
Received: May 19, 2023. Revised: June 28, 2023. 162

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

Enhancing Deduplication Efficiency Using Triple Bytes Cutters and Multi

Hash Function

Hashem B. Jehlol1* Loay E. George2

1Iraqi Commission for Computers and Informatics / Informatics Institute of Postgraduate Studies, Baghdad, Iraq

2University of Baghdad, Baghdad, Iraq

* Corresponding author’s Email: phd202020556@iips.icci.edu.iq

Abstract: Managing big data backups is challenging due to high volumes of redundant data. Data deduplication is

widely used but incurs significant computational and time costs. This paper proposes a hybrid deduplication system

that combines file-level and block-level methods to enhance deduplication while reducing costs. File-level

deduplication eliminates duplicate files, while block-level deduplication is applied to non-duplicated files using a

dynamic list of divisors to enhance deduplication. A multi-hash function generates three hash values for each file or

chunk to improve chunking speed and reduce hash collisions. The proposed hybrid system outperforms other state-of-

the-art methods in terms of time, data deduplication ratio, and deduplication gain. Experimental results show

reductions of 97.2%, 91.6%, and 82.1% in data size for Dataset 1, Dataset 2, and Dataset 3, respectively, and

demonstrate that the proposed multi-hash function is faster and requires less storage than other hash functions.

Keywords: Big data, Backup, Deduplication, File level, Block level, Hash function.

1. Introduction

Using backup storage is crucial for any data

protection architecture, particularly in safeguarding

users against data loss caused by accidental deletion.

High backup performance is necessary when quickly

backing up a significant data volume, such as big data.

Due to the utilization of diverse data processing,

storage, and recovery technologies in big data, there

may be inherent complexities associated with these

technologies [1, 2]. As the volume, variety, and speed

of big data continue to grow, there is a pressing need

for increased computer resources, storage space, and

network bandwidth to accommodate it [1, 3]. The

cost-effectiveness of extensive data storage

management is a significant challenge [4]. Backup

files of big data often contain redundant data due to

incremental changes between backups [5, 6];

therefore, vast duplicate data across backups are

frequently found [5]. Backup storage systems widely

use data deduplication [7] to save storage space and

achieve an impressive compression ratio and

throughput performance. The deduplication process

reduces the storage size, and unnecessary data,

improving the efficiency of storage space utilization

[8]. The backup deduplication system dramatically

increased their storage efficiency [9]. Furthermore,

this approach prevents the storage and transmission

of duplicate data across networks [10]. Data

deduplication can be performed at the file or block

levels [5].

File-level deduplication involves storing only one

copy of identical files, which results in reduced

resource utilization and simplified implementation

[11]. However, it may not detect duplicates with

different names or metadata and cannot identify

changes made to a single byte in the file [12]. On the

other hand, Block-level deduplication can be

performed using fixed or variable-length blocks. In

fixed-length block deduplication, data is divided into

chunks of a constant size, whereas in variable-length

block deduplication, data is divided into distinct

chunks based on different factors [9, 12]. While

block-level deduplication is more efficient than file-

level Deduplication, it requires more system

resources [13, 14].

Received: May 19, 2023. Revised: June 28, 2023. 163

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

The content defined chunk (CDC) [15] technique

is commonly used in data deduplication and can

detect and remove duplicate data in various systems

[5]. Implementing CDC improves the efficiency of

the deduplication system, mainly when using the

variable chunk size-based technique, which is

common in backup storage systems [5]. Basic sliding

window (BSW) and two threshold two divisors

(TTTD) algorithms commonly used in CDC

techniques rely on Rabin fingerprints of the content

to identify the boundaries of chunks [16, 17].

Although these algorithms effectively detect

duplicates, they can be time-consuming. This is

because the Rabin fingerprints of the data stream are

calculated and compared byte by byte against a

condition value [18]. Furthermore, selecting

appropriate values for the Threshold and divisor

parameters is challenging and essential since they can

significantly impact the deduplication ratio and

execution time [19, 20].

Typically, data deduplication techniques consist

of identifying and removing duplicate data

components using a cryptographic hash function. In

hash-based approaches, hashing algorithms, such as

secure hash algorithm SHA1, SHA256 and message-

digest algorithm MD5, generate unique hashes for

each data block [21]. These hash values are then used

to identify and remove duplicate data blocks during

the data deduplication. The same hash value is

produced when the data is processed multiple times

using the hashing algorithm. However, data

deduplication can be computationally intensive,

resulting in long runtimes and increased processor

resource usage for the system [22]. This article aims

to enhance the deduplication process by improving its

efficiency and increasing the deduplication ratio

through three key contributions:

1. The article suggests a hybrid system

integrating file-level and block-level methods to

enhance deduplication. By leveraging the advantages

of both file-level (lower resource utilization and

simplified implementation) and chunk-level (higher

efficiency) deduplication techniques

2. The article proposes a novel method for

generating a dynamic list of divisors based on the

frequency of triple bytes. This improves

deduplication precision by accurately identifying

data chunk boundaries.

