
Received: May 6, 2023. Revised: June 15, 2023. 92

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

Implementation of COSMIC Function Points (CFP) as Primary Input to

COCOMO II: Study of Conversion to Line of Code Using Regression and

Support Vector Regression Models

Sholiq Sholiq1,2 Riyanarto Sarno1* Endang Siti Astuti3 Muhammad Ainul Yaqin4

1Department of Informatics, Institut Teknologi Sepuluh Nopember Surabaya, Indonesia

2Department of Information Systems, Institut Teknologi Sepuluh Nopember Surabaya, Indonesia
3Department of Business Administration, Brawijaya University Malang, Indonesia

4Department of Informatics, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia

* Corresponding author's email: riyanarto@if.its.ac.id

Abstract: In COCOMO II, the primary input for estimating development effort in person month (PM), duration, and

cost is the size of the software. Until now, there are two ways to get the size, namely (1) size is estimated using a line

of code of software, and (2) size is estimated using unadjusted function points (UFP), which is one of the functional

size measurements (FSM). In this study, we added a new way to obtain the size as the primary input in COCOMO II,

namely with COSMIC function points (CFP). CFP has several advantages compared to other FSMs, including UFP.

Therefore, like UFP, CFP is converted first to LOC, so the conversion equation must be obtained first. We applied

four models to get the conversion functions: Ordinary least squares regression (OLSR), support vector regression

(SVR) with linear, polynomial, and Gaussian kernel functions. The four models were applied using a dataset from

small-scale business application software in Java. The results showed that PM estimation using the CFP model as the

primary input produced better accuracy based on MMRE and Pred (0.25), namely 17%-19% and 67%-80%, than the

UFP model on the COCOMO II of 135% and 10%.

Keywords: COCOMO II, Software size, CFP, FSM, LOC.

1. Introduction

Measuring software cost is essential for several

purposes. The software project manager can control

the project from design to implementation and

evaluation. Four primary performances must be

measured and controlled by managers in order to

control the project, namely [1]: (i) project delivery for

time and budget, (ii) project productivity, (iii) project

speed, and (iv) product size and quality. Software

cost is measured in the software development

process's initial phases for project planning.

One of the most popular methods used to measure

software costs is the constructive cost model

(COCOMO), a software cost estimation model

introduced by Barry Boehm in 1981 [2]. It is a model

that uses a set of equations to estimate the cost, effort,

and time required to develop a software system based

on a set of input parameters. COCOMO is a well-

known model widely used in the software industry for

many years. It is a simple model that uses a single

equation to estimate the cost of software development

based on the project size. The size of the project is

measured in lines of code or function points, which

measure the functionality provided by the software

[2].

COCOMO II (constructive cost model II) is an

updated version of the original COCOMO model.

COCOMO II was designed to be a more

comprehensive and accurate cost estimation model

for software development projects. Now, COCOMO

II is still in use until the latest COCOMO release

comes out; until now, COCOMO III is still in the

development process and has not yet been released

[3]. The person-months (PM) formula in COCOMO

II is used to estimate the effort required to complete

Received: May 6, 2023. Revised: June 15, 2023. 93

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

a software development project. The formula is

expressed as [2]:

𝑃𝑀 = 𝐴 ∙ 𝑠𝑖𝑧𝑒𝐸 ∙ ∏ 𝐸𝑀𝑖
𝑛
𝑖=1 (1)

Where:

• PM is the estimated effort in person months

required to complete the project.

• A is a constant that depends on the specific

project and the organization carrying out the

development. It is typically determined based on

historical data from previous projects. A constant

default equal to 2.94.

• Size is the estimated size of the software project

in lines of code or another appropriate size

measure.

• E is an exponent that reflects the degree to which

effort increases as size increases. It is typically

determined based on historical data and ranges

from 0.91 to 1.2 for different types of projects.

• 𝐸𝑀𝑖 are effort multipliers that reflect the impact

of various factors on the effort required for the

project. There is a total of n such factors, and they

can be classified into five categories: product,

personnel, project, platform, and process.

We highlight how the variable size is obtained in

COCOMO II. The size variable is a crucial input to

the COCOMO II formula and estimates the effort

required to complete the project. To determine the

size of the project, the COCOMO II model uses one

of two methods:

1. Lines of code (LOC): In this method, the size of

the software is estimated based on the number of

lines of code that will be written. This method

assumes that the size of the software project is

directly proportional to the amount of code that

needs to be written.
2. Unadjusted function points (UFP): In this method,

the size of the project is estimated based on the

functionality that the software system will

provide. UFPs are a measure of the functionality

provided by the system and are calculated based

on the number of inputs, outputs, inquiries, files,

and interfaces the system will have. If using UFP,

it must be converted into a LOC before being

used as a COCOMO II input. So far, Boehm [7]

has used UFP to get the size, and then the size in

the UFP is converted using a conversion ratio that

depends on the programming language used

during software development. If using Java, the

conversion rate is 53 LOC per UFP.

In the early phases of a software development

project, especially for new software development,

using input LOC is difficult because LOC is only

obtained after the software project is completed.

Therefore, it is more realistic to use the UFP input.

UFP is one of the techniques to get the size of

software based on its functionality. Today, the

measurement methods that are widely used are those

based on functionality, so they are called functional

size measurements (FSM) [4, 5]. FSM is based on

functional user requirements (FUR) are generally

used to estimate efforts in the software project phase's

initial stages.

Some other FSM techniques derived from

function points include COSMIC function points

(CFP), use case points (UCP), NESMA, FISMA, MK

II, and others [6, 7]. The following references give

some advantages of using CFP compared to other

FSM methods. The functional sizing method using

FSM is a huge success compared to other methods as

it deals with different types of software, including

business applications and mobile applications etc. [8].

