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Abstract: Agent-based moving source-seeking problem with strategic control considering obstacle avoidance is 

addressed in this paper. The agents communicate with one another using a communication topology to coordinate 

finding the object. The source or seeking target is represented by a scalar field, whereas the presence of the obstacle is 

represented by an artificial potential field. A moving source that moves linearly from the initial point to the end point 

is considered. Several obstacles, which needs to be avoided by agents, that may be stationary or moving are considered. 

Double integrator agents are considered, which contains richer dynamics compared to the single integrator agents. The 

strategic control law which is a combination of gradient consensus and distributed velocity control affected by artificial 

potential field are used to determine the velocity of each agent to track the moving source while avoiding the obstacles. 

Formation control is used to make sure that the agents stay under the desired formation for most of the time. The 

computer simulation is used to examine how different agents would search for a moving source under stationary and 

moving obstacles. In both cases, the agents can find the source with a different seeking time: 62.8s for stationary and 

90s for moving obstacles. Comparing with virtual artificial potential field method, our proposed method manages to 

perform better in the case of shrinking agents for stationary obstacles. 

Keywords: Strategic control, Gradient consensus, Obstacle avoidance, Cooperative multi-agent moving source 

seeking.  

 

 

1. Introduction 

1.1 Motivation 

Source seeking problem can be defined as the 

problem of finding a maximum value of some 

potential induced by the source that describes, for 

example, a temperature level, the hazardous 

concentration of substances, etc. Some problems with 

cooperative source-seeking have been discussed. 

Prior research has studied various methods of 

cooperation in information-seeking tasks, and some 

of these ideas have been applied in real-life situations 

involving plants, such as unmanned aerial vehicles 

(UAVs) and mobile robots [1]. 

Source seeking algorithm is designed to drive 

single or multi-agents to a source represented by the 

scalar field signal that all the agents can measure. The 

scalar field is defined as a function that produces a 

value at every point in space. As the gradient of the 

scalar field signal is measured, a gradient climbing 

algorithm can be developed [2]. In this case, gradient 

estimation can be used from the distributed 

measurement of the scalar field of the agents.  

The problem in the single-agent case is that all 

measurements are performed by a single agent [3] as 

the position changes in every instance. In this 

research, the estimation is conducted based on a 

minimum of two measurements taken from two 

different positions. If the sensor is sensitive enough, 

the agent must move further from the source to get a 

better signal. However, if the agent cannot detect a 

signal, it may remain stationary.  

In the source seeking problem, the agents 

cooperate to measure values of the scalar field from 

distinct positions of agents simultaneously [4]. This 

allows the seeking agents to locate the right source 

more easily, since they have known the measured 
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scalar field of each agent to determine the correct 

value of the scalar field.  

In multi-agent systems, formation control is an 

important theme to study [5-8] because it is often 

used in the military and civil fields. A group of UAVs 

will face greater challenges when carrying out 

complex tasks. Apart from formation, obstacle 

avoidance is another thing to pay attention to. The 

number of UAVs makes the problem complexity 

higher. Unfortunanely, there is only a few references 

which combine formation control with source 

seeking, as will be discussed in the next subsection. 

1.2 Related results 

The issue of source-seeking has been discussed in 

the field of control systems, where researchers have 

explored several different algorithms that agents can 

use to locate sources of information. Moreover, there 

are different ways to deal with the problem of 

sourcing products, e.g., either focus on only one or 

multiple sources. 

Regarding the problem of sourcing concepts for 

one agent, some researchers have focused on using 

exploratory missions to take measurements when 

agents change their positions regularly over time. 

Furthermore, for non-holonomic agents, angular 

velocity tuning have been proposed to find the 

maximum of the scalar plane of the repulsive source 

as mentioned earlier in [3]. Source seeking for 

torque-controlled unicycle is used in [1] and an 

approach to finding stochastic sources for non-

holonomic mobile agents is presented in [9].  

Over the past two decades, the topic of the 

formation coordinated formation control has been 

extensively studied with applications on multi-robot, 

air vehicles, underwater vehicles, and spacecraft for 

various fields. The main purpose of formation control 

is devising a strategic control that move all agents to 

form formation desired while guaranteeing tracking 

accuracy and attitude synchronization. Various 

advanced methods, such as the leader-follower 

approach [10], behaviour-based [11], and consensus-

based [12], have been proposed for formation control. 