3. The article presents a multi-hashing function

that generates three hash values per chunk, lowering

the chance of hash collisions during matching.

Also, this article improves matching processes by

introducing a new method to group chunks into

multiple categories before comparing them against

added chunks.

2. Related work

Data deduplication techniques are heavily used in

data backup. Therefore, researchers have recently

considered data deduplication one of the most crucial

subjects. In this paper, the following articles are

considered:

H. Jasim and A. Fahad, 2018 [1] proposed a novel

technique to improve the TTTD chunking algorithm

called the content-based two threshold two divisor

with multilevel hashing technique (CB-TTTD-

multilevel hashing technique). It involves a new

multilevel hashing and matching technique and a new

chunk condition to generate more small chunks. They

also incorporated four hashing techniques to improve

the deduplication ratio and address the collision

problem. However, a drawback of their method is its

reliance on primitive numbers to determine the

breakpoint used in TTTD. In our proposed approach,

we employ a dynamic method based on the file

contents to determine the divisors for the breakpoint

data.

A. Saeed and L. George, 2020 [10], proposed a

new method for data deduplication, the bytes

frequency-based chunking (BFBC) algorithm, which

outperforms commonly used CDC efficiency

algorithms. The technique introduces a three-way

hash function algorithm that is faster and more

efficient than widely-used SHA1 and MD5. BFBC is

ten times faster than BSW and around three times

faster than TTTD, achieving a better deduplication

ratio (DER) than other CDC algorithms. However, a

notable drawback of the BFBC method is that the

increased data size requires a corresponding increase

in the size of the hashes used to represent the

fingerprints. Consequently, this leads to an expansion

of the hash index table size and imposes additional

computational overhead. In our proposed approach,

we address this issue by implementing file-level

deduplication. By eliminating similar files at the

beginning of the process, we significantly reduce the

size requirements of the index table. This size

reduction minimizes storage demands and alleviates

the computational burden associated with managing

a larger index table.

S. Ahmed and L. George, 2021 [22], Proposed a

data deduplication technique that eliminates

redundancy in large-scale storage by identifying cut-

points in chunks using commonly repeated patterns

(CRP) and a lightweight triple-level hashing function

(LT-LH). The technique reduces hashing function

processing and storage overhead costs. Furthermore,

it is faster and more efficient than BSW and TTTD

techniques. Regarding speed and storage savings, the

LT-LH function outperforms SHA1 and MD5. Future

Received: May 19, 2023. Revised: June 28, 2023. 164

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

work in this study recommended dynamic allocation

for the set of divisors, aiming to enhance the

deduplication ratio further. In our article, A dynamic

triple devisers method is developed to complement

this study and improve overall deduplication

performance.

Z. Xu and W. Zhang, 2022 [16] introduce

QuickCDC, a technology that enhances content-

defined chunking (CDC) for data deduplication. It

employs three techniques to improve performance.

Firstly, it jumps directly to the boundaries of

duplicate chunks, skipping corresponding chunk

lengths. Secondly, it skips the minimum chunk length

for unique chunks. Lastly, it dynamically adjusts

mask bit lengths to optimize the distribution of chunk

lengths. Experimental results show that QuickCDC is

11.4 times faster than RapidCDC, improves the

deduplication ratio by up to 222.3%, and increases

throughput by 111.4%. Overall, QuickCDC offers

significant speed improvements the data

deduplication. In contrast to the mentioned study, our

proposed method surpasses it by achieving

significant improvements in both the speed of the

deduplication process and the deduplication ratio.

Our approach outperforms the referenced method

regarding gain and deduplication ratio, making it a

more efficient and effective solution for data

deduplication.

H. Jehlol and L. George, 2022 [23] present a new

method for accelerating and improving data

deduplication. It classifies data based on Pearson

correlation between histogram extensions, uses

divisors from data repeating patterns, and introduces

faster hash functions. The proposed method achieves

a deduplication ratio ten times higher than the Basic

Sliding Window method and approximately five

times higher than the two thresholds two divisors

method, demonstrating its effectiveness and potency.

Our new article improves this study by utilizing a

hybrid method to enhance the deduplication process

speed. Additionally, we enhance the deduplication

ratio by incorporating triple divisors into our

approach.

S. Babu, P. Ramya, and J. Gracewell,2022 [24]

introduced a content deduplication with granularity

tweak (CDGT) technique within the Hadoop

architecture, specifically targeting large text datasets.

CDGT utilizes the Reed-Solomon technique to

enhance deduplication efficiency by effectively

handling small changes within similar content. It

achieves this by verifying intercontact changes and

identifying and eliminating a more significant

amount of duplicate content. An indexing approach

improves performance by organizing data into

clusters, facilitating faster access and retrieval

operations. However, one drawback of this technique

is its limited effectiveness in handling large text

datasets. To address this limitation, our proposed

method is designed to apply to different data types.