Authors in Ref. [9] tested the accuracy and

reproducibility between function points analysis

(FPA) and CFP. The results showed that the

performance did not differ significantly in accuracy

and reproducibility. However, in any case, the

procedure in CFP is more straightforward than in

FPA. Also, CFP is better suited for a broader

application domain than others of FSM [10].

Therefore, we propose using CFP for primary

input as the size for COCOMO II. It is to expand the

range of COCOMO II to receive primary size inputs

other than LOC and UFP, as described above. Almost

the same as using UFP as the size for the primary

input to COCOMO II. CFPs must also be converted

first to LOC. Several ways have been developed to

obtain estimated LOC in the early phases of software

development by converting FSM to LOC using

conversion ratios, known as backfiring. The study

investigated the relationship between CFP and LOC

using a dataset of fourteen projects constructed with

C++ programming. Another study has found an

association between CFP and LOC in Java

programming for mobile applications carried out in

the studies [11, 12]. Lind and Heldal [13] tested the

relationship between CFP and LOC in C++

programming using datasets containing fifteen

components for the automotive industry. The study

indicated that the correlation between CFP and LOC

was relatively moderate. There are some limitations

in previous research. First, the correlation between

CFP and LOC shows varying values, some are strong,

and some are weak. Second, the dataset used still has

few objects, and third, the technique used still uses

Received: May 6, 2023. Revised: June 15, 2023. 94

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

simple linear regression. Studies have yet to convert

CFP to LOC for business application software. In this

study, we conducted an experimental study to convert

CFP to LOC in Java programming. Therefore, to

make this research more focused, we intend to answer

the following questions: (1) How to convert from

CFP to LOC in Java programming for business

application software? (2) Is CFP, as the primary input

of COCOMO II, better than UFP?

The correlation between this study and the

Journal lies in the alignment of their subject matter,

methodology, and objectives. (1) This subject matter

aligns with the interests of the international journal of

intelligent engineering and systems, which actively

seeks research related to intelligent techniques and

methodologies applied to various engineering

domains. By exploring the integration of CFP into

COCOMO II and investigating the conversion to

lines of code using regression and SVR models, this

study addresses a topic relevant to the Journal's scope.

(2) This methodology in this study compares machine

learning algorithms and statistical techniques, which

aligns with the Journal's focus on intelligent

engineering systems. The use of these models

demonstrates the application of intelligent techniques

in software cost estimation, which is of interest to the

readership of the Journal. (3) The paper's objective is

to evaluate the effectiveness of using CFP as the

primary input to COCOMO II and to compare the

performance of regression and SVR models in

estimating effort. This objective aligns with the

Journal's interest in research that provides insights

into intelligent engineering systems. By presenting

empirical results and discussions on the performance

of the models, the paper contributes to the

understanding of software cost estimation techniques,

which is valuable for academia and industry.

In the remaining part of this paper, we arrange as

follows. Section two describes the related work,

briefly explaining previous studies related to this

study. Section three includes our methods for

converting CFP to LOC in Java programming and

collecting data. Section four describes the results

obtained and their discussion about them. Moreover,

section five contains the conclusion, the limitations,

and the recommendations for the subsequent studies.

2. Related work

Authors of the refs. [14–17] developed a tool to

automate COSMIC FSM for Java applications using

mapping rules techniques. The study in [14] requires

source code input for business applications based on

Java programming; the tool created is named cosmic

solver. Likewise, the study in [15] requires source

code input from Java business applications with a

three-tier architecture. The study has deviations with

manual testing of 94%. The tool created for the study

in [16] also requires source code input from Java

applications that use the Spring MVC framework. In

contrast, the tool in the study [17] requires input in

the form of UML artefacts. Unfortunately, the

previous studies above required input in the form of

source code. The source code is obtained when the

project has been coded.

Kazi and Kazi [18] used CFP to estimate project

duration using data flow diagram (DFD) input. In

general, the techniques used are CFP and DFD

mapping. Meanwhile, the study's authors [19] created

a rule mapping from CFP to a language intended to

automate programming language compilers. CFPs

are also considered suitable for broader application

domains, such as web and mobile applications [20].

CFPs can also reportedly be developed for effort

estimation for mobile applications in agile

environments [21].

The previous studies related to CFP into LOC

conversion are given in Table 1. The authors in the

paper do the conversion from function points to LOC

[22], and which conversion ratio is usually called

Backfiring. The studies used neuro-fuzzy to get the

conversion ratio from function points to LOC using

the dataset from ISBSG release 9. Meanwhile,

authors of Ref. [23] investigated the relationship

between FSM (in IFPUG and CFP) and code- size (in

Kbyte and LOC) using a dataset from ISBSG 2007

Repository release 10 with 14 projects selected (using

the C++ programming language). Linear regression

analysis obtained a LOC/CFP conversion ratio of

6.03 with a low-medium correlation (0.417). CFP and

line of code (LOC) investigations in Java

Programming for mobile-based applications were

carried out in the studies [11, 12]. The studies

reported that CFP strongly correlates (0.89) with

other actions, namely Kbyte and LOC. Another study

by Lind and Heldal [13] also tested the relationship

between FSM expressed in CFP and the code size

stated in Kbyte and LOC using a dataset containing

15 software components in the automotive industry

formed using the C++ language. A simple linear

regression analysis found that the correlation

between CFP and Kbyte is robust, while the

correlation between CFP and LOC is low-moderate.

The author of Ref. [24] tested the effectiveness of

using FPA and CFP for web-based projects. High-

level FPA and CFP are effective in estimating project

effort.

