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Abstract: Early identification of lung-infected persons is crucial. To achieve this, lung computed tomography (CT) 

scan segmentation and categorization models have been broadly developed for COVID-19 diagnosis. However, these 

models are not always able to classify appropriate risk levels when quantifying tissues from diseased regions, they 

need more relevant and discriminative features to classify disease risk levels. Therefore, this paper designs a new 

transfer learning (TL) based deep model named multi-scale function learning with an attention-based UNet and 

marginal space deep ambiguity attentive transfer learning (MS-AUNet-MSDATL). In the first step, lung CT and X-

ray images from the dataset are collected. The MS-AUNet-MSDL system takes such images, enriches them with the 

multi-structure response filter (MSRF), and then divides them into ROIs for diseased and healthy tissue at different 

scales. After that, the regions of interest (ROIs) for the afflicted tissue are input into the trained CNN structures to 

extract features. In addition, the CNN-LSTM classifier is used to train the extracted features and obtain the learned 

classification models. Test scans are classified as low, medium, or high-risk using the learned classifiers to ensure an 

accurate COVID-19 diagnosis. The epistemic ambiguity is calculated using the classification error. Then, the 

ambiguity is given as feedback to the classifier to improve the accuracy. Finally, the experimental outcomes revealed 

that the MS-AUNet-MSDATL on the chest CT image dataset achieves 97.34% accuracy, which is 14% higher than 

Distant Domain TL (DDTL), 12.4% higher than self-supervised super sample decomposition TL (4SD-TL), and 

10.4% higher than the two-stage TL method (TL-Med). Also, the MS-AUNet-MSDATL on the chest X-ray image 

dataset achieves 97.18% accuracy, which is 16.8% higher than DDTL, 14.3% higher than 4SD-TL, and 10.5% 

higher than the TL-Med. 

Keywords: COVID-19 diagnosis, CT imagery, X-ray imagery, MS-AUNet-MSDL, Transfer learning, Pre-learned 
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1. Introduction 

The novel coronavirus disease (COVID-19) that 

was responsible for the lung infection pandemic that 

began in 2020 first manifested itself and spread 

quickly over the planet [1]. Respiratory infections 

are the main cause of COVID-19-related rheumatic 

fever. Additionally, it might result in intestinal 

infections, which can produce digestive symptoms 

like nausea, vomiting, and diarrhea [2, 3]. The world 

health organization (WHO) [4] estimates that as of 

September 26, 2022, there were 612,236,677 

recorded incidents of new coronary pneumonia 

globally, with 6.51 million deaths. Timely 

identification of COVID-19 victims may help in 

restricting the virus's evolution because COVID-19 

is highly infectious [5].  

So, a prompt and correct diagnosis of COVID-

19 is essential for the earlier diagnosis of the 

infection [6-8]. A statistical analysis of COVID-19 

evolution by CT scans is possible since they reveal 

COVID-19's key morphological features [9]. The 

advantage of chest CT scans over X-rays is that they 

are more effective at identifying respiratory 

problems [10, 11]. Pulmonary CT scans are 

suggested by clinicians as the main pulmonary 

therapeutic screening tool. The traditional diagnosis 

of irregularities by doctors necessitates a significant 

amount of time and is greatly impacted by their 

judgment, hence it is crucial to research and develop 
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an effective automated system for clinical visual 

classification. It can support medical professionals 

in making accurate real-time diagnoses and 

treatment choices. 

Deep learning approaches were incredibly 

successful at separating the required region-of-

interest (ROI), like healthy and unhealthy 

pulmonary areas, from CT scans [12, 13]. The 

correct delineation of the COVID-19 disease patch 

using deep learning approaches is vitally pertinent 

for quick detection and estimation by physicians. To 

segment the COVID-19 CT images, an Attention-

based U-Net (AUNet) model [14] was created to 

reweight the characteristic representation and 

capture the rich contextual characteristics, the 

spatial and channel attention units in U-Net employ 

an attention technique. To capture properties at 

different dimensions, a residual unit with dilated 

convolutions was also used. Additionally, the tiny 

irregular patches in the CT scans were segmented 

using the focal Tversky error. In contrast, the lung 

CT images' segregation of unclear edges was 

unsatisfactory. 