To validate the performance and suitability of our

approach, we conducted comprehensive experiments

using multiple datasets, ensuring a thorough

evaluation across various data types.

Y. Deng, 2022 [25] The proposed technique

improves deduplication-based backup systems by

addressing the challenges of index lookup bottleneck

and data fragmentation. It introduces HID (hot

fingerprint entry distilling) to segregate useless and

fragmented fingerprint entries, optimizing memory

utilization and reducing disk accesses. EHID

(Evolved HID) incorporates a Bloom filter to identify

unique and fragmented chunks, avoiding disk

accesses and reducing false positives. Experimental

results show significant reductions in memory

overhead, improved backup throughput, and reduced

disk I/O traffic compared to the state-of-the-art

method HAR. The main drawback of this method of

dividing the index into three parts (hot, fragmented,

and useless fingerprint entries) and using containers

based on a threshold introduces complexity to the

deduplication process. This additional layer of

management and classification increases the

implementation and maintenance effort needed for

the deduplication system. Therefore, we improve the

index lookup by retrieving chunks of the same size

and divisors; after that, we compute the three hash for

these chunks and compare them with the new chunks.

3. Proposal system

This paper introduces a hybrid data deduplication

system combining two techniques. The first

technique is file-level deduplication, which treats

each file as a single entity and does not divide it into

smaller units. The second technique is chunk-level

deduplication, which divides data into various chunks

of different sizes. The proposed system consists of

three phases: file-level Deduplication, block or

chunk-level Deduplication, and data indexing and

storage. Fig. 1 illustrates the three main phases of the

proposed system.

3.1 Multi-hash function algorithm

A new hash function is introduced in the proposed

system to generate the fingerprint of the input file or

chunk. This function computes a multi-hash function

for each file or chunk, reducing the computation,

storage space, and collision issues that conventional

deduplication system hash functions face. The

Received: May 19, 2023. Revised: June 28, 2023. 165

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

Figure. 1 The layout of the proposed system

proposed multi-hash algorithm employs a

fundamental mathematical concept to reduce

processing time and system resources.

Algorithm 1 part (1) is designed to generate three

random sequences of hash arrays for a given file. The

algorithm takes a file as a stream of bytes as input and

produces three output arrays: h1, h2, and h3, each

containing 255 random values. The algorithm

generates three random sequences of hash arrays by

shuffling a sequence array using a random number

generator. The shuffling process ensures the

randomness of the generated sequences. These

sequences can be used for various purposes, such as

fingerprint operations.

Algorithm 1: Part 1: Create three random hash values

for each file

Objective:
Generate three random sequences of

hash arrays.

Input: File as a stream of byte

Output:
h1, h2, and h3: three sequence arrays,

each containing 255 random values.

Step 1: Define the following integer vector

arrays: h1[255], h2[255], h3[255],

seq[255]

Step 2: Initialization: Fill the seq array with

sequence values from 1 to 255.

Step 3: Compute the length of the stream of

bytes and assign it to L.

Step 4: Loop from i = 254 to 0:

- Generate a random value j

between 0 and i (inclusive).

- Swap the values of seq[i] and

seq[j].

- Set seq[i] as L.

- Set seq[j] as L.

Move to the next iteration.

Step 5: Loop from L = 0 to 254:

- Assign the value of seq[L] to

h1[L].

- Assign the value of seq[L] to

h2[L].

- Assign the value of seq[L] to

h3[L].

Move to the next iteration.

Step 6: Return the three random sequence

arrays: h1, h2, and h3.

As demonstrated in the Algorithm 1 part 2, the

hashing algorithm generates hash values for each file

or chunk. It focuses on generating three hash

functions for a given file. The algorithm's input is the

file as a stream of bytes and three sequence arrays (h1,

h2, and h3). It produces three output arrays: hash1,

hash2, and hash3, representing the three hash

functions. Three hash values are produced by

iterating through a file's byte stream and performing

multiplication and addition operations using

sequence arrays.

The proposed hashing method calculates three

values for every file or chunk, with each hash

occupying two bytes. Consequently, each file

requires 6 bytes (48 bits) in total. Traditional hash

algorithms such as SHA1, SHA256, and MD5,

commonly used for data deduplication, demand extra

system resources to generate hash values and store

them on storage media. For example, SHA1

necessitates 160 bits of data, while MD5 requires 128

bits. Eq (1), Eq (2), and Eq (3) show how

Multi-Hash

Algorithm and

indexing file

P
h

as
e

T
h

re
e:

 I
n

d
ex

in
g

P

h
as

e
O

n
e:

 F
il

e
L

ev
el

Duplicate detection and Removal

P
h

as
e

T
w

o
:

C
h

u
n

k
in

g
 L

ev
el

Non-Duplicate Files

Chunk ID

set

Converting File to

a Stream of Bytes

Chunking

Multi-Hash Algorithm

Metadata

File

Container

File

Read one File in at a

Time

Dynamic divisors Created

Received: May 19, 2023. Revised: June 28, 2023. 166

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

Algorithm 1: part2: Generate Three Hash Functions

for Each File

 Objective: Calculate three hash values.