There are some limitations in previous studies

regarding CFP to LOC conversion. First, the

correlation between CFP and LOC shows varying

Received: May 6, 2023. Revised: June 15, 2023. 95

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

Table 1. Summary of previous studies like this study

Abbreviations: ISBSG = international software benchmarking standards group, FPA = function points analysis, LOC=

source line of code, CFP= COSMIC function points.

Table 2. The short project profile is used in this study

ID Project name Sort description Technology used ∑ Function Process

A Cooperative

application

Java-based application developed

was for employee cooperatives. The

application comprises an electronic

unit module, a SIPA module, and the

main module. The cooperative had

6,000 members.

Netbeans, Java, My

SQL, Astah UML

32

B Store application The store application consisted of a

point of sales, warehouse,

purchasing, and primary modules.

Netbeans, Java, My

SQL, Astah UML

21

C Mini hospital Java-based application developed

was for a health clinic such as a mini-

hospital. The application consists of

outpatient and inpatient modules.

Eclipse, Java, MySQL 36

D Medical store

application

The Java-based desktop application

is for a medical shop.

Eclipse, Java, MySQL 25

values, some are strong, and some are weak. Second,

the dataset used still has few objects, and third, the

technique used still uses simple linear regression.

Therefore, this study is intended to cover the

weaknesses of previous studies to determine the

conversion from CFP to LOC. In this study, besides

linear regression, Support Vector Regression (SVR)

is also used, which is a technique adapted from

machine learning for classification problems. This

SVR is the application of the SVM algorithm in the

Paper Method

used

Dataset/ output Limitations

[22] Hybrid Neuro-Fuzzy ISBSG release 9/

Conversion ratio

The LOC/function points conversion ratio

is obtained but not specific to a particular

programming language.

[23] Linear regression ISBSG release 10 & own

data set/ LOC/CFP or

LOC/IFPUG-FP ratio.

• Low correlation & too wide range of

LOC/CFP and LOC/IFPUG-FP

• There are too few objects in the own

dataset

[11]

[12]

Nonparametric statistics

Spearman's rho

13 Android

mobile applications/

Spearman Rho correlation

• Not showing the value or conversion

equation from CFP to LOC.

• The dataset has too few objects

[13] Linear regression The dataset in GM

contains 15 components of

software

• The correlation between CFP and LOC

is low,

• The dataset has too few objects.

[24] Simple linear regression 25 Web applications from

an Italian medium-sized

software company/

High-Level FPA are

effective & all three CFP

approaches are effective

• It is used as a web application, so it

needs to be tested for its effectiveness

on other platforms.

• Not specific to just one programming

language

[3] Not mentioned ISBSG/ 1 CFP is equal to

5.53 LOC
• Not discussed how to convert CFP to

LOC.

• No specific programming language.

This study Linear regression and SVR Own dataset/ conversion

equation

-

Received: May 6, 2023. Revised: June 15, 2023. 96

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

regression case.

3. Method

The method consists of three sections; the first

contains the dataset gathering, which contains

definitions of operational variables, data sources and

methods for obtaining datasets, and CFP calculations

and explanations. The second section contains the

conversion method from CFP into LOC, and the third

section compares with UFP Input into COCOMO II.

All three sections are given in succession below.

3.1 Dataset gathering

Data gathering consists of defining research

variables, data source and gathering methodology,

CFP calculation, and dataset obtained. Each of them

is discussed in order.

3.1.1. Definition of research variables

Operational definitions of variables are used to

facilitate researchers in collecting data. In this study,

three variables are used. First is CFP as the input

variable, and second is UFP as the input variable. The

third is LOC as the output variable. For the need to

build a conversion model, we use CFP and LOC

variables, while the UFP, CFP, and LOC are used to

compare the accuracy between inputs using CFP and

UFP on COCOMO II.

3.1.2. Data source and gathering methodology

Quantitatively, the software project dataset is

usually limited compared to other datasets. To get a

dataset containing software applications with CFP,

UFP, and LOC attributes, we need a source of

software documentation in the form of functional

user requirements (FUR) to calculate the CFP and

UFP of the software and the source code to get the

LOC.

The dataset consists of FP objects of the four

projects, as shown in Table 2. The four applications

Figure 1. The BPMN diagram for describing user login

are small-scale businesses created by the software

industry in Indonesia. Each application is developed

using Netbeans and Eclipse IDE environments, JDK,

and the MySQL database.

Three variables are observed from the dataset

objects: CFP and UFP as the independent variable

and LOC as the dependent variable. To get the

attributes for an object of the dataset, we do the

following steps:

• We identify the function processes and list them

on a table. Then we generate detailed BPMN-

level diagrams for each function process using

the Bizagi modeller to derive CFP and UFP

attributes based on the application's function

process. CFP and UFP can be calculated based on

the BPMN diagram that has been made.

Examples of identifying function processes,

compiling detailed BPMN level diagrams, and

calculating CFP and UFP are in section 3.3.1.

• We grouped application software source code

according to their function process. Then, we

calculate the LOC for each functional process

using the free download LocMetrics for

Windows to obtain the LOC attribute [25].

3.1.3. CFP calculation and dataset obtained

As an example of CFP and UFP calculation, we

take one of the function process that almost all

applications have, namely login. Login is performed

by the user communicating with the application

system. The details of communication between the

user and the system are given in Fig. 1. The process

starts with the user requesting to enter the system; the

login form is displayed. The following process is for

the user to enter the username and password, and then

the system will verify the account. If the username

and password are correct, the process continues by

displaying the main menu. If the username and

password are incorrect, the system will notify that the

username or password is incorrect, and then the user

enters the username and password again.

