 -3.2257 no 

21 -4.3438 -5.8835 no 

22 -3.8914 -6.5041 no 

23 -4.2232 -5.9412 no 

 
Table 8. Relation between swarm size and the average 

fitness score. 

F. Average Fitness Score Significantly 

Improved? n(U)=10 n(U)=20 

1 0.0000 0.0000 no 

2 0.0000 0.0000 no 

3 0.4107 0.2181 no 

4 0.0054 0.0037 no 

5 3.8937x101 3.8924x101 no 

6 6.5346 6.1128 no 

7 0.0077 0.0040 no 

8 -4.1021x103 -4.3012x103 no 

9 0.0000 0.0000 no 

10 0.0006 0.0004 no 

11 0.0222 0.0000 yes 

12 0.4751 0.3746 no 

13 2.9634 2.7203 no 

14 2.4414 1.6020 no 

15 0.0019 0.0017 no 

16 -1.0316 -1.0316 no 

17 0.4165 0.4048 no 

18 3.1174 3.0149 no 

19 -0.0495 -0.0495 no 

20 -2.9684 -3.0948 no 

21 -3.0133 -3.2069 no 

22 -2.8901 -3.8731 no 

23 -3.1177 -3.5889 no 

 

 

 

Table. 9 Relation between children's size and the average 

fitness score 

F. Average Fitness Score Significantly 

Improved? n(C)=10 n(C)=20 

1 0.0000 0.0000 no 

2 0.0000 0.0000 no 

3 0.4935 1.2944 yes 

4 0.0084 0.0056 no 

5 3.8953x101 3.8956x101 no 

6 6.5793 5.7274 no 

7 0.0075 0.0072 no 

8 -4.2377x103 -4.6814x103 no 

9 0.0000 0.0000 no 

10 0.0006 0.0006 no 

11 0.0000 0.0025 no 

12 0.4238 0.3419 no 

13 2.8921 2.5416 no 

14 3.6845 2.5974 no 

15 0.0041 0.0064 no 

16 -1.0312 -1.0316 no 

17 0.4131 0.4011 no 

18 3.1893 3.0246 no 

19 -0.0495 -0.0495 no 

20 -3.0123 -3.1224 no 

21 -3.0057 -3.7395 no 

22 -2.9318 -3.2663 no 

23 -3.2995 -3.9951 no 

 

40. The swarm size is set to 10 and 20. The children's 

size is set to 10 and 20. The result is presented in 

Table 7 and Table 9. 

Table 7 shows that the increase of maximum 

iteration from 20 to 40 does not improve the final 

solution significantly in almost all functions. There 

are only two functions where significant 

improvement takes place. These functions are 

Penalized and Kowalik. Both functions are 

multimodal functions. Meanwhile, there are ten 

functions where the global optimal solutions are 

found. These ten functions are Sphere, Schwefel 2.22, 

Schwefel 1.2, Schwefel 2.21, Rastrigin, Ackley, 

Griewank, Six Hump Camel, Branin, and Goldstein-

Price. 

Table 8 indicates that the increase of the swarm 

size from 10 to 20 does not improve the quality of the 

final solution significantly in almost all functions too. 

The significant improvement takes place only in one 

function which is Griewank. Meanwhile, there are 

five functions where their global optimal solution is 

found. These functions are Sphere, Schwefel 2.22, 

Rastrigin, Griewank, and Six Hump Camel. 

Table 9 shows that the increase in children's size 

from 10 to 20 also does not improve the quality of the 

final solution significantly in almost all functions. 

The significant improvement can be found only in 

one function (Schwefel 1.2). There are only four 
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functions where the global optimal solution is found. 

These four functions are Sphere, Schwefel 2.22, 

Rastrigin, and Six Hump Camel. 

5. Discussion 

The simulation result has shown that the multiple 

searches performed dedicatedly are important for any 

metaheuristic to perform well. Specifically, a 

metaheuristic should perform both direction-based 

search and neighbourhood search as implemented in 

WSA. The poor performance achieved by MLBO and 

GSO is highly related to their limited strategy. 

MLBO and GSO perform a single direction-based 

search only without any neighbourhood search. The 

difference between MLBO and GSO is only their 

reference. MLBO uses the mixture of the best unit 

and a shuffled unit where the dominance is controlled 

by the iteration [28]. Meanwhile, GSO uses the 

portion of the global best unit and the local best unit 

as a reference [35]. 