Input: File as a stream of bytes, h1, h2, and

h3 (three sequence arrays generated

from Algorithm 1, Part 1).

Output:
hash1, hash2, and hash3 (three hash

functions).

Step1: Define the following integer vector

arrays: hash1[], hash2[], hash3[]

Step2: Initialization: Fill hash1, hash2, and

hash3 arrays with 0 values.

Step3: Assign the byte stream of the file to the

variable s.

Step4: Loop from j = 1 to the end of the file:

- Calculate k = j mod 255.

- Update hash1 as (hash1 + s[j]

× h1[k]) modulo 65535.

- Update hash2 as (hash2 + s[j]

× h2[k]) modulo 65535.

- Update hash3 as (hash3 + s[j]

× h3[k]) modulo 65535.

Move to the next iteration.

Step5: Return the three hash functions: hash1,

hash2, and hash3.

mathematically it generates three hash functions.

𝐻𝑎𝑠ℎ1 =

∑ ([𝑠[𝑗] × ℎ1[𝑗 𝑚𝑜𝑑 255]])
𝑛

𝑗=1
𝑚𝑜𝑑 65536 (1)

𝐻𝑎𝑠ℎ2 =

∑ ([𝑠[𝑗] × ℎ2[𝑗 𝑚𝑜𝑑 255]])
𝑛

𝑗=1
𝑚𝑜𝑑 65536 (2)

𝐻𝑎𝑠ℎ3 =

∑ ([𝑠[𝑗] × ℎ3[𝑗 𝑚𝑜𝑑 255]])
𝑛

𝑗=1
𝑚𝑜𝑑 65536 (3)

In these equations: n represents the length of the file

and the loop iterates from j = 1 to n.

These equations calculate the updated values of

hash1, hash2, and hash3 by summing the product of

each byte s[j] with the corresponding element h1[j

mod 255], h2[j mod 255], or h3[j mod 255] from the

sequence arrays. The modulo operation is applied to

ensure the result stays within the range of 0 to 65534.

3.2 Files level deduplication phase

The proposed hybrid system utilizes file-level

Deduplication to remove duplicate files by

considering each file as a single entity and entering it

into the deduplication system as a stream of bytes.

Figure. 2 The File Level deduplication

Fig. 2 depicts the critical stages of the file-level

Deduplication technique. Using file-level

deduplication eliminates feeding duplicated files into

the second phase of the deduplication system. It

provides several benefits, including creating only one

index per file, saving time and space, reducing the

number of index values stored, and minimizing CPU

usage and I/O operations.

However, file-level deduplication may not detect

changes made to a small portion of the file. The

proposed system uses a hybrid approach to overcome

the limitation of file-level deduplication. If changes

occur in a file's bytes, the system resolves the issue in

the second phase by breaking the file into chunks

using variable-sized chunk-level deduplication.

3.2.1. File identification and comparison

A unique identifier (ID) is generated for each file

to enable efficient file identification and comparison.

This ID comprises the file's size, type (extension),

and three hash functions. Files are classified based on

size and type (extension) to expedite comparison,

resulting in several groups of similar files. When a

new file is introduced, it is only compared with files

in the group that share the same size and type. This

grouping method accelerates comparison operations

and facilitates the detection of identical files. For

Input file

Comparing the

Three Hashes,

Size, And

Type of New

File with

Stored Files

Compute Three Hashes for

New File

Update Metadata

File Reference
Store New Files

Remove New File

Non-Duplicate Files

Yes No

Update Metadata

File Reference

Received: May 19, 2023. Revised: June 28, 2023. 167

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

example, suppose the new file matches previous files

with identical size, type (extension), and fingerprint

(three hashes); in that case, it is eliminated and

replaced by a logical reference pointing to the

dataset's current file. In contrast, if the new file is

unique, its bytes are stored on the disk.

3.3 Chunking level deduplication phase

During the chunking level phase, the non-

duplicate files obtained from the file level phase are

segmented into several chunks. This paper describes

a novel method to improve the TTTD algorithm by

dividing files into several chunks using a dynamic list

of divisors. The list of divisors is constructed

depending on the content and size of the dataset, and

it defines the file chunking breakpoints.

3.3.1. Dynamic list of divisors

A new method is proposed to generate a list of

divisors that leverage statistical analysis of a dataset's

content. The proposed system utilizes statistical

analysis to determine each contiguous triple-byte

frequency, which is then utilized as divisors to

partition files. The divisors are automatically adapted

according to the size and nature of the file to enhance

the partitioning process. The resulting divisors are

then employed as division points to break the data

stream into smaller, more easily manageable parts.

The new technique is practical and feasible for

generating divisors to partition datasets into

manageable segments. The proposed system follows

a three-step process to find the divisors:

Step 1: computing the frequency of each adjacent

triple byte, i.e., the number of times it appears

in a dataset, resulting in a set of divisors based

on the triple byte frequency.