Among them, the leader-follower approach has been 

extensively studied for formation control problem. 

This method emphasizes the role of the leader in 

group, which knows the trajectory of the group 

globally. The leader-follower method has been 

discussed in formation control of mobile robots, 

surface vehicles, and air vehicles.   

In addition, formation application in complex 

environments also has been studied. The examples 

are obstacle avoidance and communication 

limitations. Some of the most common methods used 

for obstacle avoidance are geometry-based [13], 

consensus-based [14], and potential-based [15]. For 

the potential-based method, Artificial Potential Field 

(APF) algorithm has been used in [16]. This method 

is relying on sensor data obtained by quadcopter 

against obstacles. 

Furthermore, several algorithms for improving 

source-seeking performance have been developed for 

multi-agents. The sourcing problem can be solved by 

breaking it down into two parts: formation 

maintenance and leader-follower as shown in [17]. 

Formation maintenance refers to the action of 

ensuring that the system is organized and running 

smoothly. At the same time, the leader-follower part 

involves providing the leader with some guidance 

and support, so they can carry out their tasks 

successfully. Kalman cooperative filter is designed to 

estimate gradients at the center of formations in [18]. 

The co-evolutionary strategy for formation of missile 

swarm is carried out in [19].  

Several studies have discussed the arrangement 

of formations. One example is the problem of 

controlling the formation of identical 𝑁 agents under 

an unknown topology, which has been studied in [20]. 

In research [21], using the framework graph theory 

results, Popov and Werner turn the problem of 

formation stability into an important regulatory 

problem for a single agent. This way, the 

management of performance requirements becomes 

more accessible, and stability for fixed and varied 

topologies with communication delays is guaranteed 

[22].  

This paper focuses on distributed velocity control 

for cooperative multi-agent moving source seeking 

under the presence of obstacles. The gradient of the 

scalar field helps to guide the movement of the agents, 

which then directs the formation towards the moving 

source. The agents are able to avoid both moving and 

obstacles in the process of reaching the source due to 

the presence of the artificial potential field (APF) 

produced by the obstacles. It is assumed that all 

agents are identical, and each of them has sensors to 

measure the intensity of the scalar field and its 

position relative to other agents. Each agent 

calculates the gradient of its measurements and those 

of its neighbours.  

The use of APF to address obstacle avoidance 

problems has been considered in [23-25]. There, the 

authors consider n-norm for the repulsive force of 

APF. In this paper, the 2-norm formulation of APF is 

used instead. Furthermore, the attractive force part is 

replaced with the force from gradient consensus. 

Finally, unlike the stationary obstacles considered in 

[23-25], here a more realistic condition with moving 

obstacles is considered which may affect APF 
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emitted. This becomes our strength and novelty 

compared to the literature reviewed. 

In our previous work [26], a gradient consensus 

approach is considered to address the moving source 

problem without obstacles. In this paper, the 

formulation is extended to include both stationary 

and moving obstacles for the moving source seeking 

problem. Furthermore, the formulation of [26] is 

extended by considering a more complex systems 

which is a double integrator system instead of a single 

integrator system. The work [26] becomes the 

important basis of this work which consider a more 

complex system with obstacles. In this paper, the 

response of the second order systems is analyzed in 

tracking the moving source considering obstacle 

avoidance. The model of double integrator systems 

becomes our state of the art of this paper.  

Furthermore, in this paper our method for 

modifying APF is compared with APF with virtual 

force algorithm which has been mentioned in [27]. In 

[27], the method of virtual force algorithm does not 

address the formation among agents and thus may not 

be suitable with our strategic control method. It will 

be shown that our method is able to make the agents 

perform better in the simulated conditions. This also 

becomes our state of the art of the paper. 

1.3 Main contributions 

In this paper, a novel strategic control law is 

developed which is a combination of gradient 

consensus and artificial potential field (APF) for the 

system consisting of moving source and several 

obstacles that need to be avoided. The main findings 

of this research are summarized as follows. A 

theoretical gradient consensus, APF-based repulsive 

force, and distributed velocity control are proposed 

for cooperative multi-agent moving source seeking 

under the presence of obstacles. By incorporating 

these elements, the APF-based repulsive force 

algorithm is modified in order to improve the 

performance of the agents especially in a shrinking 

agent condition. This paper proposes a new unique 

strategy in the form of novel APF-based repulsive 

force algorithm to address source seeking and 

obstacle avoidance problems. To our best knowledge, 

our paper is the first to address formation control 

problem combined with gradient consensus and 

Modified APF. 

