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Abstract: The uncertainty inherent in the predictive environment of software effort estimation, is due to the limited 

availability of data information and the expensive costs associated with data collection. Consequently, there is 

difficulty in making accurate predictions with insufficient software effort estimation data, due to the limited 

information in the data. The probabilistic deep generative model conditional variational autoencoder (CVAE) is 

capable of producing synthetic data and modeling complex data distribution characteristics that is similarity to the real 

Unfortunately, because the method was previously developed for the classification task, the application of the 

technique to the regression task has received little attention. This study aims to construct a CVAE model combined 

with the relevance function contained in the re-sampling method. Relevance function method aims to create a label on 

the target. Statistical tests, such as the Levene test, t-test, and Kolmogrove Smirnov test, are utilized to compare the 

results to the real data. This study considers seven popular algorithms for comparison, such as synthetic minority 

oversampling technique regression (SMOTER), generative adversarial networks (GAN), conditional tabular 

generative adversarial networks (CTGAN), gaussian-copula (GC), copula GAN (CGAN), and variational autoencoder 

(VAE). CVAE approach has the best augmentation performance quality with accuracy values (MAE; RMSE; RAE; 

R2) compared to existing models in each china dataset (923.330; 1470.536; 0.436; 0.848) and desharnais dataset (9.540; 

11.694; 0.041; 0.978), respectively. The proposed model generates synthetic data which is similarity to real data in the 

software effort estimation context. In addition, synthetic data improves the quality of performance on baseline machine 

learning in software effort estimation contexts rather than using real data. 

Keywords: Conditional variational autoencoder, Re-sampling, Relevance function, Synthetic project generation, 

Software effort estimation. 

 

 

1. Introduction 

Uncertainty and imprecision are inherent in the 

predictive environment of software effort estimation 

(SEE) [1]. This is due to several factors hindering its 

practical use, which most researchers still ignore in 

SEE [2]. Such as the limited availability of data 

information and the expensive costs associated with 

data collection in the process of building the SEE 

model [3, 4]. Consequently, organizations often have 

a small number of completed projects to estimate the 

new project effort [3]. As a result, this can lead to 

difficulties in making accurate predictions with 

insufficient SEE data, due to the limited information 

available in the data it may not be sufficient to 

support the training of a model based on the SEE 

method [5]. Because, the use of a small training 

sample can have an impact on the learning method's 

performance [6]. 

The data augmentation (DA) technique is the 

process of completing a data collection with similar 

data (synthetic dataset) generated from the 

information in that data set [7]. In various prior 

research, one of the classic methods that are often 

used as data augmentation in overcoming small data 

in several previous studies, like synthetic minority 

oversampling technique (SMOTE) [8, 9], gaussian 

copula (GC) [10, 11], multivariate imputation by 

chained equations (MICE) [12, 13], random forest 
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(RF) [14], support vector machine (SVM) [15], and 

classification and regression tree (CART) [16]. 

When there are a number of samples available, the 

SMOTE oversampling method is particularly likely 

to be the one that is utilized the most [17]. However, 

SMOTE has trouble identifying what constitutes a 

minority value and what constitutes a majority value 

for regression [3, 18], and SMOTE is susceptible to 

problems when generating noise and boundary 

samples [19]. In the meantime, the gaussian copula 

generates synthetic data and evaluates its utility, 

concluding that it is expensive, esoteric, and 

convoluted [11]. MICE, on the other hand, is 

unsuitable for drawing from shared distributions 

when the conditional models are incompatible with 

data sets containing multiple variable types [20]. The 

CART model has problems with interpretation, a 

discontinuity at the boundaries of the partitions, and 

decreasing effectiveness when the relationships are 

correctly defined by the parametric model [16]. In 

contrast, as the number of variables to be synthesized 

increases in the RF model, the computation time 

increases approximately linearly [14]. Although, the 

possible increase in data utility can be achieved using 

SVM, however it is computationally expensive and 

can still lead to overfitting [15]. 