Step 2: The list is sorted in descending order based on

the frequency of the triple bytes.

Step 3: Selects a set number of triple bytes with the

highest frequency as divisors for each group.

The optimal number is determined through

experimentation to achieve the best deduplication

results.

3.3.2. File chunking

This article introduces a new chunking technique

that enhances the efficiency of the TTTD algorithm.

As shown in Fig. 3, The new technique determines

the breakpoints based on the most frequent triple byte

in the dataset. The technique incorporates a minimum

chunk size (Tmin) to prevent the generation of small

chunks and a maximum chunk size (Tmax) to avoid

forming large chunks. The breakpoints are

established based on the list of divisors with high

frequency, and the scanning process begins at Tmin

and continues until Tmax to detect the breakpoints. If

no divisors are found within this range, Tmax is used

as the breakpoint. The last breakpoint to the end of

the file may form a (Tail) greater than 0 bytes but less

than Tmax, and no is found. After determining the

breakpoints based on the most frequent triple byte in

the dataset, the files are divided into chunks of

varying sizes.

3.3.3. Chunks hashing

Multi-hash function: The proposed system

introduces a new hashing method that computes

multi-hash values for each chunk, as described in the

Algorithm (1) parts 1 and 2. where 48 bits are

required to hash each chunk of data, providing an

efficient and cost-effective solution. Hash functions

are critical for efficiently detecting duplicate data, as

comparing bytes to identify duplicates can be time-

consuming and require multiple input/output

operations. Data fingerprinting is a preferred

approach for identifying duplicates, and hash

functions are crucial. If two data chunks are identical,

the same data's hash functions are also identical.

3.4 Indexing and comparison phase

The third phase of the proposed system's is lookup

and comparison. For each chunk, the metadata file

stores the chunk size, divisors, and position (induct to

position chunk in the container file). The non-

duplicated chunk's value is stored in a container file

that includes the chunk value and position. As

illustrated in Fig. 4, this paper introduces a new

method involving grouping chunks into multiple

categories, significantly reducing search spaces and

accelerating the matching process. The proposed

method involves a multilevel hierarchical search and

matching mechanism to detect duplicate chunks

when new chunks are added. The lookup and

Matching procedure can be summarized as follows:

• The new file is divided into chunks using the

proposed algorithm that depends on the list of

divisors of the file's contents.

• An identifier ID is calculated for each chunk,

consisting of (chunk size, divisors, hash1, hash2,

and hash3).

• A set of records with the exact (chunk size and

divisors) is retrieved from the metadata.

Received: May 19, 2023. Revised: June 28, 2023. 168

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

Figure. 3 Chunking file using proposal triple list divisors

Figure. 4 Lookup and Incremental Matching

Received: May 19, 2023. Revised: June 28, 2023. 169

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

• Three hashes are counted for each chunk

retrieved from the backup storage, creating a

Chunk ID.

• If the chunk size, used divisors, and the first hash

of the two chunks (new chunk and old chunks)

are the same, then the second hash of the two

chunks is compared, followed by the third.

When there is a match between the two chunks,

update the existing chunk's reference where a new

reference is added to the metadata file, indicating the

existing chunk and deleting the new duplicated chunk.

If the new chunk is non-duplicated, it is added to the

container file, and its reference is saved in the

metadata file.

3.5 Dataset and computer description

The system was evaluated on an Intel (R) Core

(TM) i5-10300H CPU with four cores, 16.0 GB RAM,

running Windows 11 operating system, and

programmed using C# Visual Studio 2022. seven

datasets containing files of varying sizes, types, and

properties were used to test the system's performance:

1. Dataset 1: SQLite Sources, comprising 190,703

files with a combined size of 6.50 gigabytes (GB).

2. Dataset 2: three-dimensional drawings plus the

initials of the author Laurence D. Finston

(3DLDF) files of (GNU's Not Unix) GNU source

code versions comprising 5,795 files with a data

size of 2.27 GB.

3. Dataset 3: Linux source code, consisting of

496,867 files with a total size of 6.58 GB.

4. Dataset 4: The DUC2004 dataset is a specialized

collection for evaluating document

summarization techniques. It comprises 500 news

articles, each accompanied by four human-written

summaries. The dataset is organized into 50

clusters of Text REtrieval Conference (TREC)

documents.

5. Dataset5: The TAR dataset consists of 95

compressed files containing source code from

open-source projects like MySQL, GCC, and

Glibc. The total size of the dataset is

approximately 56GB.

6. Dataset6: consists of multiple versions of the

Linux source code, encompassing different

releases and revisions of the operating system.

The dataset's total size is 99GB, indicating the

cumulative space required to store these various

versions of the Linux source code.