Based on the BPMN diagram for CFP calculation,

we can obtain the amount of input data (E), output

data (X), data read from files/tables (R), and data

written to files/tables (W). As an example of

calculating CFP, referring to the BPMN diagram

from Function Process login in Fig. 1, we get E=2,

X=1, R=1, and W=0 so that the CFP value can be

obtained as CFP=2+1+1+0= 4. Meanwhile, UFP

calculations are also based on BPMN Diagrams. UFP

calculation rules follow this Ref [2]. For example, in

Fig. 1, we get a simple type of external input 1 time,

a simple type of internal logical file (ILF) 1 time, and

Received: May 6, 2023. Revised: June 15, 2023. 97

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

a simple type of external inquiry (EQ) 1 time. At the

same time, external output (EO) and external

interface files (EIF) are missing. For simple type, EI

has a weight of 3, simple type ILF has a weight of 7

and simple type EQ weights 3, so for Login, FP has

UFP=3+7+3+0+0=13.

The total function processes for the four software

projects is 114, with details of project ID=A having

32 function processes, project ID=B having 21

function processes, project ID=C having 36 function

processes, and project ID=D having 25 function

processes. So, the total number of function processes

for the four projects is 114. Therefore, the dataset

obtained has 114 instances. Furthermore, after

obtaining the LOC and CFP data, including E, X, R,

and W, we put these datasets in this link:

https://intip.in/k1HG. In contrast, UFP is used later to

compare the accuracy of effort calculations in

COCOMO II using CFP and UFP quantities as the

primary input.

3.2 Proposed conversion method

This section consists of modelling data using

linear regression, modelling data using SVR, and

creating conversion function. The discussion of these

subsections is given below.

3.2.1. Modelling data using linear regression

In this previous study [20] also used more

analysis with linear regression either simple linear

regression or multiple linear regression to build an

effort prediction model with CFP. Ordinary least

square regression (OLSR) is one of the methods in

regression analysis to determine the effect of

independent variables on independent variables.

Analysis with OLSR requires fulfilling a classical

assumption known as the best linear unlimited

estimator (BLUE). BLUE stated that the data must be

a normal distribution, homoscedasticity, no

multicollinearity, and no autocorrelation. The OLSR

method will meet the conditions of BLUE if it meets

all these assumptions. However, if one or more

premises are not fulfilled, the estimation results

obtained cannot fulfil the BLUE condition.

For this reason, the test of these classic

assumptions includes [26]: (1) The normality test

aims to know that the data are typically distributed

and independent. (2) The multicollinearity test is a

condition with a perfect linear relationship or near

perfect between the independent variables in the

regression model. (3) The autocorrelation test is the

relationship between the residuals of one observation

and another. (4) A heteroscedasticity test is a

condition where the error term does not have a

constant variant for all observations. After the BLUE

condition is obtained, the OLSR implementation is

carried out on the dataset using the academic version

of the MATLAB R2020a application.

3.2.2. Modelling data using support vector regression

Support vector regression (SVR) is an SVM

development for regression cases. SVR has proven to

be an effective tool in many applications [27] and

produced models that have high accuracy [28]. In the

case of regression, the output used is a real or

continuous number. Authors in [29] illustrated SVR

with a training data set {(x1, y1), ..., (xn, yn)} X × R

where X defines the input space pattern (let us say X

= Rd). In SVR, the goal is to find a function f(x) that

has the largest deviation from the actual target yi for

the entire training data and, simultaneously, look for

a uniform function as possible. Thus, all errors (the

difference between the function output and the actual

target) will be ignored if the value is less than ε, but

will not accept all errors greater than ε. The formula

for SVR is given in (2) [29].

𝑓(𝑥) = ∑ (𝛼𝑖
𝑛
𝑖=1 − 𝛼𝑖

∗)𝑔(𝑥𝑖 − 𝑥) + 𝑏 (2)

Where,

𝛼𝑖, 𝛼𝑖
∗: Lagrange multiplier,

𝑔(𝑥𝑖 − 𝑥): Kernel function, and

b: Constant

SVR uses kernel functions to transform non-

linear input into a feature space of higher dimensions

which is then solved linearly. We must choose the

kernel function to use in the SVR model. The kernel

functions that are often used in the SVR method are

given in (3) to (5) [29]:

Linear kernel 𝑔(𝑥𝑖 − 𝑥) = 𝑥𝑖. 𝑥𝑗 (3)

Polynomial kernel 𝑔(𝑥𝑖 − 𝑥) = ((𝑥𝑖. 𝑥𝑗) + 1)𝑑 (4)

Gaussian kernel 𝑔(𝑥𝑖 − 𝑥) = 𝑒𝑥𝑝 (−|𝑥𝑖 − 𝑥𝑗|)2 (5)

The kernel functions used in this study are Linear,

Polynomial, and Gaussian. The modelling is carried

out using the help of the academic version of the

MATLAB 2020a application. After this modelling is

completed, the following process, such as creating

hyperplane functions, plotting curves, and predicting

LOC, can be done. We will explain these in the next

section.

Received: May 6, 2023. Revised: June 15, 2023. 98

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

3.2.3. Creating conversion function

After applying the OLSR and SVR models (with

three kernel functions) using the dataset, we generate

a conversion equation that maps CFP to LOC for the

four models already obtained. The conversion

function is a linear equation in the OLSR model, and

the hyperplane function is in the SVR model. With

these four equations, the LOC can be predicted.

3.3 Comparison with UFP input on COCOMO II

In software estimation, the mean of magnitude

relative error (MMRE) [30, 31], and Pred (x) [31] be

used for the evaluation of the most likely estimate of

effort. Meanwhile, magnitude relative error (MRE) is

obtained using Eq. (6). The average of all MRE

observations becomes MMRE, for which the MMRE

formula is shown in Eq. (7), while Pred (x) uses Eq.