There are two popular synthetic data generation 

techniques in generative models based on the neural 

networks method, like generative adversarial 

networks (GAN) [18] and variational autoencoder 

(VAE) [21]. It has gained tremendous popularity due 

to its superiority in capturing complex data 

distributions [22, 23]. The use of GANs to generate 

data is becoming more popular in the core machine 

learning community, it requires multiple models to 

train, which causes difficulty and computational 

burden in finding optimal model parameters [24]. 

Meanwhile, the VAE method makes strong 

distributional assumptions, which can undermine the 

generative model [24]. 

Kingma et al. (2014) created the conditional 

variational autoencoder (CVAE), which stands for 

VAE, to overcome these shortcomings [25]. CVAE 

may reconstruct input characteristics utilizing output 

vectors [26]. CVAE can generate new samples 

automatically from predefined categories and extract 

high-order features, on the other hand it can reduces 

the dimensionality of network features automatically 

[27]. Probabilistic deep generative models CVAE are 

capable of modeling complex data distributions [27]. 

Using a gradient-based method makes training much 

easier [28], is effective at capturing the characteristics 

of the real sample distribution, and can make similar 

synthetic samples [29], and has a superior 

convergence property [30].  

CVAE successfully extracted prospective features 

with a high learning ability using an encoder. The 

decoder reconstructs the input features and provides 

sufficient data to the deep neural network [26]. 

Unfortunately, since previous methods were made for 

classification tasks, applying the technique to 

regression tasks has received little attention. In the 

regression data, determining a standard sample is 

tricky. Ultimately, this classification issue is 

intuitively solvable. In contrast, in the regression 

problem, there is difficulty in setting an appropriate 

target value for the resulting synthetic data 

(continuous data). The relevance function method in 

re-sampling regression aims to create a label on the 

target 𝜙(𝑌): 𝑦 → [0,1] , where 0 denote minimum 

and 1 denote maximum relevance. This is because 

CVAE was built for tackled the classification 

problem. Thus, we changed the target 𝑦 by labeling 

[0, 1, 8-9].  

We propose the CVAE with relevance function 

method found in resampling regression, which aims 

to accurately label targets to model correlations 

between attributes by introducing additional 

monitoring tasks to facilitate correlation extraction. 

The neural network is then trained to conduct an 

inverse transformation of the generated data into the 

distribution target for each continuous column. This 

provides identical synthetic data to the real data in the 

SEE context. Also, decision boundaries can be 

chosen appropriately, which can help reduce the 

overfitting inherent in oversampling and synthetic 

generative methods. 

The remainder of this paper's sections are 

organized as follows. The section 2 describes related 

works. The theory of CVAE and relevance function 

is discussed in section 3. The section 4 describes the 

design of experiments. The experimental results and 

discussion can be found in section 5. The section 6 of 

this paper's conclusion and the pontensial in the 

future. 

2. Related works 

Synthetic data could be a promising alternative to 

deal with the problem of small data sets. It has been 

the subject of research for almost three decades and 

has found use in a variety of fields [7, 15, 31]. Much 

research has been conducted in the past on data 

addition techniques for enlarging the training set and 

enhancing training performance [32]. Currently, the 

machine learning approach has been widely used to 

data generation [26], and has shown good 

performance. However, several data augmentation 

methods have been developed to handle classification 

[18, 33, 34] and time series [35-37] tasks in 
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generating synthetic data. Thus there are still 

limitations in the field of regression [3]. 

To our knowledge, only two studies in the SEE 

context have overcome small data to produce 

synthetic data using data augmentation, e.g. [3, 38]. 

Kamei et al. (2008), a collaborative version of the 

augmentation method using the SMOTE and k-

nearest neighbors (kNN) approaches aims to change 

the classification method to regression by attributing 

class unbalances to the most predictive features of 

SEE. The data generator is designed to extend to 

other SEE models as data preprocessors easily [38]. 