7. Dataset7: comprises three versions of the Linux

file system, namely Linux3.9, Linux-4.14.157,

and Linux-5.8.12. This dataset encompasses

173,109 files and 11,705 folders, approximately

2.32 GB.

4. Experiments and results

The proposed methods were evaluated based on

four criteria:

Deduplication Time: refers to the time required

for the deduplication technique to provide an output

response.

Duplicate elimination ratio (DER): is a

comprehensive deduplication metric computed by

dividing the input data size by the output data size, as

presented in Eq. (4). This ratio indicates the

effectiveness of the deduplication system [10].

DER =
 Data Size Before Deduplication

Data Size After Deduplication
 (4)

Throughput: It is the rate at which data is processed

and deduplicated in a given period, and it is

commonly expressed in units such as bits per second

(bps), megabits per second (Mbps), or gigabits per

second (Gbps). It is calculated as in Eq. (5) [10].

Throughput =
Processed Data

Time in Second
 (5)

Deduplication Gain: It is a metric that measures the

reduction in storage space or processing resources

achieved by removing duplicate data. It is calculated

as in Eq. (6) [24].

Gain = 1 −
𝐷𝑎𝑡𝑎𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑑𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐷𝑎𝑡𝑎𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 (6)

The proposed hybrid method achieved the best

throughput results across all three datasets. Fig. 5

illustrates the throughput results of non-hybrid

deduplication and the proposed hybrid Deduplication

system. Note that the proposed hybrid system's

throughput is higher than the non-hybrid system.

Table 1 compares the time required for non-

hybrid and hybrid Deduplication systems for three

datasets. The hybrid deduplication consistently

required less time than the non-hybrid deduplication,

Table 1. Compares the time of the proposed hybrid

deduplication and non-hybrid deduplication system

Dataset
Non-Hybrid Time

(Sec)

Hybrid (Sec) Time

(Sec)

Dataset1 2143 180

Dataset2 232 156.6

Dataset3 7446 952

Received: May 19, 2023. Revised: June 28, 2023. 170

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

Table 2. Time and DER of file-level and block-level and

the hybrid between them

Dataset

File-level Block level Hybrid

Time

(Sec)
DER

Time

(Sec)
DER

Time

(Sec)
DER

Dataset1 45 7.7 135 29.0 180 36.7

Dataset2 12 2.8 144 9.3 156.6 12.1

Dataset3 180 2.9 772 2.7 952 5.61

Figure. 5 A comparison of the throughput of the non-

hybrid and the hybrid deduplication

Figure. 6 Data size before and after the hybrid

deduplication method

indicating its effectiveness in reducing the time

required for data deduplication.

Table 2 presents the data deduplication ratio and

time required for the file-level and block-level

deduplication methods and the hybrid between them.

It provides data for three datasets.

Fig. 6 displays the data size before and after the

proposed hybrid deduplication system. The analysis

indicates a substantial reduction in the amount of data,

with Dataset 1 experiencing a reduction of 97.2%,

from 6.50 GB to 0.18 GB. Dataset 2 had a reduction

of 91.6%, while Dataset 3 had a reduction of 82.1%.

These outcomes demonstrate the effectiveness of the

proposed hybrid method in reducing the data size.

Table 3 displays the results of experimentation

that determined the optimal number of divisors

Table 3. DER and time consumption based on the

number of divisors (1-10)

Divisors

Dataset1 Dataset2

DER
Time

(Sec)
DER

Time

(Sec)

1 32.1 1600 10.88 150

2 33.9 1935 11.28 153

3 36.1 2025 11.27 155

4 36.7 2143 12.08 156.6

5 36.4 2166 12.15 156.9

6 35.5 1943 12.07 190

7 35.0 1996 12.12 201

8 35.0 2019 12.15 199

9 34.8 2385 12.15 210

10 34.6 2553 12.17 232

Table 4. Compared the proposed hashing method with

MD5, SHA-1 and SHA256 by considering time criteria

Dataset

Hashing Time (Sec)

MD5 SHA1 SHA256
Proposed

Hashing

Dataset1 50 192 576 25.9

Dataset2 24.8 60.1 185 7.3

Dataset3 424.2 462.9 1320 67

 required to achieve the best deduplication outcomes.

Datasets 1 and 2 displayed the highest DER when 4

and 5 divisors were utilized, respectively.

Nonetheless, employing a single divisor for both

datasets resulted in the least time-consuming

approach, despite the low DER outcome.

Furthermore, Table 3 illustrates a direct

relationship between the number of divisors and the

time required, as an increase in divisors corresponds

to an increase in time consumption.

The study demonstrates that the proposed hashing

technique surpasses SHA1, SHA256 and MD5 in

terms of performance, resulting in reduced hashing

time, as evidenced in Table 4. These results

substantiate the effectiveness of the proposed

technique in improving the efficiency of the data

deduplication system.

Table 5 showcases how the proposed hashing

technique outperforms SHA1, SHA256 and MD5,

leading to a notable increase in the data deduplication

system's throughput. These findings strongly endorse

the proposed technique's efficacy in enhancing the

system's overall efficiency.