1.4 Outline 

The organization of the paper is specified as 

follows. In section 2, the problem formulations and 

multi-agent model are outlined. Then, the methods 

consisting of gradient consensus, artificial potential 

field, and strategic control in sections 3, 4, and 5, 

respectively. The main results in the form of 

simulations are shown in section 6. The paper is 

concluded in section 7. 

1.5 Notation 

The notations in this paper are described in Table 

1 as follows. The interaction of agents is modeled by 

a connected and undirected graph 𝐺 =  (𝑉, 𝐸). Edge 
(𝑖, 𝑗) = (𝑗, 𝑖) 𝐸  indicates that agent 𝑖  sends 

information to agent 𝑗  (and vice versa). The 

adjacency matrix representing communication 

among agents of graph 𝐺  is denoted by symmetric 

matrix 𝐴 =  [𝑎𝑖𝑗]  ℝ
𝑁𝑁 , where 𝑎𝑖𝑗  =  1  if 

(𝑖, 𝑗) 𝐸 and 𝑎𝑖𝑗  =  0 otherwise. 

2. Scalar field of the source 

In this section, the scalar field of the source is 

explained. Generally, the agents are supposed to 

reach the moving source which generates the scalar 

field. 

Here a scalar field  =  (𝑟)  is considered 

which is a mapping of  ∶  ℝ𝑃 → ℝ+ , where 𝑝 = 

 
Table 1. Some notations used in this paper 

Notation Description 

𝐺 =  (𝑉, 𝐸)  Graph 

𝑉 =  {1,2, … , 𝑁}  Vertices 

𝐸  𝑉𝑉  Edges 

𝐿 ℝ𝑁𝑁  Laplacian matrix 

 ℝ𝑁𝑁  Degree matrix 

𝐴 ℝ𝑁𝑁  Adjacency matrix 

𝑁𝑖  =  {𝑖  𝑉: 𝑎𝑖𝑗 ≠ 0}  Neighbors of agent 𝑖 

𝟏 =  [1 1…  1]⊤  ℝ𝑁  Column vector with 1 as its 

element. 

 Kronecker product 

r=[𝑥 𝑦]𝑇   Position 

  Scalar field 

𝐼𝑁 ∈  ℝ
𝑁𝑁  Identity matrix 

𝛼  Expansion coefficient 

�̂�  Gradient estimation 

�̇�  Gradient consensus 

𝛽  Consensus parameter 

𝑈𝑟𝑒𝑝  Repulsive field 

𝐹𝑟𝑒𝑝  Repulsive Force 

𝑘𝑟𝑒𝑝  Repulsive coefficient 

𝑘𝑣𝑖𝑟   Virtual force gain 

𝑟  Position 

𝑣  Velocity 

𝑢  Accelerator, control signal 

𝑘𝑓  Formation coefficient 

𝑘𝑣  Velocity coefficient 

𝑘𝑟  Repulsive control coefficient 

𝛾  Velocity agent coefficient 
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1, 2,  or 3  denoting the dimension and 𝑟  ℝ𝑃 

defining the position coordinate of the agent in space. 

In this paper the two-dimension case, i.e., 𝑝 =
 2, 𝑟 =  [𝑥 𝑦]⊤  ℝ2  is assumed. The source is 

located at the maximum value of  , which the agents 

attempt to reach. Specifically, the agents attempt to 

find the value of 𝑟(𝑡) that maximizes the scalar field 

 . This can be formulated by the following 

optimization equation 

 

𝑟∗  =  𝑎𝑟𝑔 𝑚𝑎𝑥 (𝑟). 
 