(8). Actual_Effort is calculated using formula (1)

with the actual LOC, while Estimated_Effort is

calculated using Eq. (1) with the LOC obtained from

the conversion function. Therefore, four

Estimated_Effort out of four functions have been

obtained. Of the four models, we compare the most

accurate according to MMRE and Pred.

𝑀𝑅𝐸𝑖 =
|𝐴𝑐𝑡𝑢𝑎𝑙_𝐸𝑓𝑓𝑜𝑟𝑡𝑖−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝐸𝑓𝑓𝑜𝑟𝑡𝑖|

𝐴𝑐𝑡𝑢𝑎𝑙_𝐸𝑓𝑓𝑜𝑟𝑡𝑖
 (6)

𝑀𝑀𝑅𝐸 =
1

𝑁
∑ 𝑀𝑅𝐸𝑖

𝑁
1 (7)

𝑃𝑟𝑒𝑑(𝑥) =
1

𝑁
∑ {

1, 𝑖𝑓 𝑀𝑅𝐸𝑖 ≤ 𝑥
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛
𝑖=0 (8)

4. Results and discussion

The results and discussion sections are divided

into several subsections, namely a brief description of

the dataset, implementation of Linear Regression,

implementation of SVR, a conversion function,

comparison between UFP and CFP as main on

COCOMO II, and ended with a discussion about the

results.

4.1 Brief description of dataset

The purpose of presenting descriptive data in this

section is to provide a concise description and brief

information from the data used in this study. This

section contains data distribution on each input

variable, CFP, and output variable, LOC. This study

uses 114 instances of function process in four projects.

Brief information about the CFP and LOC variables

is given in Table 3, including the number of

observations (instances), min, max, mean, median,

Table 3. Data description

Measure CFP LOC

Observation 114 114

Min 2 101

Max 14 1006

Mean 5.96 378.81

Median 5 325.50

Modus 4 311

Std 2.37 190.09

Range 12 905

mode, standard deviation, and range.

4.2 Implementing linear regression

OLSR is implemented to get the CFP and the

LOC conversion equation. In this regression model,

several conditions must be met for the estimation

model to be valid as an estimation tool. The linear

regression model is called the BLUE if all these

conditions are met.

Classical assumptions must be met in the OLSR

model to become valid as a predictor. Classical

assumptions in simple linear regression include

interval or ratio data, linearity, normality, and

homoscedasticity. Interval data provides quantitative

data groups in numbers in which mathematical

operations can be performed. The sequence between

one data and other data has the same range, while the

ratio data. In this study, both independent and

dependent variables are ratio types.

Linearity is the nature of a linear relationship

between variables, meaning that a change will follow

every change occurring in one variable in the amount

parallel to the other variables. The pearson

correlation test uses the linearity test between the

CFP and LOC variables. The test results are shown in

Table 4 that the linearity assumption is fulfilled that

the correlation value is 0.90 with p-value = 1.42∙10-42

(<0.05). Likewise, the normality test determines how

the data is distributed. For samples between CFP and

LOC variables, we use the Shapiro-Wilk test. The test

results show that the logical value is one and p-

value=8.29∙10-98, which means the test successfully

rejected the null hypothesis at the default 5%

significance level. Homoscedasticity is a condition

with similarities in the variance of errors for all

observations of each independent variable in the

regression model. For homoscedasticity tests, we use

the Breusch-Pagan test; the p-value=14.31 is more

significant than 0.05, so the null hypothesis cannot be

dismissed from the model. Whereas for

autocorrelation testing using Durbin Watson (DW),

the DW value was 1.90 and p-value = 0.58, the

number of variables k=1 and the number of

Received: May 6, 2023. Revised: June 15, 2023. 99

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

Table 4. The result of the test is to verify the assumption

for OLSR

Test value

Linearity test using the Pearson

correlation statistic/p-value

0.90/ 1.42 ∙ 10-42

Normality test using One-sample

Kolmogorov-Smirnov statistic/ p-

value

1(true)/ 8.29 ∙10-98

Homoscedasticity test using

Breusch-Pagan statistic/ p-value

14.31/1.55 ∙ 10-4

Autocorrelation test using Durbin

Watson statistic/p-value

1.90/ 0.58

Table 5. The statistics about the OSLR model between

CFP and LOC

 (Intercept) CFP

Estimate -51.23 72.2

SE 20.97 3.27

t-Stat -2.44 22.06

p-Value 0.02 1.42 ∙10-42

Mean Squared Error (MSE) 6820.09 -

R2 Ordinary 0.81 -

R2 Adjusted 0.81 -

F-stat 487 -

Table 6. The information about SVR models for each

kernel functions

Kernel function Linear Polynomial Gaussian

Number of Observation 114 114 114

Number of iterations 1,000,000 32,111 79

Epsilon 17.47 17.49 17.49

Beta 60.01 - -

Bias 0.48 95.14 473.6

Order of function 1 3 -

MSE 7,969.14 6,702.91 6,214.66

Table 7. The function of conversion from CFP into LOC

and x is CFP

Model Function of conversion

OLSR f(x) = 72.20x − 51.23

SVR-Linear f(x) = 60.01x + 0.48

SVR-

Polynomial
f(x) = −0.37x3 + 9.29x2 + 2.65x

+ 95.14

SVR-Gaussian f(x) = 731.99 ∗ e−(
x−13.47

8.86
)2

observations n=114, from the DW table obtained

dL=1.68 and dU=1.71 for significance level=5%.