Hence in this article, an MS-AUNet-MSDATL 

framework is proposed to simultaneously segregate 

the COVID-19 infected ROIs and classify the 

disease risk levels from the CT and X-ray scans. In 

this framework, initially, multi-scale function 

learning with AUNet is created to extract features at 

various locations. Then, an improved filter MSRF is 

added to the attention-based U-Net to improve 

segmentation effectiveness and acquire structural 

information from the CT and X-ray images. Next, 

marginal learning of the bounding box variables is 

minimized into sub-spaces to detect the target 

tissues. Finally, the segmented ROIs from the MS-

AUNet structure are given to the different pre-

learned CNN models like VGG16, ResNet50, 

InceptionResNetV2, and DenseNet121 structures. 

These pre-learned models can hierarchically capture 

more informative and discriminative characteristics 

from the lung CT and X-ray scans. Those 

characteristics are provided to the CNN-LSTM 

classifier to classify the disease risk levels for proper 

diagnosis. Moreover, the epistemic ambiguity of 

categorization outcomes is measured to determine 

areas where the learning frameworks are not 

optimistic regarding their decisions. Thus, the 

measured ambiguities deliver useful data regarding 

where and how much the physician could believe 

the classifier forecasts for COVID-19 recognition 

and diagnosis. 

The remaining portions of this paper are 

outlined: Section 2 reviews earlier research on the 

categorization approaches for COVID-19 CT and X-

ray scans. The operation of the MS-AUNet-

MSDATL framework is described in section 3, and 

its effectiveness is demonstrated in section 4. 

Section 5 outlines the research's general findings 

and suggests innovative solutions. 

2. Literature survey 

An automated deep TL-based scheme was 

developed [15] to identify COVID-19 disease in 

chest X-rays by utilizing the Xception structure. But 

its accuracy was not efficient due to the poor quality 

of chest X-ray scans, resulting in misclassification. 

DDTL was developed [16] for COVID-19 diagnosis 

by considering unannotated chest X-ray image 

databases as the source data and a limited collection 

of COVID-19 lung CT as the target data. 

Conversely, the limitations of this model were (i) it 

tends to be case-specific, (ii) the choice of source 

data was very difficult in a few scenarios and (iii) 

distant attribute mining obtain low precision. 

A dense CNN-based TL [17] was designed to 

monitor COVID-19-suspected patients using chest 

X-ray scans. A modified multi-crossover genetic 

algorithm (MMCGA) was applied to optimize the 

hyperparameters. But, its accuracy was degraded 

due to the noisy and poor visibility scans. A method 

called 4SD-TL [18] was presented to annotate 

unannotated chest X-ray scans and enhance the 

robustness of domain adaptation using a 

downstream training with a class-decomposition 

layer. But the accuracy was not efficient if the 

parameters were not selected properly. 

The TL-based COVID-19 monitoring scheme 

[19] was presented which executes truncated 

VGG16 to forecast COVID-19 CT images. The 

VGG16 structure was modified to capture features 

from CT scans. Then, a principal component 

analysis (PCA) was applied to choose the most 

relevant characteristics, which were classified by the 

bagging ensemble with the SVM to identify 

COVID-19 patients. But the accuracy was less due 

to ineffective segmentation of diseased lung ROIs. 

A 3-stage identification system [20] was 

designed to enhance the accuracy of detecting 

COVID-19 from lung CT images. In the initial stage, 

data augmentation was performed by the stationary 

wavelets. In the second stage, a pre-learned CNN 

was applied to detect COVID-19 cases. In the third 

stage, irregularities in the CT images were localized 

by the feature map and activation layers of the pre-

learned CNN model. But it has a less precision 

while increasing the number of COVID-19 images. 

TL with fine-tuning on a deep CNN-based 

ResNet50 framework [21] was developed to 
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categorize COVID-19 patients from chest X-ray 

scans. To do this, the ResNet50 structure was altered 

by including additional 2 fully connected layers and 

utilizing various pre-learned weights. But, it needs 

to identify the ROI of COVID-19 in X-ray scans for 

enhancing accuracy. 

A method to automatically categorize COVID-

19 by various pre-learned CNN and sparrow search 

algorithms (SSA) [22] was designed using CT lung 

scans. The SSA was applied to fine-tune various 

CNN and TL hyperparameters to obtain the optimal 

configuration for the pre-learned framework. 