Initially, the static source scalar function is used 

first at 𝑡 = 0, followed by the moving source scalar 

function. The static source scalar function containing 

one peak and combination of two different contours 

as shown in Fig. 1 is formulated as follows: 

 

𝜓𝑠(𝑥, 𝑦) = 𝐴1𝑒
−
(𝑥−𝑥1)

2

𝜎𝑥1
2 −

(𝑦−𝑦1)
2

𝜎𝑦1
2

+  

𝐴2𝑒
−
(𝑥−𝑥2)

2

𝜎𝑥2
2 −

(𝑦−𝑦2)
2

𝜎𝑦2
2

 (1) 

 

At 𝑡 > 0, the peak (also called maximum) of the 

scalar function at (𝑥, 𝑦) = (𝑥1, 𝑦1) = (𝑥2, 𝑦2) moves 

with a certain speed according to the movement of the 

source: linear and sinusoidal movement. Throughout 

this paper, it is assumed that the moving scalar field 

of source (𝑟)  has only a single maximum and no 

local maximum.  

On the linear movement part, the source moves 

with constant scalar speed 𝑣𝑥, 𝑣𝑦 on the 𝑥-axis and 𝑦-

axis as 

 

𝑥𝑥(𝑡) = 𝑣𝑥𝑡[1 1]
⊤                         (2) 

 

𝑥𝑦(𝑡) = 𝑣𝑦𝑡[1 1]
⊤                         (3) 

 

where 𝑥𝑥 = [𝑥1 𝑥2]
⊤  and 𝑥𝑦 = [𝑦1 𝑦2]

⊤  denote the 

position of the peak on the 𝑥 -axis and  𝑦 -axis, 

respectively.  

It is also considered that the scalar field can scale 

in the form of expansion or contraction. Specifically, 

using the scaling function formula, the scaling 

movement of the scalar function with scaling period 

𝑡𝑠 is specified as  

 

𝝈(𝑡 + 𝑡𝑠) = 𝛼(𝝈(𝑡))                   (4) 

 

where 𝝈 = [𝜎𝑥1  𝜎𝑦1 𝜎𝑥2  𝜎𝑦2]
⊤

 . The movement of 𝝈 

in Eq. (4) can be categorized as expansion or 

contraction if 𝛼 > 1  or 𝛼 < 1 , respectively. Here, 

both expansion and contraction cases are considered 

in the same experiment, i.e., the value of 𝛼  may  

 

 
Figure. 1 Example of scalar field 𝝍 

 

switch over time. 

3. Gradient estimation and gradient 

consensus 

This section discusses the gradient estimation of 

each agent and the gradient consensus of the 

formation of cooperative multi-agent in source 

seeking. 

3.1 Gradient estimation 

In the multi-agent-based gradient estimation, 

each agent approximates its own gradient, and the 

connected agents receive the estimations from their 

neighbours to compute the global gradient. The 

proposed method to compute the gradient estimation 

is based on the least squares [28, 29].  

Each agent 𝑖 measures the intensity of the scalar 

field   from its position. This is denoted by 
𝑖
 =

 (𝑟𝑖), where 𝑖 =  1, 2, 3, …  𝑁. Given the position of 

agent 𝑗, 𝑟𝑗,  that is close to agent 𝑖, 𝑟𝑖,  the estimation 

can be calculated by using the first-order Taylor 

series. The estimation of 
𝑗
 at 𝑟𝑖 is given by: 

 

(𝑟𝑗)  (𝑟𝑖)  + (𝑟𝑗 – 𝑟𝑖)
⊤ �̂�(𝑟𝑖)            (5) 

 

where  �̂�(𝑟𝑖) is the estimated gradient calculated by 

agent 𝑖. For 𝑝 =  2, the estimated gradient becomes 

 �̂�(𝑟𝑖) =  [�̂�𝒙(𝑟𝑖)�̂�𝒚(𝑟𝑖)]
⊤
.  If agent 𝑖  has  |𝑁𝑖| 

neighbours, then Eq. (5) becomes 

 

[
 
 
 
𝜓(𝑟1) − 𝜓(𝑟𝑖)

𝜓(𝑟2) − 𝜓(𝑟𝑖)
⋮

𝜓(𝑟|𝑁𝑖|) − 𝜓(𝑟𝑖)]
 
 
 
=

[
 
 
 
 
(𝑟1 − 𝑟𝑖)

⊤

(𝑟2 − 𝑟𝑖)
⊤

⋮

(𝑟|𝑁𝑖| − 𝑟𝑖)
⊤
]
 
 
 
 

�̂�(𝑟𝑖)     (6) 
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𝑏𝑖 = 𝐴𝑖�̂�𝑖                                (7) 

 

where 𝑏𝑖  ℝ
|𝑁𝑖|1, 𝐴𝑖  ℝ

||𝑁𝑖||𝑝,  and �̂�𝒊  ℝ
𝑝1 . 