Table 6 presents a comprehensive comparison of

the proposed data deduplication method with various

state-of-the-art methods, focusing on the gain

percentage and deduplication elimination ratio

Received: May 19, 2023. Revised: June 28, 2023. 171

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

Table 5. Compared the proposed hashing method with

MD5, SHA1 and SHA256 by considering throughput

Dataset

Hashing Throughput (Mb/s)

MD5 SHA1 SHA256
Proposed

Hashing

Dataset1 133 34.66 11.5 257

Dataset2 93.67 38.28 12 318

Dataset3 13.4 12.4 5.1 100

Table 6. Compared the proposed method with other

state-of-the-art methods

Ref. Methods Dataset Gain DER

[1] CB-TTTD Dataset2 91% 11.6

[10] BFBC
Dataset1 96% 30.82

Dataset3 80% 4.96

[22] CRP Dataset7 68% 3.11

[16] QuickCDC Dataste5 41% 1.7

[23]

File

classificatio

n based on

histogram

Dataset1 96% 27.17

Dataset2 91% 11.65

[24] CDGT Dataste4 84% 7.3

[25] EHID Dataset6 96.7% 33

Ours
Proposed

method

Dataset1 97.2% 36.7

Dataset2 91.6% 12.1

Dataset3 82.1%. 5.61

Dataset7 71% 3.5

(DER) achieved by each method. The findings

highlight the superior performance of the proposed

method compared to others, primarily attributed to its

ability to achieve significantly high deduplication

gain and DER, thereby establishing itself as the most

efficient approach.

For Dataset1, the proposed method achieves an

impressive gain percentage of 97.2% alongside a

DER of 36.7. Similarly, for Dataset2, it attains a gain

of 91.6% with a DER of 12.1. In the case of Dataset3,

the method achieves a commendable gain of 82.1%

and a deduplication ratio of 5.6. In general, these

results clearly indicate that the proposed method

outperforms the majority of other approaches in

terms of gain percentage and DER.

5. Conclusion

This paper presents a new hybrid system that

effectively combines file- and chunk-level

deduplication approaches to reduce data redundancy.

The method's effectiveness is evaluated using three

datasets of varied sizes and kinds, measuring

deduplication time, DER, and throughput between

the hybrid and non-hybrid approaches. The results

indicate that the hybrid approach saves significant

time compared to the non-hybrid method across all

three datasets, with reductions of 97.2%, 91.6%, and

82.1% in data size for Dataset 1, Dataset 2, and

Dataset 3, respectively. By examining file contents

and producing a list of divisors, the hybrid approach

achieves the maximum Throughput and DER. The

suggested hash algorithm outperforms SHA1,

SHA256 and MD5 regarding hash throughput and

time. Additionally, the proposed approach is

compared to other state-of-the-art methods, such as

CB-TTTD, BFBC, CRP, QuickCDC, CDGT and

EHID, and is shown to be superior in terms of

deduplication ratio, deduplication gain.

Conflicts of interest

 The authors declare that there is no conflict of

interest regarding the publication of this paper.

Author contributions

 In this research article, the author's contributions

are as follows: "conceptualization, Loay E. George;

methodology, Loay E. George; software, Hashem B.

Jehlol; validation, Hashem B. Jehlol; formal analysis,

Loay E. George; investigation, Hashem B. Jehlol;

resources, Hashem B. Jehlol; data curation, Loay E.

George; writing— original draft preparation, Hashem

B. Jehlol; writing—review and editing, Hashem B.

Jehlol; visualization, Hashem B. Jehlol; supervision,

Loay E. George; project administration, Loay E.

George; funding acquisition, Hashem B. Jehlol."

References

[1] H. Jasim and A. Fahad, “New techniques to

enhance data deduplication using content based-

TTTD chunking algorithm”, Int. J. Adv. Comput.

Sci. Appl., Vol. 9, No. 5, pp. 116–121, 2018.

[2] S. Kareem, R. Yousif, and S. Abdalwahid, “An

approach for enhancing data confidentiality in

hadoop”, Indones. J. Electr. Eng. Comput. Sci.,

Vol. 20, No. 3, pp. 1547–1555, 2020.

[3] S. Chimphlee and W. Chimphlee, “Machine

learning to improve the performance of

anomaly-based network intrusion detection in

big data”, Indones. J. Electr. Eng. Comput. Sci.,

Vol. 30, No. 2, pp. 1106–1119, 2023.

[4] Y. Cui, Z. Lai, X. Wang, and N. Dai,

“QuickSync: Improving Synchronization

Efficiency for Mobile Cloud Storage Services”,

IEEE Trans. Mob. Comput., Vol. 16, No. 12, pp.

3513–3526, 2017.

[5] F. Ni, X. Lin, and S. Jiang, “SS-CDC: A two-

stage parallel content-defined chunking for

Received: May 19, 2023. Revised: June 28, 2023. 172

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.15

deduplicating backup storage”, SYSTOR - Proc.