However, an ensemble classifier was needed to 

increase the classification accuracy. 

A TL-Med method [23] was designed for 

detecting COVID-19. Initially, the vision 

transformer (ViT) pre-learning system was utilized 

to get generic characteristics from huge 

heterogeneous data and the medical characteristics 

were learned from large-scale homogeneous data. 

Moreover, two-phase TL was applied to use the 

trained key characteristics and the actual data for 

COVID-19 identification. But, the accuracy was 

reduced because the augmented annotated samples 

have negative effects on pre-learning. 

A novel stacked CNN framework [24] was 

developed for automatically recognizing COVID-19 

illness from chest CT and X-ray scans. Various sub-

models were acquired from the VGG19 and the 

Xception frameworks during learning. After that, 

those frameworks were combined by the softmax 

categorizer, which fuses the discriminating power of 

various CNN sub-models and identifies COVID-19 

illness. But, it needs to categorize X-ray scans into 

the different classes of pneumonia. 

MSDTL [25] was developed to effectively 

monitor the prospective COVID-19 diseases. In this 

method, every province-related database was trained 

on a basic long short-term memory (LSTM) 

framework for forthcoming disease prediction in 

that domain. Also, the learned framework was fine-

tuned by the MSDTL to achieve precise prediction. 

But, the accuracy was degraded while the disease 

risk level was extremely low. 

A new ensemble model [26] was developed 

which combines the power of various CNN 

structures before arriving at the final decision. 

Different pre-learned frameworks were applied and 

fine-tuned by the lung CT images. Then, those 

frameworks were utilized to build a robust ensemble 

categorizer, which provides the final forecasting 

outcome. However, the recognition of various lung 

diseases from CT images was required to increase 

the accuracy. 

 

 
Figure. 1 Overall pipeline of the presented study 

2.1 Research contribution 

This research focuses on segmenting COVID-

19-infected ROIs from the lung CT and X-ray 

images and classifying the infection risk levels 

simultaneously by learning disease features using an 

ensemble classifier for achieving an effective 

diagnosis.  

In contrast with the literature frameworks, the 

proposed work can be useful for physicians to 

accurately identify disease risk levels and provide 

appropriate diagnosis strategies timely. 

3. Proposed methodology 

In this section, the presented MS-AUNet-

MSDATL to categorize the risk levels of COVID-19 

is explained briefly. An overall pipeline of the 

presented study is portrayed in Fig. 1. 

The key tasks in this framework include: 

 

1. First, COVID-19 lung CT and X-ray scans 

are collected from different open sources. 

Such scans are enriched by the MSRF and 

segregated into the COVID-19-infected 

tissue ROIs and healthy ROIs at multiple 

scales by the MS-AUNet-MSDL. 

2. Then, those infected tissue ROIs are fed to 

the pre-learned CNN structures for extracting 

more relevant and discriminative features. 

3. Moreover, the extracted features are passed 

to the CNN-LSTM classifier to train those 

features and get the trained classification 

models. 

4. The trained classifiers are used to classify the 

test scans into low, medium, and high-risk 

levels for proper COVID-19 diagnosis. 

 

The below sections describe the TL-based 

COVID-19 disease risk level categorization. 
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3.1 Transfer learning-based disease risk level 

categorization 

In this study, the TL method is employed to 

learn the CNN-LSTM classifier for categorizing 

lung disease (COVID-19) risk levels. The main 

ideas of the TL are domains (different datasets) and 

tasks (classification). A specific domain (dataset) 𝐷 

in TL has a feature space 𝑋  and a marginal 

probability distribution 𝑃(𝑋) . So, this domain is 

defined by Eq. (1). 

 

𝐷 = {𝑋, 𝑃(𝑋)}     (1) 

 

A task 𝑇 (classification) in TL has a label space 

𝑌 and a target classification function 𝑓(𝑋), which is 

represented by conditional probability 𝑃(𝑌|𝑋). This 

is provided by Eq. (2). 

 

𝑇 = {𝑌, 𝑃(𝑌|𝑋)}     (2) 

 

The source domain is considered to train the 

classification model and the target domain is applied 

to categorize the images using the source domain 

model.  

 

• Condition: For a source domain (𝐷𝑠) and a 

learning task on 𝐷𝑠  (𝑇𝑠) , a target domain 
(𝐷𝑡) and a learning task (𝑇𝑡) on 𝐷𝑡. 