Because the DW value (1.90) is between dU to 4-dU,

then there is no autocorrelation. The four tests'

conclusions show that this study's dataset is BLUE.

Statistics about the OLSR model between CFP

and LOC as independent and dependent variables are

shown in Table 5. The OLSR model obtained is

characterized by R2=0.81, which shows that

predictions are possible with a high confidence level,

and the p-value is less than 0.05, indicating the build

model's importance. Next, the plot graph for OLSR is

given in Fig. 2, part (a).

4.3 Implementing support vector regression

As shown in section 3.2.2, SVR modelling uses

three Kerner functions: Linear, Polynomial, and

Gaussian. Information on SVR modelling for each

kernel function is given in Table 6. Based on this

table, the best MSE is SVR with Gaussian kernel

function, followed by Polynomial and Linear kernels.

4.4 Conversion function

After modelling with OLSR and SVR, we got the

results in Fig. 2. The figure shows the scatter and

function curves for each model. The x-axis is CFP,

and the y-axis is LOC. The function f(x) for each

model is given in Table 7. Figs. 2 (a) and (b) are

scatter plots for linear functions generated from

OLSR and SVR-linear modelling, while Figs. 2 (c)

and (d) are Polynomial and Gaussian functions.

4.5 Comparison between UFP and CFP as main

inputs on COCOMO II

We used four conversion functions to predict the

LOC to test the accuracy of using CFP as the primary

input to calculate effort in COCOMO II. We use the

dataset obtained, namely the project ID=A, which

took 30 function processes for testing. PM of

COCOMO II in Eq. (1) is applied by giving the

nominal values of E and EM (3 out of 5 on the linked

scale) so that the values of E and EM are each valued

at 1. Therefore, the PM formula becomes PM=A x

Size. The constant A=2.94 and Size in kilos LOC, so

the formula becomes PM=2.94 x size/1,000.

Worksheet data for MRE, MMRE, and Pred

calculations are given at https://intip.in/kymP.

Test resumes are given in Table 8. The CFP size

estimation model gives much better results than using

UFP. The error rate of using CFP with MMRE is

between 17%-19%, while using the UFP model has

an error rate of 135%. Based on Pred (0.25), the CFP

model confirms the MMRE measure with an

accuracy rate of 67%-80%. While using UFP is only

10%. Meanwhile, comparing size estimation models

using CFP shows that the OLSR model has the best

accuracy based on MMRE and Pred (0.25) measures,

namely 83% (or error 17%) and 80%.

Received: May 6, 2023. Revised: June 15, 2023. 100

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

 (a) (b)

 (c) (d)

Figure. 2 The scatter and plot for four models, (a) Linear function of the OLSR model, (b) Linear function of the SVR-

Linear model, (c) Polynomial function of the SVR-Polynomial model, and (d) Gaussian function of the SVR-Gaussian

model

Table 8. The accuracy level of the four model

Measure

CFP Model (%) UFP

Model

(%)
OLSR SVR

Linear

SVR Polynomial SVR Gaussian

MMRE 17 19 17 18 135

Pred (0.25) 80 67 77 70 10

Table 9. Comparison with similar previous studies

Paper Method
∑ instances in the

dataset
Correlation LOC of Language

[23] Linear regression 14 0.417 C++

[11], [12] Nonparametric

statistics

Spearman's rho

13 JavaLOC= 0.43,

XMLLOC= 0.32/

JavaLOC= 0.89,

XMLLOC= 0.872

Java and

XML

[13] linear regression 15 0.417 C++

[24] Linear regression 25 0.8 Many languages

[3] Not mentioned - - -

This study Linear regression

and SVR

114 0.81 Java

Received: May 6, 2023. Revised: June 15, 2023. 101

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

4.6 Discussion

Two questions must be answered in this study.

The first question is, 'How to convert from CFP to

LOC?'. For this question, we have the answer that we

have four conversion equations to get the LOC of

CFP. The four models were obtained using OLSR,

SVR with Linear kernel function, SVR with

Polynomial kernel function, and SVR with Gaussian

kernel function. The model was obtained using a

dataset of 114 objects from the function process of

four small-scale Java-based business applications.

The results of this study compared with previous

studies on CFP to LOC conversion are given in Table

9. The amount of data used in this study is the largest,

114, compared to previous studies. The correlation

between CFP and LOC variables in this study shows

a strong correlation with a value of 0.81. Whereas in

previous studies, it varied from having a weak

correlation [11, 23] to a high [9, 10, 24]. As for the

conversion to programming languages, in this study,

specifically the conversion of LOC to Java

Programming, the conversion results are helpful for

software developer practitioners. The things above

are the strengths of this study compared to similar

previous studies.

The second question is, 'Is CFP as the main input

of COCOMO II better than UFP?'. Our study found

that the primary input of size in COCOMO II using

the CFP model has a much better accuracy rate than

the UFP model, as discussed in section 4.5. Therefore,

CFP is worth considering as one of the main input

measures in COCOMO II to complement the two

previous methods that Boehm [2] proposed for the

original COCOMO II. Therefore, input size can now

use the previously mentioned methods and the CFP

model.

Further, these results can be used by subsequent

researchers or practitioners of software engineering,

both programmers and project managers, to estimate

the number of LOC generated during software project

execution. For software engineering practitioners, the

results of this study can be used study results as

another way to estimate PM (or effort in person-

months) in COCOMO II. For future researchers,

these results can be further studied using datasets

from applications other than business applications or

in development environments based on programming

languages other than Java.