This problem can be solved by using the least-squares 

method 

 

�̂�
𝑖
= (𝐴𝑖

⊤𝐴
𝑖
)
−1
𝐴𝑖
⊤𝑏𝑖              (8) 

 

which can be written in integrated form as 

 

𝑔 = 𝑔𝑖⨂  𝐼𝑁                      (9) 

 

where agent 𝑖 = 1,… ,7. 

3.2 Gradient of the consensus filter  

The consensus algorithm proposed by Olfati-

Saber and Shamma in [30] is the average consensus 

filter for spatially distributed sensor networks. In this 

algorithm, each sensor receives inputs from its 

neighbours, estimates them, and then averages them. 

The average consensus was applied to gradient 

consensus as follows 

 

�̇�𝑖 =  

𝛽 ∑ 𝑎𝑖𝑗𝑒𝑔𝑖𝑗(𝑡) + 𝛽(1 + 𝑑𝑖)(𝑔𝑖(𝑡) − 𝑔𝑖(𝑡)),𝑗𝜖𝑁𝑖  (10) 

 

where 

 

𝑒𝑔𝑖𝑗(𝑡) = (𝑔𝑖(𝑡) − 𝑔𝑖(𝑡)) − (𝑔𝑗(𝑡) − 𝑔𝑗(𝑡)) 

 

and   1  is a control parameter for tracking the 

performance of the gradient as the agent moves. By 

using the definition of the Laplacian graph, the 

following equation is obtained: 

 

�̇� = −𝛽(𝐼𝑁⨂𝐼𝑝 + ∆⨂𝐼𝑝 + 𝐿⨂𝐼𝑝)𝑔  

+𝛽(𝐼𝑁⨂𝐼𝑝 + ∆⨂𝐼𝑝 + 𝐿⨂𝐼𝑝)�̂�     (11) 

 

where 𝐼𝑁 ∈  ℝ
𝑁𝑁  and 𝐼𝑝 ∈  ℝ

𝑝𝑝  are identity 

matrices. Thus Eq. (11) can be rewritten as:  

 

�̇� = 𝛽(𝐴𝑔𝑔 + 𝐵𝑔𝑔)                  (12) 

 

where 𝐴𝑔 = −𝐵𝑔 and 𝐵𝑔 = 𝐼𝑁⨂𝐼𝑝 + ∆⨂𝐼𝑝 + 𝐿⨂𝐼𝑝,

𝐵 ∈  ℝ𝑁𝑝𝑁𝑝. 

4. Artificial potential field of the obstacles 

In this section, the obstacles and the associated 

Artificial Potential Field are explained. Generally, the 

agents are supposed to avoid the obstacles along the 

way of trying to reach the source. 

The artificial potential field (APF) method used 

is the modified one, namely optimal APF. The 

algorithm is developed through a scenario where an 

agent moves in a two-dimensional space with 

position 𝑋 = (𝑥, 𝑦)𝑇.  

APF has been used widely on the path planning 

problem considering obstacles. In what follows, the 

proposed APF called by the modified APF (MAPF) 

used in this paper will be compared to APF with 

virtual force algorithm (VAPF) in proposed in [27]. 

The authors in [27] consider APF with virtual force 

algorithm with repulsion force as 

 

𝐹𝑟𝑒𝑝(𝑋) = −∇(𝑈𝑟𝑒𝑝) =  

{
𝐹𝑟𝑒𝑝1(𝑋) + 𝐹𝑣𝑖𝑟(𝑋),   𝑓𝑜𝑟 𝜌(𝑋) ≤ 𝜌0

0,                  𝑓𝑜𝑟 𝜌(𝑋) > 𝜌0
    (13) 

 

where, 

 

𝐹𝑟𝑒𝑝1(𝑋) = 𝑘𝑟 (1 −
𝜌(𝑋)

𝜌0
)

1

𝜌2(𝑋)
       (14) 

 

𝐹𝑣𝑖𝑟(𝑋) = −𝑘𝑣𝑖𝑟
1

𝜌(𝑋)
                    (15) 

 

and 𝑘𝑣𝑖𝑟 is the virtual force gain. 