• Aim: Utilize the knowledge of 𝐷𝑠  and 𝑇𝑠  to 

enhance the learning of the classification 

function 𝑓(∙) on 𝐷𝑡. 

• Constraints: 𝐷𝑠 ≠ 𝐷𝑡, 𝑇𝑠 ≠ 𝑇𝑡 

 

This presented system entirely relies on the 

relevant and discriminative features of CT and X-

rays scans to classify the risk levels of COVID-19 

disease. Various CNN structures pre-learned on the 

ImageNet database are considered and adapted for 

COVID-19 disease risk level categorization. Such 

networks are VGG16, ResNet50, 

InceptionResNetV2 and DenseNet121 structures.  

Learning such CNN structures is 

computationally complex since they contain several 

layers and learnable variables. The major 

assumption in this system is that there are key 

similarities between image recognition processes 

and the risk level categorization of COVID-19 from 

CT and X-ray scans. As a result, the learning task 

may be quickened by properly applying the 

knowledge from the first one to the second. 

Although each pre-learned structure is formed by 

non-medical pictures, it is plausible that the 

manipulation of the CT and X-ray scan pixels by  
 

 
Figure. 2 Block diagram of TL-based COVID-19 

infection risk level classification 

 

these networks might allow the categorization task. 

As portrayed in Fig. 2, the variables of the 

convolutional layers are maintained constant in the 

learning task. Every COVID-19-infected ROI of the 

CT and X-ray scans from the MS-AUNet-MSDL is 

provided to the convolutional layers of such 4 pre-

learned networks for hierarchically extracting 

various features. After that, the back end of those 

structures is substituted by the CNN-LSTM 

classifier to classify the risk levels of COVID-19 

illness. The pooling function in the final 

convolutional layer of such pre-learned structures is 

neglected to prevent discarding relevant 

characteristics before providing them to the 

categorization frameworks. 

3.1.1. Pre-learned CNN structures 

This section describes the considered pre-

learned CNN structures to obtain characteristics. 

 

• VGG16 structure: This structure, which 

resembles AlexNet, is made up of 13 

convolutional, nonlinear filtering, pooling, 

nonlinear filtering, pooling, and 3 fully 

connected layers. The convolution channel’s 

filter dimension is 3×3 and the pooling 

dimension is 2×2. This model outperforms 

AlexNet because of its basic design [27]. 

• ResNet50 structure: The most often 

employed deep structure for multiclass 

categorization is the residual convolutional 

network (ResNet) [28]. It can provide an 

immediate connection to its previous layers 

by residual blocks. This enables the gradient  
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Table 1. Summary of pre-learned structures utilizing for 

transfer learning 

Structure 
Input 

dimension 

No. of 

features 

No. of 

variables 

VGG16 

224 × 224 

25088 14714688 

ResNet50 100352 23587712 

DenseNet121 50176 7037504 

InceptionRes

NetV2 
299 × 299 98304 54336736 

 

 

 
Figure. 3 Structure of CNN-LSTM 

 

flow in the backpropagation method. 

• InceptionResNetV2 structure: It prevents 

overfitting issues by utilizing inception 

blocks. Also, it utilizes residual blocks and 

constructs InceptionResNetV2 [29], which 

combines both residual and inception blocks. 

• DenseNet121 structure: In DenseNet, each 

layer obtains every feature map from 

preceding layers as input, which enables the 

network to reduce the number of variables 

and avoid gradient vanishing [30]. 

 

Table 1 provides a summary of such pre-learned 

structures. As portrayed in Fig. 2, model weights are 

maintained constant in the TL process. The 

dimension of the given input scans is 224×224 for 

VGG16, ResNet50, and DenseNet121, whereas the 

input dimension of the InceptionResNetV2 structure 

is 299×299. 

3.2 CNN-LSTM classifier 

The COVID-19 infection risk level classification 

is a 3-class categorization problem, where the input 

is the lung CT or X-ray scan ROIs and the result is 

the label defining the risk levels of COVID-19 

infection. Initially, the scans are processed by the 

convolutional layers of 4 pre-learned CNN models. 

After that, hierarchically obtained characteristics are 

processed by the CNN-LST classifier (as depicted in 

Fig. 3, which comprises CNN and LSTM layers for 

the categorization task. 