The absence of the global best unit or best unit in 

the direction-based search can be seen as the reason 

for the poor performance of POA [23]. Although 

POA implements both direction-based search and 

neighbourhood search, a shuffled unit inside the 

search space becomes the only reference [23]. 

Meanwhile, the presence of the best unit as a 

reference is important to exploit the location near this 

best unit and improve the solution fast. Even PSO as 

the early swarm-based metaheuristic uses both the 

global best unit and local best unit as its reference. 

The close performance gap among WSA, ALO, 

and ZOA proves that multiple searches are critical to 

produce superior performance. These three 

metaheuristics perform a direction-based search 

toward the best unit explicitly as the first search. All 

these metaheuristics also perform neighbourhood or 

random searches. The difference is as follows. In 

ZOA, the probability of performing a neighbourhood 

search is shared with the direction-based search 

toward a shuffled unit [16]. In ALO, the random 

search is optional only if the improvement fails. 

Meanwhile, the direction-based search toward the 

shuffled unit is performed as the second search. 

The neighbourhood search with narrow space in 

the beginning also becomes the difference between 

WSA and the two other metaheuristics (ALO and 

ZOA). In ZOA, the search space in the 

neighbourhood search is wide. On the other hand, the 

search space of ALO in the random search is always 

wide along the iteration because it traces uniformly 

inside the problem boundaries [32]. Meanwhile, the 

narrow search space in the neighbourhood search can 

be seen as additional intensification as it is also 

performed in NGO [21], POA [23], and FFA [17]. 

The algorithm complexity of WSA is different 

between the initialization stage and the iteration stage. 

In the initialization stage, the algorithm complexity 

of WSA can be presented as O(n(U).d). In this stage, 

there are two loops where the outer loop is regarding 

the swarm size while the inner loop is regarding the 

dimension of the problem. On the other hand, the 

algorithm complexity during the iteration phase can 

be presented as O(tm.n(U).d.(2(1+n(C)))). In this 

stage, there are three core loops regarding the 

maximum iteration, swarm size, and the dimension of 

the problem. Meanwhile, there are four searches 

performed by each unit. In these two spread searches, 

there is a loop regarding the spread of children's size. 

Although WSA is proven as a fast and superior 

metaheuristic confronted to the five other 

metaheuristics, it is still not perfect. There are 

functions where WSA still fails to find their quasi-

optimal solution in the low swarm size and maximum 

iteration circumstance. WSA still fails to find the 

quasi-optimal solution in solving Rosenbrock and 

Step in the first group although the performance of 

the other metaheuristics is much worse. WSA also 

fails to find the quasi-optimal solution in solving 

Schwefel in the second group. The final solution 

found by WSA in solving Hartman Hartman 3, 

Shekel 5, Shekel 7, and Shekel 10 in the third group 

is also not quasi-optimal. It means that the 

improvement of the current form of WSA is still open. 

Moreover, there is a limitation regarding the use 

case for assessment in this work. Several other 

theoretical problems have not been used for the 

assessment, such as CEC 2015, CEC 2017, and so on. 

WSA also has not been tested to solve practical 

optimization problems, either numerical problems or 

combinatorial ones. 

6. Conclusion 

This work has offered a new swarm-based 

metaheuristic called as walk-spread algorithm (WSA). 

WSA is a metaphor-free metaheuristic as it does not 

use any metaphors and adopts its core strategy (walk 

and spread) as its name. It consists of four searches 

that are performed sequentially. Through assessment, 

WSA is proven superior compared to the five new 

metaheuristics as its confronters. WSA outperforms 

MLBO, GSO, POA, ZOA, and ALO in solving 23, 23, 

22, 21, and 21 functions consecutively. Moreover, 

WSA is proven fast due to its superior achievement 

taken in the low maximum iteration circumstance. In 

the higher maximum iteration, WSA can find the 

global optimal solution of ten functions. 
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There are several tracks proposed for future work. 

The modification or hybridization of WSA is still 

open to improve its performance, especially to solve 

some functions where the quasi-optimal solution has 

been achieved in this current work. Moreover, the 

challenge to implement WSA to solve various 

practical optimization problems is still widely open. 
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