In this paper, the repulsive field 𝑈𝑟𝑒𝑝  from 

obstacles affects the agent movement  

 

𝑈𝑟𝑒𝑝(𝑋) =

{
 
 

 
 

1

2
𝑘𝑟𝑒𝑝 (

1

𝜌(𝑋)
−

1

𝜌0
)
2
𝜌𝑡(𝑋),

                                          𝑓𝑜𝑟 𝜌(𝑋) ≤ 𝜌0
0,

𝑓𝑜𝑟 𝜌(𝑋) > 𝜌0

 

(16) 

 

The repulsive force is then derived from the 

control signal. 

 

𝐹𝑟𝑒𝑝(𝑋) = −∇(𝑈𝑟𝑒𝑝) =  

{
𝐹𝑟𝑒𝑝1(𝑋),   𝑓𝑜𝑟 𝜌(𝑋) ≤ 𝜌0
0,                  𝑓𝑜𝑟 𝜌(𝑋) > 𝜌0

   (17) 

 

where  

 

𝐹𝑟𝑒𝑝1(𝑋) = 𝑘𝑟𝑒𝑝 (
1

𝜌(𝑋)
−

1

𝜌0
)
𝜌𝑡(𝑋)

𝜌(𝑋)2
𝜕𝜌(𝑋)

𝜕(𝑋)
      (18) 

 

where 𝐹𝑟𝑒𝑝 is the repulsive force from obstacle. The 

forces are added to the agents’ current position and 

become reference position for the flight controller. As 

for supporting the process of maintaining the 

formation, the value will be varied if it meets certain 

criteria, such that on some occasion the leader will 

slow down, and the follower will accelerate at the 
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same time. 

5. Strategic control for moving source 

seeking 

Generally, the agents are supposed to avoid the 

obstacles along the way of trying to reach the source. 

A double integrator agent model is considered 

 

�̇�𝑖(𝑡) = 𝑣𝑖(𝑡)                     (19) 

 

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡)                              (20) 

 

where 

 

𝑢𝑖(𝑡) =  

𝑘𝐹 ∑ 𝑎𝑖𝑗 [(𝑟𝐹𝑖(𝑡) − 𝑟𝐹𝑗(𝑡)) − (𝑟𝑖(𝑡) − 𝑟𝑗(𝑡))]𝑗𝜖𝒩𝑖
  

+𝑘𝑣(𝑔𝑖(𝑡) − 𝛾𝑣𝑖(𝑡)) + 𝑘𝑟𝐹𝑟𝑒𝑝   (21) 

 

where the coefficients 𝑘𝐹 , 𝑘𝑣 ,  , 𝑘𝑟  are nonnegative. 

The coefficients 𝑘𝐹  and 𝑘𝑣  denote the weight of 

movement based on formation control and velocity 

tracking, respectively. The integrated cooperative 

multi-agent model from Eqs. (19)-(21) became 

 

�̇� = 𝑨𝒎𝒙 + 𝑩𝒎𝒖            (22) 

 

where  

 

𝒙 = [𝑥1…𝑥𝑛]
⊤, where 𝑥𝑖 = [

𝑟
𝑣
]       (23) 

 

𝒖 = [𝑢1…𝑢𝑛]
⊤, where 𝑢𝑖 = [

𝑟𝐹
𝑔(𝑟)]       (24) 

 

Since a double integrator agent model is 

considered,  
 

𝑨𝒎 = 𝐴𝑚𝑖
⊗ 𝐼𝑁                      (25) 

 

𝑩𝒎 = 𝐵𝑚𝑖
⊗ 𝐼𝑁                       (26) 

 

where 

 

 
Figure. 2 Formation used in the simulations 

𝐴𝑚𝑖
=

[
 
 
 
 
 
0 1
0 0

0 0 0 0
0 0 0 0

0 0
0
0
0

0
0
0

0 1 0 0
0
0
0

0 0 0
0 0 1
0 0 0]

 
 
 
 
 

          (27) 

 

𝐵𝑚𝑖
=

[
 
 
 
 
 
0
1
0
0
0
0

     

0
0
0
1
0
0

     

0
0
0
0
0
1]
 
 
 
 
 

                            (28) 

 

and 𝐼𝑁 being identity matrix with dimension 𝑁 ×𝑁. 