The input layer consists of 5 CNN layers, each 

layer followed by the max-pooling to process the 

given characteristics. The first two CNN layers are 

made up of 64 and 128 kernels, each having a kernel 

size of three, and a maximum pooling size of two. 

The following two CNN layers use max-pooling 

with a pool size of four and 256 and 512 kernels 

with a kernel size of three. The final CNN layer is 

made up of 1024 kernels with a kernel size of three 

and a maximum pooling size of six. The output of 

the final CNN layer is passed to the LSTM layer, 

which has 60 memory units. Also, a dropout is used 

to regularize LSTMs and avoid overfitting issues. 

The LSTM network layer comprises the input 

gate, forget gate and output gate. The forget gate is 

used to calculate a degree of forgetting a feature 

preceded by the current LSTM unit as Eq. (3): 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)    (3) 

 

In Eq. (3), 𝑊𝑓 , 𝑏𝑓 are the weight vector and bias 

value of the forget layer, respectively. 𝜎  is the 

sigmoid activation function, 𝑥𝑡 is the input feature in 

the input gate, 𝑓𝑡 is the forget gate, and ℎ𝑡−1 is the 

result of a previous hidden state. 

The input gate is used to determine how much 

present feature is contained in the image as Eqs. (4), 

and (5): 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)    (4) 

 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   (5) 

 

Here, 𝑊𝑖 , 𝑊𝐶 are the weight vector of the input 

gate and neuron condition vector, respectively. 

𝑏𝑖, 𝑏𝐶  are the bias values of the input gate and 

neuron condition vector, respectively. 𝑡𝑎𝑛ℎ  is the 

hyperbolic tangent activation function, 𝑖𝑡 , 𝐶̃𝑡 are the 

input gate, and the updated new cell state, 

respectively. 

Once the features traverse via the input and 

forget gates, the LSTM fine-tunes their units to 

determine the outcome of the current LSTM unit 

and pass it to the consecutive LSTM unit as Eq. (6): 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡    (6) 

 

In Eq. (6), 𝐶𝑡 is the current cell state, and 𝐶𝑡−1 is 
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the old cell state. The output gate merges the present 

input and LSTM unit to compute the result of the 

present LSTM unit as Eqns. (7) and (8): 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (7) 

 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)     (8) 

 

In Eqs. (7) and (8), ℎ𝑡 represent the hidden state 

that serves as the solution of the block over 𝑡, 𝑜𝑡 is 

the output gate, 𝑊𝑜 and 𝑏𝑜 are the weight vector and 

bias value of the output gate, respectively. 

The resultant feature maps from the LSTM layer 

are passed to the fully connected layer followed by 

the softmax activation function for the classification 

of COVID-19 infection risk levels. A fully 

connected layer uses conditional probability to get 

an absolute feature map. Softmax (𝑃(𝐶, 𝑏))  is a 

probability of features of a certain image belong to a 

given class 𝐶. It is determined by Eq. (9). 

 

𝑃(𝐶, 𝑏) =
𝑃(𝑏,𝐶)×𝑃(𝐶)

∑ (𝑁)×𝑃(𝑏,𝑁)𝐶
𝑁=1

    (9) 

 

In Eq. (9), 𝑃(𝐶)  is class probability, 𝐶  is the 

total number of classes (i.e., low-risk, medium-risk, 

and high-risk). Eq. (9) is rewritten as Eq. (10): 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 = 𝑃(𝐶, 𝑏) =
𝑒𝛽𝐶[𝑏]

∑ 𝑒𝛽𝑁[𝑏]𝐶
𝑁=1

             (10) 

 

Where 𝛽𝐶[𝑏] = ln[𝑃(𝑏, 𝐶) × 𝑃(𝐶)]             (11) 

3.3 Ambiguity estimation 

In this study, epistemic ambiguity is considered 

since it nearly associates with the generalization 

power of networks for novel scans. An ensemble of 

various networks is used to get ambiguities related 

to the qualitative findings. An ensemble has many 

networks established by various structures, 

categories, and sampled subgroups. 

The generalization capability of networks varies 

depending on how each network is developed. The 

absolute outcome is derived by combining the 

results of each network. The epistemic ambiguity 

might be calculated using the classification error. 