Unfortunately, SMOTE may mistakenly produce 

synthetic examples attacking majority class decision 

areas, especially in the case of overlapping classes, 

which causes some statistical bias [39]. SMOTE has 

several significant limitations in the sample-

generating process [40]. New samples are only 

created between two samples, and the range of the 

sampling area is limited, which can easily result in 

overfitting [41]. 

Song et al. (2018), the augmentation method using 

a significant probability approach based on the 

Gaussian/binomial distribution aims to increase the 

size of the SEE data set by slightly shifting some 

randomly selected training examples for use as data 

preprocessors [3]. While this method is simple and 

sometimes effective, on the other hand, the synthetic 

project may introduce noise but only form small 

variations in the project. 

Meanwhile, researchers have used various neural 

network techniques to generate synthetic data in 

generative models. Goodfellow et al. (2014), 

proposed a GAN approach for simultaneously 

training two models. ReLU and sigmoid activation 

are among the generator network configurations we 

employ. On the other hand, the discriminator network 

uses max_out and dropout activation. The findings 

demonstrate the mean log-likelihood and standard 

error accuracy for MNIST (225; 2) and Toronto Face 

datasets, respectively (2057; 26) [18]. Although the 

use of GANs for data generation is becoming 

increasingly widely used within the core machine 

learning community, it requires neural networks with 

more and more layers to train, which causes difficulty 

and computational burden (time-consuming) in 

finding optimal model parameters [24]. 

Xu et al. (2019) proposed a conditional tabular 

generative adversarial networks (CTGAN) by 

training each model using 500 batch. Each model 

undergoes 300 epochs of training. Our CTGAN 

performs marginally better than MedGAN and 

TableGAN. CTGAN creates realistic synthetic data 

from tabular data with continuous and discrete 

columns. Unfortunately, continuous columns can 

have multiple modes, and discrete columns can be 

unbalanced, making modeling challenging [42]. On 

the other hand, the fluctuating loss function of 

CTGAN and difficulty in converging causes poor 

performance [43]. 

Kamthe et al. (2021), propose to use a 

probabilistic model, namely the copula GAN 

(CGAN) method, as a synthetic data generator. The 

results demonstrate that the CGAN method can 

generate synthetic data with extraordinary precision. 

However, GAN are frequently difficult to interpret in 

generated synthetic data. Consequently, the 

development of the GAN method based on copula 

theory permits the construction of interpretable and 

adaptable models for data generation [44]. 

Unfortunately, the CGAN encountered difficulties 

during training, which resulted in the loss of no 

explicit representation that had to be correctly 

synchronized, making the determination of optimal 

model parameters difficult and time-consuming. 

Wan et al. (2018), producing synthetic data using 

a variational autoencoder (VAE) is presented as a 

solution for unbalanced learning. VAE can create 

new samples similar to those found in the initial 

dataset but not identical to those samples. According 

to the findings of our experiments, the proposed 

method is superior to more conventional approaches 

to synthetic sampling, such as SMOTE and 

ADASYN (recall, F1, and specificity) [34]. 

Meanwhile, the VAE technique makes (strong) 

distributional assumptions, possibly detrimental the 

generative model [24]. 

The CVAE-based time series approach that was 

developed by Fan et al. (2022) generates high-quality 

simulated data samples and has an RMSE 

performance ratio that falls somewhere between 12 

and 18 percent. It is necessary to have a larger latent 

dimension in order to generate synthetic data in order 

to increase the generalization performance of the 

model [37]. However, the quality of synthetic data 

can be enhanced by increasing latent dimensions. On 

the other hand, the CVAE method is fully connected 

layers which causes a computational burden in 

finding the optimal model parameters [37]. 

While several studies have addressed the use of 

augmentation methods previously made for the 

classification task, the application of the technique to 

the regression task has received little attention. The 

augmentation method established for classification 

cannot be applied directly to SEE because there is no 

minority and majority class in regression. Possibly 

because of the difficulty in determining minority and 

majority values for regression. Although there are 

numerous studies on synthetic oversampling for 
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classification, relatively little is done in the field of 

regression [3]. 