5. Conclusion, limitations, and future study

The conclusions of the study are as follows:

1. In COCOMO II, the primary input for estimating

the effort, duration, and cost of software

development is the size of the software. Until

now, in the original COCOMO II, size is

obtained using the size stated in the LOC and

Unadjusted Function Points (UFP). In this study,

we considered another way to get the software

size with the CFP model, in which CFP is the

second generation of FSM. We have obtained

four conversion functions from CFP to LOC,

where LOC is used as the primary input for PM

estimation in COCOMO II.

2. Accuracy testing using MMRE and Pred (0.25)

for COCOMO II input showed that the CFP

model (4 models) was much more accurate than

the UFP model commonly used in the original

COCOMO II. The CFP model has MMRE of

17%-19% and Pred (0.25) of 67%-80%, while the

UFP model has MMRE and Pred (0.25) of 135%

and 10%.

3. Among the four CFP models used for size as the

primary input, the OLSR CFP model has the best

accuracy based on MMRE and Pred (0.25),

which is 17% and 80%.

Some of the limitations and future studies are

given below.

1. The dataset used in this study is a small-scale

business application software type. Therefore, it

is necessary to conduct further studies to test its

consistency for medium-large business

application software projects.

2. The dataset used in this study is an application

created using the desktop-based Java

programming language; therefore, the results of

this study need to be re-tested using web-based

Java applications such as Servlet and JSP. For

further studies, it is necessary to use a dataset

consisting of Java web or Java mobile

applications. It is also required to conduct further

studies using datasets from other languages such

as hypertext pre-processor (PHP). That

programming language will produce a

conversion ratio from CFP or function points to

LOC or vice versa.

3. The dataset used in this study is business

application software. Therefore, to generalize

future studies using software types other than

business applications, such as real-time

applications, mathematically intensive

applications, infrastructure software, and

embedded systems.

4. The problem of data quantity also becomes a

limitation when implemented using SVR, which

requires extensive data to get optimal

performance. Therefore, it is necessary to

Received: May 6, 2023. Revised: June 15, 2023. 102

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

conduct further studies using a dataset with more

data to test the performance of the SVR model

compared to the OLSR model.

Conflicts of interest

The authors (Sholiq Sholiq, Riyanarto Sarno,

Endang Siti Astuti, and Muhammad Ainul Yaqin)

declare no conflict of interest.

Author contributions

Conceptualization, Sholiq Sholiq and Riyanarto

Sarno; methodology, Sholiq Sholiq; validation,

Sholiq Sholiq; formal analysis, Sholiq Sholiq;

investigation, Sholiq Sholiq and Muhammad Ainul

Yaqin; dataset, Sholiq Sholiq; writing-original draft

preparation, Sholiq Sholiq and Muhammad Ainul

Yaqin; writing-review and editing, Riyanarto Sarno

and Endang Siti Astuti; visualization Sholiq Sholiq;

supervision, Riyanarto Sarno and Siti Endang Siti

Astuti.

References

[1] C. Symons, A. Abran, C. Ebert, and F.

Vogelezang, "Measurement of software size:

advances made by the COSMIC community",

In: Proc. of 2016 Joint Conference of the

International Workshop on Software

Measurement and the International Conference

on Software Process and Product Measurement

(IWSM-MENSURA), Berlin, Germany, pp. 75–

86, 2016, doi: 10.1109/IWSM-

Mensura.2016.021.

[2] B. Boehm, Software Cost Estimation with

COCOMO II. New Jersey, USA: Prentice Hall,

2000.

[3] M. Haoues, A. Sellami, and H. B. Abdallah,

"Towards functional change decision support

based on COSMIC FSM method", Information

and Software Technology, Vol. 110, pp. 78–91,

Jun. 2019, doi: 10.1016/j.infsof.2019.02.004.

[4] H. Unlu, T. Hacaloglu, F. Buber, K. Berrak, O.

Leblebici, and O. Demirors, "Utilization of

Three Software Size Measures for Effort

Estimation in Agile World: A Case Study", in

2022 48th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA),

Gran Canaria, Spain, pp. 239–246, 2022, doi:

10.1109/SEAA56994.2022.00045.

[5] T. Hacaloğlu, "Event Points: A Software Size

Measurement Model", Ph.D. - Doctoral

Program, Middle East Technical University,

2021. [Online]. Available:

https://open.metu.edu.tr/handle/11511/93110

[6] A. Kaur and K. Kaur, "A COSMIC function

points based test effort estimation model for

mobile applications", Journal of King Saud

University - Computer and Information Sciences,

Vol. 34, No. 3, pp. 946–963, Mar. 2022, doi:

10.1016/j.jksuci.2019.03.001.

[7] A. L. A. L. Saleem and A. Y. Hammo, "Software

Size Estimation: A survey", Technium, Vol. 4,

No. 9, pp. 62–70, 2022, doi:

10.47577/technium.v4i9.7251.

[8] M. Haoues, A. Sellami, and H. B. Abdallah, "A

rapid measurement procedure for sizing web and

mobile applications based on COSMIC FSM

method", In: Proc. of the 27th International

Workshop on Software Measurement and 12th

International Conference on Software Process

and Product Measurement, Gothenburg Sweden,

pp. 129–137, 2017, doi:

10.1145/3143434.3143436.

[9] C. Q. López, D. M. Sánchez, and M. Jenkins,

"An Empirical Analysis of IFPUG FPA and

COSMIC FFP Measurement Methods", In:

Information Technology and Systems:

Proceedings of ICITS 2020, pp. 265–274, 2020.

[10] A. Abran, J. Desharnais, and A. Lesterhuis, The

COSMIC Functional Size Measurement Method,

Measurement Manual, 2015.