12th ACM Int. Syst. Storage Conf., pp. 86–96,

2019.

[6] H. Fan, G. Xu, and Y. Zhang, “CSF: An efficient

parallel deduplication algorithm by clustering

scattered fingerprints”, In: Proc. IEEE Intl Conf

Parallel Distrib. Process. with Appl. Big Data

Cloud Comput. Sustain. Comput. Commun. Soc.

Comput., pp. 602–607, 2019.

[7] S. Mohamed and Y. Wang, “A survey on novel

classification of deduplication storage systems”,

Distrib. Parallel Databases, Vol. 39, No. 1, pp.

201–230, 2021.

[8] V. Devarajan and R. Subramanian, “Analyzing

semantic similarity amongst textual documents

to suggest near duplicates”, Indones. J. Electr.

Eng. Comput. Sci., Vol. 25, No. 3, pp. 1703–

1711, 2022.

[9] D. Viji and D. Revathy, “Comparative Analysis

for Content Defined Chunking Algorithms in

Data Deduplication”, Webology, Vol. 18, No.

Special Issue 2, pp. 255–268, 2021.

[10] A. Saeed and L. E. George, “Data deduplication

system based on content-defined chunking using

bytes pair frequency occurrence”, Symmetry,

Vol. 12, No. 11, pp. 1–21, 2020.

[11] E. Manogar, “A smart hybrid content de ned

chunking algorithm for data deduplication in

cloud storage”, Anna Univ. Chennai Abirami,

2022.

[12] Y. Zhang, Y. Wu, and G. Yang, “Droplet: A

distributed solution of data deduplication”, In:

Proc. of IEEE/ACM Int. Work. Grid Comput., pp.

114–121, 2012.

[13] L. Canencia and B. Hamoum, “Deduplication

algorithms and models for efficient data storage”,

In: Proc. of 24th Int. Conf. Circuits, Syst.

Commun. Comput. CSCC 2020, pp. 23–28, 2020.

[14] C. Zhang, “MII: A novel content defined

chunking algorithm for finding incremental data

in data synchronization”, IEEE Access, Vol. 7,

No. 1, pp. 86932–86945, 2019.

[15] W. Xia, D. Feng, H. Jiang, Y. Zhang, V. Chang,

and X. Zou, “Accelerating content-defined-

chunking based data deduplication by exploiting

parallelism”, Futur. Gener. Comput. Syst., Vol.

98, No. January 2021, pp. 406–418, 2019.

[16] Z. Xu and W. Zhang, “QuickCDC: A Quick

Content Defined Chunking Algorithm Based on

Jumping and Dynamically Adjusting Mask Bits”,

In: Proc. of 19th IEEE Int. Symp. Parallel

Distrib. Process. with Appl., pp. 288–299, 2021.

[17] H. Abdulsalam and A. Fahad, “Evaluation of

Two Thresholds Two Divisor Chunking

Algorithm Using Rabin Finger print, Adler, and

SHA1 Hashing Algorithms”, Iraqi J. Sci., Vol.

58, No. 4C, 2017.

[18] K. Eshghi and H. Tang, “A framework for

analyzing and improving content-based

chunking algorithms”, Hewlett-Packard Labs

Tech. Rep. TR, No. August, 2005, [Online].

Available: http://shiftleft.com.

[19] L. George and A. Saeed, “Data Deduplication

System Based on Frequency Occurrence”,

Symmetry (Basel)., Vol. 12, No. 11, p. 1841,

2020.

[20] A. Saeed and L. George, “Fingerprint-based data

deduplication using a mathematical bounded

linear hash function”, Symmetry (Basel)., Vol.

13, No. 11, pp. 1–19, 2021.

[21] A. Bhalerao, “A Survey : On Data Deduplication

for Efficiently Utilizing Cloud Storage for Big

Data Backups”, Int. Conf. Trends Electron.

Informatics, No. August 2019, 2017.

[22] S. Ahmed and L. George, “Lightweight hash-

based de-duplication system using the self

detection of most repeated patterns as chunks

divisors”, J. King Saud Univ. - Comput. Inf. Sci.,

Vol. 34, No. 7, pp. 4669–4678, 2021.

[23] H. Jehlol and L. George, “Big Data De-

duplication Using Classification Scheme based

on Histogram of File Stream”, In: Proc. of

International Conference on Intelligent

Technology, System and Service for Internet of

Everything, 2022.

[24] S. Babu, P. Ramya, and J. Gracewell, “Content

Deduplication with Granularity Tweak Based on

Base and Deviation for Large Text Dataset”,

Hindawi Scientific Programming, pp. 1-17,

2022.

[25] Z. Datong, D. Yuhui, and Z. Yi , “Improving the

Performance of Deduplication-Based Backup

Systems via Container Utilization Based Hot

Fingerprint Entry Distilling”, ACM

Transactions on Storage, Vol. 17, No. 4, pp. 1–

23, 2021.