While the CVAE approach was developed to deal 

with classification and time series tasks, it should be 

noted. We propose a CVAE method combined with a 

relevance function. To the best of our knowledge, the 

first investigation of the CVAE-relevance function 

and regression issues in the SEE field in a situation 

dealing with small data availability. 

3. Our approach 

3.1 Conditional variational autoencoder 

The conditional variational autoencoder (CVAE) 

[25] was expanded from the fundamental model of 

the VAE  [21], which consists of an encoder and 

decoder, was expanded to characterize the 

distribution of observed data through latent variables 

in an unsupervised manner. As shown in Fig. 1, the 

CVAE approximates the conditional distribution 

𝑝𝑑(𝑥|𝑦)  [45]. It can outperform the deterministic 

model when the distribution of 𝑝𝑑(𝑥|𝑦)  is multi-

modal (the probability of 𝑥𝑠 varies for a given 𝑦). 

Assume that 𝑥  is real, a deterministic regression 

model with MSE loss will predict the average blurry 

value for 𝑥. CVAE examines the 𝑥 distribution, from 

which diverse and realistic objects can be sampled 

[46]. 

Similar to VAE, the lower bound of variational for 

CVAE can be derived by conditioning all 

distributions considered at 𝑦 [46], as: 

 

𝐿𝐶𝑉𝐴𝐸(𝑥, 𝑦; 𝜃, 𝜓, 𝜙) 
= 𝐸𝑞𝜙(𝑧|𝑥, 𝑦)

log 𝑝𝜃 (𝑥|𝑧, 𝑦) −  

𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥, 𝑦)||𝑝𝜓(𝑧|𝑦)) ≤ log 𝑝𝜃,𝜓(𝑥|𝑦) (1) 

 

Optimizing CVAE objectives with the 

reparameterization technique. Note that the prior 

distribution 𝑝𝜓(𝑧|𝑦)  is dependent on 𝑦  and is 

represented by a neural network with the parameter  

𝜓. CVAE employs three neural networks that can be 

trained, whereas VAE only employs two [46]. In our 

study, we will suggest CVAE modifications such as 

gaussian stochastic neural networks and hybrid 

models with relevance functions derived from re-

sampling regression. 

3.2 Utility based regression 

While the CVAE approach was developed to deal 

with classification tasks, it should be noted. In the 

meantime, to address regression issues where the 

target 𝑌 is continuous, it needs to be changed to label  

 

 
Figure. 1 CVAE Architecture 

 

[0,1]. This study will use the approach found in the 

re-sampling regression model developed by Torgo et 

al. (2015). The concept of the value relevance of the 

target variable and the underlying assumption that 

this value relevance is not constant across domains 

are key to utility-based regression [8-9]. Relevance is 

an important property that reveals a domain-specific 

bias regarding the importance of different values. It 

is defined as a continuous function 𝜙(𝑌): 𝑦 → [0,1] 
which maps the domain of the target variable 𝑦 onto 

the relevance scale [0, 1], where 0 denote minimum 

and 1 denote maximum relevance. 

The benefit of a prediction is defined by Torgo 

and Ribeiro (2007) as the proportion of the maximum 

benefit provided by the relevance of the true value of 

a given continuous objective variable [47-48], 

namely 𝜙(𝑦), 
 

𝐵𝜙(�̂�, 𝑦) = 𝜙(𝑦) ∗ (1 − Γ𝐵(�̂�, 𝑦))               (2) 

 

Where Γ𝐵 is a bounded loss function for benefits. 

While the predictive benefit depends on the 

usefulness of the actual value associated with 𝜙(𝑦), 
the cost depends on the relevance of the true value 

and the predicted value, as they are of different types. 

This indicates that the cost is proportional to the 

importance of the real and predicted values. This 

concept is captured by the shared relevance function, 

which calculates the weighted average of these two 

factors [9]. 