[11] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro,

"Investigating Functional and Code Size

Measures for Mobile Applications", In: Proc. of

2015 41st Euromicro Conference on Software

Engineering and Advanced Applications,

Madeira, Portugal, pp. 365–368, 2015, doi:

10.1109/SEAA.2015.23.

[12] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro,

"Investigating functional and code size measures

for mobile applications: a replicated study",

Product-Focused Software Process

Improvement, P. Abrahamsson, L. Corral, M.

Oivo, and B. Russo, Eds., Cham: Springer

International Publishing, pp. 271–287, 2015,

doi: 10.1007/978-3-319-26844-6_20.

[13] K. Lind and R. Heldal, "On the relationship

between functional size and software code size",

In: Proc of the 2010 ICSE Workshop on

Emerging Trends in Software Metrics, Cape

Town South Africa, pp. 47–52, 2010, doi:

10.1145/1809223.1809230.

[14] M. A. Sag and A. Tarhan, "Measuring COSMIC

Software Size from Functional Execution Traces

of Java Business Applications", In: Proc. of

2014 Joint Conference of the International

Workshop on Software Measurement and the

International Conference on Software Process

and Product Measurement, Rotterdam,

Received: May 6, 2023. Revised: June 15, 2023. 103

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.09

Netherlands, pp. 272–281, 2014, doi:

10.1109/IWSM.Mensura.2014.29.

[15] R. Gonultas and A. Tarhan, "Run-Time

Calculation of COSMIC Functional Size via

Automatic Installment of Measurement Code

into Java Business Applications", In: Proc. of

2015 41st Euromicro Conference on Software

Engineering and Advanced Applications,

Madeira, Portugal, pp. 112–118, 2015, doi:

10.1109/SEAA.2015.30.

[16] A. Sahab and S. Trudel, "COSMIC Functional

Size Automation of Java Web Applications

Using the Spring MVC Framework", IWSM-

Mensura, 2020.

[17] G. D. Vito, F. Ferrucci, and C. Gravino, "Design

and automation of a COSMIC measurement

procedure based on UML models", Softw Syst

Model, Vol. 19, No. 1, pp. 171–198, 2020, doi:

10.1007/s10270-019-00731-2.

[18] Z. Kazi and L. Kazi, “Software Project Duration

Estimation Based on COSMIC Method Applied

to Data Flow Diagram”, IAJIT, Vol. 19, No. 4,

2022, doi: 10.34028/iajit/19/4/8.

[19] Y. Attallah and H. Soubra, "Towards a COSMIC

FSM Programming Language Compiler",

Presented at the CEUR Workshop Proceedings,

Izmir, Turkey, 2022.

[20] V. L. Martino and C. Gravino, "Using COSMIC

to measure functional size of software: a

Systematic Literature Review", In: Proc. of 2022

48th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA),

Gran Canaria, pp. 225–228, 2022, doi:

10.1109/SEAA56994.2022.00042.

[21] A. Kaur and K. Kaur, "Systematic literature

review of mobile application development and

testing effort estimation", Journal of King Saud

University - Computer and Information Sciences,

Vol. 34, No. 2, pp. 1–15, 2022, doi:

10.1016/j.jksuci.2018.11.002.

[22] J. Wong, D. Ho, and L. F. Capretz, "A Neuro-

Fuzzy Method to improving backfiring

conversion ratios", arXiv Preprint

arXiv:1508.06191, p. 6, 2015.

[23] C. Gencel, R. Heldal, and K. Lind, "On the

Relationship between Different Size Measures

in the Software Life Cycle", In: Proc. of 2009

16th Asia-Pacific Software Engineering

Conference, Batu Ferringhi, p. 8, 2009, doi:

10.1109/APSEC.2009.51.

[24] S. D. Martino, F. Ferrucci, C. Gravino, and F.

Sarro, "Assessing the effectiveness of

approximate functional sizing approaches for

effort estimation", Information and Software

Technology, Vol. 123, p. 106308, 2020, doi:

10.1016/j.infsof.2020.106308.

[25] A. Kaur, “Comparative Analysis of Line of Code

Metric Tools,” Int. J. Sci. Res. Sci. Eng. Technol.,

Vol. 2, pp. 1285–1288, 2016.

[26] O. A. M. López, A. M. López, and J. Crossa,

"Support Vector Machines and Support Vector

Regression", Multivariate Statistical Machine

Learning Methods for Genomic Prediction, pp.

337–378, 2022.

[27] F. Zhang and L. J. O'Donnell, "Support vector

regression", in Machine Learning, pp. 123–140,

2020, doi: 10.1016/B978-0-12-815739-

8.00007-9.

[28] Z. Sakhrawi, A. Sellami, and N. Bouassida,

"Support vector regression for enhancement

effort prediction of Scrum projects from

COSMIC functional size", Innovations Syst

Softw Eng, Vol. 18, No. 1, pp. 137–153, 2022,

doi: 10.1007/s11334-021-00420-8.

[29] A. J. Smola and B. Scholkopf, "A Tutorial on

Support Vector Regression", Statistics and

Computing, Vol. 14, pp. 199–222, 2004.

[30] M. Jørgensen, T. Halkjelsvik, and K. Liestøl,

"When should we (not) use the mean magnitude

of relative error (MMRE) as an error measure in

software development effort estimation?",

Information and Software Technology, Vol. 143,

p. 106784, 2022, doi:

10.1016/j.infsof.2021.106784.

[31] H. H. Thai, P. Silhavy, M. Fajkus, Z. Prokopova,

and R. Silhavy, "Propose-Specific Information

Related to Prediction Level at x and Mean

Magnitude of Relative Error: A Case Study of

Software Effort Estimation", Mathematics, Vol.

10, No. 24, p. 4649, 2022, doi:

10.3390/math10244649.