Algorithm 1 specifies the strategic control of 

cooperative multi-agents moving source seeking with 

obstacles avoidance.  

6. Simulation results 

In this section, some numerical examples are 

provided for moving source seeking under obstacle 

avoidance. Linearly moving source with stationary 

and moving obstacle is considered, with and without 

agent shrinking. The parameters used for control 

signal 𝑢𝑖(𝑡)  are 𝑘𝐹 = 0.5 , 𝑘𝑣 = 6 , 𝑘𝑟𝑒𝑝 = 0.01 , 

𝑘𝑟 = 1, 𝛾 = 0.5, and 𝛽 = 1. 

In the figures shown throughout this section, the 

graph as shown in Fig. 2 is considered. Agent #1, 

which is positioned in the center of the graph, is the 

important agents and will be used to indicate the 

graph and other agents’ position throughout the field. 

 

 
Figure. 3 Obstacle avoidance trajectories for stationary 

obstacles with modified APF (MAPF) See animated for 

Figs. 3, 5, 7, 9, 11, and 13: 

http://bit.ly/MovingSourceSeekingWithObstaclesAvoidan

ce 
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Algorithm 1. Strategic control of cooperative multi-

agents moving source seeking with obstacles 

avoidance 

INPUT:  

time sampling 𝑇𝑠, end simulation 𝐸𝑠, initial 

position agents 𝑟, position formation agents 𝑟𝑓, 

parameters of cooperative multi-agent 

𝑘𝐹 , 𝑘𝑣 , 𝑘𝑟, 𝛽, 𝛾, parameters of moving source 

𝐴1, 𝑥1, 𝑦1, 𝜎𝑥1, 𝜎𝑦1, 𝐴2, 𝑥2, 𝑦2, 𝜎𝑥2, 𝜎𝑦2, 𝑣𝑥, 𝑣𝑦, 𝐴, 𝜔, 𝛼

,  

parameters of artificial potential field 

𝐾𝑟𝑒𝑝, 𝜌0, 𝐾𝑎𝑡𝑡, Matrices of consensus gradient 

system and model system 𝑨𝑔, 𝑩𝑔, 𝑨𝑚, 𝑩𝑚, 

Obstacles 𝑶𝑠 
 

OUTPUT: trajectories of all agents 

for t = 0 to 𝐸𝑠 step 𝑇𝑠 
 𝜓𝑠(𝑥, 𝑦) ← 𝑥, 𝑦 %moving source by Eq. (1) 

 Strategic Control: 

 �̂� ← 𝑔𝑖 %gradient estimation by Eq. (9) 

 �̇� ← �̂� %gradient consensus by Eq. (12) 

 if 𝜌(𝑋) ≤ 𝜌0 

  𝑭𝑟𝑒𝑝 ← 𝜌(𝑋), 𝜌𝑡(𝑋) %repulsive forces Eq. (17) 

 if 𝑑𝑜(𝑋) ≤ 𝑑0 

  𝑟𝑓 ← 𝜍 %shrinking formation 

 𝒖 ← 𝑟, 𝑟𝒇, �̂�, 𝑭𝑟𝑒𝑝 %control signal by Eq. (24) 

 𝒙 ← 𝒙,𝒖 %model state by Eq. (22) 

 𝒓 ← 𝒙 %agents position by Eq. (23) 

 𝒅𝑎1_𝑜 ← 𝒓,𝑶𝑠 %distance of agent #1 and three 

obstacles 

end 

return 𝒓, 𝒅𝑎1_𝑜 

 

Fig. 3 shows obstacle avoidance trajectories 

under three obstacles and a source moving linearly 

whereas Fig. 4 illustrates the distance between the 

moving agent 1 and the three obstacles. From those 

figures, it can be seen that agents are able to catch the 

source while avoiding the three stationary obstacles. 

From Figs. 5 and 6, it can be seen that the agents 

can both maintain formation and avoiding the 

obstacles with a tight space between obstacles. This 

can be achieved by performing a shrinking maneuver 

of the agents. As seen in Fig. 5, at around 20s the 

position of agents become more compact due to 

tighter space between obstacles. 

Furthermore, Fig. 7 shows obstacle avoidance 

trajectories under two stationary obstacles and one 

moving obstacle that moves upward with the distance 

shown in Fig. 8. From those figures, it can be seen 

that agents are able to catch the source while also 

avoiding a moving obstacle. 