The classification entropy is computed as a metric of 

the epistemic ambiguity, which estimates the 

ambiguity in results made by each network. The 

ensemble epistemic ambiguity is computed as the 

entropy of the average posterior probability: 

 

𝑝̂(𝑦|𝑥) =
1

𝑁
∑ 𝑝𝜃𝑖

(𝑦|𝑥)𝑁
𝑖=1               (12) 

𝐻(𝑝̂(𝑦|𝑥)) = ∑ 𝑝̂(𝑦𝑖|𝑥) log 𝑝̂(𝑦𝑖|𝑥)𝐶
𝑖=0         (13) 

 

In Eq. (13), 𝜃𝑖 denotes the group of variables for 

𝑖𝑡ℎ  network part and 𝐶  varies over each label. 

Consider a scenario when each CNN-LSTM 

classifies that an input corresponds to label 2 (high 

risk) with 𝛼% chance, label 1 (medium risk) with 

𝛽 %, and label 0 (low risk) with 𝛾 % chance for 

specific input. 

When this process is continued multiple times 

for the given input, it is comparable to ensembling 

many frameworks to predict the final probability, 

which is determined by Eq. (12). Suppose the mean 

probability classifies that an input corresponds to 

labels 2, 1, and 0 with 0.5, 0.2 and 0.3, 

correspondingly. According to Eq. (13), the 

classification entropy is computed by 0.5 log(0.5) +
0.2 log(0.2) + 0.3 log(0.3). It is observed that the 

classification entropy equals 0 if the result is 

allocated to a label with a greater chance and equals 

high if the network structure is unaware of its result. 

4. Experimental results 

In this section, the performance of the MS-

AUNet-MSDATL is measured and evaluated with 

existing methods from referred papers such as 

DDTL [16], 4SD-TL [18] and TL-Med [23] and the 

proposed concepts both are implemented in 

MATLAB 2017b for conducting a comparative 

analysis in terms of precision, recall, f-measure, and 

accuracy. Two datasets Dara1400 Covid19 Xray 

dataset and radiopaedia-COVID-19 CT dataset are 

used in this paper for experimental purpose.  

4.1 Dataset 

In this experiment, the Dara1400Chest X-ray 

image dataset [31] is used. From this dataset, a total 

of 1200 chest X-ray images belonging to healthy 

and COVID-19. For training 300 healthy and 300 

COVID-19 are used and 300 images from each class 

is used for testing.   

Also, the Radiopaedia-COVID-19 CT Cases-

2020 dataset [32] is considered. From this dataset, a 

total of 760 COVID-19 chest CT images and 760 

normal chest CT images. For training, 380 images 

from each class are considered and 380 images from 

each class are considered for testing. 

4.2 Accuracy 

It is the proportion of COVID-19 examples 

properly categorized over the total number of 

examples tested. It is calculated by Eq. (14). 

 



Received:  May 10, 2023.     Revised: June 11, 2023.                                                                                                       564 

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023           DOI: 10.22266/ijies2023.0831.45 

 

 
Figure. 4 Comparison of accuracy 

 

 
Figure. 5 Comparison of precision 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
        (14) 

 

In Eq. (14), TP is the number of COVID-19 

samples correctly classified as COVID-19. FP is the 

number of COVID-19 samples incorrectly classified 

as healthy. FN is the number of healthy samples 

incorrectly classified as COVID-19. TN is the 

number of healthy samples correctly classified as 

healthy. 

In Fig. 4, the accuracy achieved by the different 

TL-based models implemented on the considered 

datasets to classify COVID-19 infection risk levels. 

It observes that the accuracy of the MS-AUNet-

MSDATL using CT image dataset is 14% greater 

than the DDTL, 12.4% greater than the 4SD-TL, 

and 10.4% greater than the TL-Med models. The 

accuracy of the MS-AUNet-MSDATL using X-ray 

image dataset is 16.8% greater than the DDTL, 

14.3% greater than the 4SD-TL, and 10.5% greater 

than the TL-Med models. This is because of 

localizing COVID-19 diseased tissues and learning 

more discriminative characteristics from the lung 

CT scans for infection risk level categorization. 

4.2 Precision 

It is the amount of categorized COVID-19 

examples at TP and FP rates. It is calculated by Eq. 