 

𝜙𝑝(�̂�, 𝑦) = (1 − 𝑝) ∗ 𝜙(�̂�) + 𝑝 ∗ 𝜙(𝑦)        (3) 

 

Where 𝑝 ∈ [0,1] is the factor that discriminates 

the type of error. Torgo and Ribeiro (2007) define the 

predictive cost as the proportion of the maximum cost 

determined by the joint relevance of the actual and 

predicted value [47]. Consequently, the cost function 

𝐶𝜙
𝑝

 is defined as follows, 

 

𝐶𝜙
𝑝(�̂�, 𝑦) = 𝜙𝑝(�̂�, 𝑦) ∗ Γ𝐶(�̂�, 𝑦)                      (4) 
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Where 𝜙𝑝 represents the joint relevance function, 

and Γ𝐶 represents the bounded cost loss function. The 

bounded loss is quite similar to Γ𝐵. The bounded loss 

Γ𝐶 is a function with a range [0,1] that calculates the 

percentage of the maximum cost that should be 

assigned to a prediction based on the prediction error 

that is determined by the standard loss function. It 

needs to be equal to 0 for a perfect prediction, and it 

must increase to 1 as the prediction gets further and 

further away from being perfect. The utility of any 

prediction can be computed as the net balance of 

these two components, using the definitions of 

benefits and costs that were presented earlier in this 

section. 

 

𝑈𝜙
𝑝(�̂�, 𝑦) = 𝐵𝜙(�̂�, 𝑦) − 𝐶𝜙

𝑝(�̂�, 𝑦)                (5) 

 

Where 𝐵𝜙(�̂�, 𝑦)  and 𝐶𝜙
𝑝(�̂�, 𝑦)  are functions 

related to understanding the predicted costs and 

benefits. 

4. Experiment design 

In this section, we wanted to develop a specific 
augmentation method to address this problem of small 
dataset, which is very common in software 
engineering datasets. Our technique is the most 
appropriate and effective way to solve this problem by 
increasing the accuracy of the SEE method to 
overcome the estimation uncertainty caused by the 
small data available in the SEE context. 

4.1 Problem statement 

The challenge in constructing a SEE model 

typically involves data collection, which is time-

consuming, workload, and expensive. Consequently, 

the available training data sample is a limited data set, 

which results in unsatisfactory SEE prediction model 

performance. To improve the performance of the 

prediction machine on the SEE model, it would be 

more efficient to generate a data synthesis project 

than to acquire as much data as possible on the 

completed software project (which would take a 

significant amount of time). 

By gathering small data in the context of SEE. 

Based on data 𝒟, we will construct a data synthesis 

project from the completed data. 

 

𝒟∗ = 𝒟⋃𝒟′                                          (6) 

 

Where 𝒟′  represents the outcome of the data 

synthesis project, 𝒟∗  is the new data used in the 

training process. Given an example of a randomly 

selected training 𝒟 = {(𝑋𝑛, 𝑦𝑛)}𝑛=1
𝑁 , 𝑋 ∈ 𝑅𝑑  where 

𝑋𝑛 = (𝑥1, 𝑥2, … , 𝑥𝑖) ∈ 𝑅𝑑  synthetic project creation 

with all conditions distribution considered at 

𝜙(𝑌): 𝑦 → [0,1], for 𝑦 ∈ 𝑅1  as: 

 
𝑄𝜙(𝐸𝑛𝑐𝑜𝑑𝑒𝑟): (𝑅

𝑑 , 𝑅) → 𝑃𝜃(𝑑𝑒𝑐𝑜𝑑𝑒𝑟): (𝑅
𝑑 , 𝑅)         (7) 

 

([

𝑄𝜙(𝑍|𝑥1)
…

𝑄𝜙(𝑍|𝑥𝑑)
] , [𝑄𝜙(𝑍|𝑦)]) = 𝑃𝜃(�̂�, �̂�)          (8) 

 

Where 𝑄𝜙 is the encoder used for input data feed 

and 𝑃𝜃  is the decoder that produce synthesis data 

from 𝑍. 