 

 
Figure. 4 Distance between the obstacles and Agent #1 

over time with modified APF (MAPF) 

 

 
Figure. 5 Obstacle avoidance trajectories for stationary 

obstacles with shrinking formation and MAPF 

 

 
 

Figure. 6 Distance between the obstacles and Agent #1 

over time for shrinking formation and MAPF 
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Figure. 7 Obstacle avoidance trajectories for moving 

obstacles and MAPF 

 

 
Figure. 8 Distance between the obstacles and Agent #1 

over time for moving obstacles and MAPF 

 

 
Figure. 9 Obstacle avoidance trajectories for stationary 

obstacles with virtual APF (VAPF) 

 
Figure. 10 Distance between the obstacles and Agent #1 

over time with virtual APF (VAPF) 

 

 
Figure. 11 Obstacle avoidance trajectories for stationary 

obstacles with shrinking agents and virtual APF 

 

The result is further compared with the virtual 

APF defined in Eq. (13). Specifically, the figures 

associated with stationary obstacles, stationary 

obstacles with shrinking movements, and moving 

obstacles with shrinking movements are shown. 

From Figs. 9-14, it can be seen that the agents can 

reach the source in all cases. 

The minimum distance between Agent #1 and 

each of the three obstacles as well as the time needed 

to reach the moving source for both MAPF and VAPF 

is illustrated in Table 2. It can be seen that in both 

methods the agents reach the source fastest when the 

obstacles are all stationary. On the other hand, the 

agents reach the source slowest in both methods 

when the obstacles move, since they have to 

maneuver to avoid the more agile obstacles. 

Table 2 shows the comparison between our 

proposed method (MAPF) versus VAPF. The variable  
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Figure. 12 Distance between the obstacles and Agent #1 

over time with shrinking agents and virtual APF 

 

 

 
Figure. 13 Obstacle avoidance trajectories for stationary 

obstacles considering moving obstacle with virtual APF 

 

 

 
Figure. 14 Distance between the obstacles and Agent #1 

over time considering moving obstacle with virtual APF 

 

Table 2. Minimum distance between Agent #1 and the 

three obstacles with modified and virtual APF 

No Experiment min 

dist1 

(m) 

min 

dist2 

(m) 

min 

dist3 

(m) 

Time 

(sec) 

1 Static: MAPF 5.25 3.98 3.37 62.8 

2 Static: VAPF 4.22 3.34 4.14 61.7 

3 Shrink: MAPF 3.13 2.68 2.43 73.1 

4 Shrink: VAPF 3.26 2.54 3.26 81.4 

5 Shrink+Move: 

MAPF 

2.97 2.80 3.12 90 

6 Shrink+Move: 

VAPF 

3.27 2.54 0.17 75.3 

 

 

‘min dist’ is the minimum distance with the edge of 

the obstacles. Three ‘min dist’ are considered because 

there are three obstacles. Three experiments are 

conducted: static obstacles, static obstacles with 

shrinking agents, and moving obstacles with 

shrinking agents. It is shown that in all experiments, 

the minimum distance is more than the allowable 

distance.  

From Table 2, it is observed that in an 

environment with modified APF, the agents may 

reach the source faster by 8.3s or about 10.2%. 

However, for the situation where agents need to 

shrink to avoid obstacles, it is shown that our 

algorithm may perform better compared to VAPF. 

7. Conclusion 

In this paper, a strategic control is considered, 

which is a combination of gradient consensus and 

artificial-potential-function-based velocity control of 

a multi-agent system that pursue a moving source 

while avoiding obstacles. Gradient-based approach is 

used to derive the velocity of the agents, which are 

tasked to trace the position of a moving source while 

avoiding the obstacles that emits certain repulsive 

force under the framework of artificial potential field 

(APF). Under this gradient-based and APF-based 

strategic velocity control, it is shown that the agents 

are able to reach the moving source while avoiding 

both moving and stationary obstacles. Several 

numerical examples are provided to give a 

performance comparison between the agents under 

several conditions. It is shown that our proposed 

method combining gradient consensus with APF may 

perform better compared to virtual APF in the 

scenario where agents need to shrink due to small 

gaps between obstacles with time needed to reach the 

source 73.1s versus 81.4s of VAPF method. 
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