(15). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (15) 

 

Fig. 5 portrays the precision for various TL-

based models implemented on the considered 

databases to classify COVID-19 infection risk levels. 

It analyses that the precision of the MS-AUNet-

MSDATL using CT image dataset is 15.1% higher 

than the DDTL, 12.8% higher than the 4SD-TL, and 

10.5% higher than the TL-Med models for COVID-

19 infection risk level categorization. Also, the 

precision of the MS-AUNet-MSDATL using X-ray 

image dataset is 17.2% higher than the DDTL, 

14.7% higher than the 4SD-TL, and 12.2% higher 

than the TL-Med models. This ensures that the 

precision of MS-AUNet-MSDATL is improved 

compared to the DDTL, 4SD-TL, and TL-Med 

models on both CT and X-ray images. 

4.3 Recall 

It is the number of perfectly categorized 

COVID-19 examples at TP and FN rates. It is 

determined by Eq. (16). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (16) 

 

Fig. 6 depicts the recall values of various TL-

based models implemented on the considered 

databases to classify COVID-19 infection risk levels. 

It addresses that the recall of the MS-AUNet-

MSDATL using CT image dataset is 14.8% better 

than the DDTL, 12.7% better than the 4SD-TL, and 

10.5% better than the TL-Med models for COVID-

19 infection risk level categorization. Also, the 

recall of the MS-AUNet-MSDATL using X-ray 

image dataset is 16.7% better than the DDTL, 

12.9% better than the 4SD-TL, and 10.9% better 

than the TL-Med models. This guarantees that the 

MS-AUNet-MSDATL can increase the recall for 

both CT and X-ray images compared to the other 

existing models for COVID-19 risk level 

classification efficiently.  

4.4 F-measure 

It is determined by Eq. (17). 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (17)   

 

Fig. 7 depicts the recall values of various TL-

based models implemented on the considered  
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Figure. 6 Comparison of recall 

 

 
Figure. 7 Comparison of f-measure 

 

databases to classify COVID-19 infection risk levels. 

It addresses that the recall of the MS-AUNet-

MSDATL using CT image dataset is 15% better 

than the DDTL, 12.7% better than the 4SD-TL, and 

10.5% better than the TL-Med models for COVID-

19 infection risk level categorization. Also, the f-

measure of the MS-AUNet-MSDATL using X-ray 

image dataset is 17% better than the DDTL, 13.8% 

better than the 4SD-TL, and 11.6% better than the 

TL-Med models. This is because of using an 

ensemble classifier, i.e. CNN-LSTM with TL, 

whereas the other models employ classical machine 

learning classifiers for the classification process. 

Thus, these findings proved that the proposed 

MS-AUNet-MSDATL using both CT and X-ray 

image datasets increases accuracy, precision, recall, 

and f-measure compared to the DDTL [16], 4SD-TL 

[18], and TL-Med [23] models efficiently. The 

proposed MS-AUNet-MSDATL can be useful for 

physicians to provide an accurate diagnosis by 

recognizing COVID-19 risk levels.  

5. Conclusion 

In this study, the MS-AUNet-MSDATL model 

was developed for COVID-19 disease risk levels 

categorization. Based on the use of the TL strategy, 

four different pre-learned CNN structures were 

employed to hierarchically obtain more relevant and 

discriminative characteristics from infected ROIs of 

the lung CT and X-ray scans. The variables of the 

convolution layers were upheld constantly during 

the learning procedure. After that, those 

characteristics were processed by the CNN-LSTM 

classifier to categorize the risk levels of COVID-19 

infection. Also, an ambiguity estimation was 

performed to predict the classifier’s efficiency. 

Moreover, the success of the presented models was 

compared with the existing TL models in the 

literature. The experimental outcomes realized that 

the MS-AUNet-MSDATL on the chest CT image 

dataset has 97.34% accuracy, 96.65% precision, 

97.07% recall, and 96.86% f-measure compared to 

the DDTL, 4SD-TL, and TL-Med. Similarly, the 

MS-AUNet-MSDATL on the chest X-ray image 

dataset has 97.18% accuracy, 96.21% precision, 

96.96% recall, and 96.59% f-measure compared to 

the DDTL, 4SD-TL, and TL-Med models. In the 

future, the proposed model will be developed as a 

big data model to process very large-scale datasets. 
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