4.2 Proposed synthetic data generator 

The conditional variational autoencoder (CVAE) 

extends VAE by conditioning the encoder and 

decoder to class 𝑌 , as shown in Fig. 1. Encoder 

𝑄(𝑍|𝑋, 𝑌)  is now conditional on 𝑋  and 𝑌 , while 

decoder 𝑃(𝑋|𝑍, 𝑌)  is now conditional on 𝑍  and 𝑌 . 

The objective of the variational lower bound on 

CVAE [25] is therefore described as follow: 

 
𝐿𝐶𝑉𝐴𝐸(𝜃, 𝜙; 𝑋, 𝑌) = 𝔼[𝑙𝑜𝑔𝑃(𝑋|𝑍, 𝑌)] 

−𝐷𝐾𝐿[𝑄(𝑍|𝑋, 𝑌)||𝑃(𝑍|𝑌)]         (9) 
 

The 𝑌 class designation is related to the encoder 

and decoder's conditional probability distributions. 

To initialize the DNN network parameters using the 

CVAE encoder network, the CVAE structure was 

modified to incorporate the 𝑌 class label only in the 

decoder network. 

While the above approach was developed to 

handle the classification task, we apply the process 

using the relevance function method to change the 

continuous 𝑌 target to 𝜙(𝑌): 𝑦 → [0,1]. 
Our proposed CVAE model is illustrated in Fig. 2. 

In the encoder portion, it is not connected to 𝑌[0,1], 
whereas the class label is an additional input in the 

decoder. Therefore, the decoder's probability 

distribution is dependent on the latent variable 𝑍 and 

the class label 𝑌. The latent variable 𝑍 and label 𝑌 

are connected and fed into the decoder in order to 

produce a new sample of the specified class. Thus, 

developing a new formula as: 

 

 
𝐿𝐶𝑉𝐴𝐸(𝜃, 𝜙; 𝑋, 𝑌[0,1]) = 𝔼[𝑙𝑜𝑔𝑃(𝑋|𝑍, 𝑌)] 

−𝐷𝐾𝐿[𝑄(𝑍|𝑋)||𝑃(𝑍|𝑌)]                (10) 
 
𝐿𝐶𝑉𝐴𝐸  consists of probability reconstruction 

𝔼[𝑙𝑜𝑔𝑃(𝑋|𝑍, 𝑌)]  and kullback–leibler (KL)  
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Algorithm 1: The pseudocode of training CVAE-

relevance function 

Input: the real dataset 𝒟 = {(𝑋𝑛, 𝑦𝑛)}𝑛=1
𝑁 , 𝑋 ∈

𝑅𝑑, n is the dimension of data set 

1. Initialization: supervised, decoder, encoder, 

prior distribution, latent space dimensions  

2. Data preprocessing: normalization the 

training, validation and test dataset for all 

data is scaled to [0, 1] 

3. Change 𝜙(𝑌): 𝑦 → [0,1]  for label using 

relevance function in re-sampling regression 

4. Training CVAE: 

5. for number of iterations do 

6. for number of batches do 

7. Input batch into the encoder; 

8. Calculate loss on 𝑍 ≈
𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋) = 𝑄𝜙(𝑍|𝑋),

�̂�, �̂� ≈ 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑍) =
𝑃𝜃(𝑋|𝑍, 𝑌) according to Equation 

(5.5) and optimize through 

training data; 

9. Generated Synthetic data: 

10. Determine sample 𝑍 of the multivariate 

standard normal distribution 𝒩(0, 𝐼); 
11. Determine the class label on the decoder 

as a conditional variable Y; 

12. for number of samples do 

13. Sample from latent space; 

14. Use a trained decoder from the training 

step to get the synthetic data ( �̂�, �̂� ≈
𝒟′); 

15. end for 

16. return Complete dataset 𝒟∗ = 𝒟 ∪𝒟′ 
Output: �̂�, �̂�  synthetic data projects 

{(𝑋𝑚, 𝑦𝑚)}𝑚=1
𝑀  

 

 

divergence 𝐷𝐾𝐿[𝑄(𝑍|𝑋)||𝑃(𝑍|𝑌)]. The first term is 

to reconstruct X using the conditional probability 

distribution 𝑃(𝑋|𝑍, 𝑌) , and the second term is to 

characterize the 𝑄(𝑍|𝑋) encoder distribution, which 

is close to the prior distribution 𝑃(𝑍|𝑌) using the KL 

divergence metric. In this model, we use the class 

label as the conditional variable 𝑌  by sampling 𝑍 

from the multivariate standard normal distribution 

𝒩(0, 𝐼). The output �̂� and �̂� will be transformed into 

inverse normalization to get synthesis results similar 

to real data. 

We will show more details in Algorithm 1, as the 

development of the CVAE-relevance function to 

generate synthetic data in this study. 

 
Figure. 2 Our Proposed CVAE-relevance function 

4.3 Hyperparameter Setting 

In this study, we conduct experiments to evaluate 

the efficacy of the proposed model. We use two 

different small datasets from the PROMISE 

Repository set (china and desharnais dataset) in the 

SEE field. This study will compare the proposed 

method to other conventional techniques for 

synthesizing data. The randomly accessible data 

sequence was partitioned into 70% train, 15% test, 

and 15% validation data set to define the parameters 

in our experiment. Training data is the only data set 

used for data augmentation. Each participant 

generates synthetic data based on the real data, and 

then combines the synthetic and real data to form the 

resultant synthetic data. 

CVAE is a technique for generating synthetic data 

employing layers that are completely interconnected. 

The model was developed with a one-dimensional 

convolution layer and hyperparameter setting 

intended to capture the temporal relationships in the 

regression data [37]. In model optimization, the 

number of hidden layers and the neuron sizes of 

hidden layers are adjusted to reduce computational 

costs because they have a substantial effect on model 

performance. The trained model's hyperparameters 

use an embedding dimension of 256 for the hidden 

layer for all relevant data sets to improve the DNN's 

generalization performance [27, 37]. In this 

investigation, the default learning rate of Adam and 

the rectified linear unit (ReLU) optimizer in 

TensorFlow were utilized. Our model employs the 

Adam algorithm for a network with a learning rate of 

1×10−3 (1e-3) [27, 49]. Other than the encoder and 

decoder output layers, which use the Linear 

activation function, all other layers use the ReLU 

activation function. We will select a size of four for 

the latent variable. ReLU optimal value may vary 

depending on the model [37, 50]. L2 is utilized to 

avoid the problem of overfitting. If L2 is 0, then the  
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Table 1. CVAE hyperparameter values 

Hyperparameter Values 

the number hidden layer 256 

batch size 50 

latent size 4 

epoch 100 

regularization (ℒ2) 1×10-4 (1e-4) 

dropout probabilities 0.5 

optimization Adam 

learning rate 1×10−3 (1e-3) 

activation ReLU 

gaussian noise 0.2 

 

original model is returned. However, if L2 is too large, 

it will add too much weight and cause under-fitting, 

therefore, L2 is 1×10−4 (1e-4). 

We ran the model ten times to ensure that each 

data subset had an equal probability of being included 

in the test portion. The score was then determined by 

summing the precision of the model within the test 

subset. Lastly, the optimal parameter has the 

maximum cross-validation score. Table 1 depicts the 

hyperparameters utilized by this model. 

4.4 Performance analysis 

In this experiment, the efficacy of various 

regression models was evaluated and compared using 

four performance metrics. The metrics regression is 

imported from the sklearn package.  

 

𝑀𝐴𝐸 = ∑
|𝑦𝑖−�̂�𝑖|

𝑛
𝑛
𝑖=1                                (11) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

𝑛
                          (12) 

 

𝑅𝐴𝐸 =
∑ (|𝑦𝑖−�̂�𝑖|)
𝑛
𝑖=1

∑ (|𝑦𝑖−�̅�𝑖|)
𝑛
𝑖=1

                                (13) 

 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�𝑖)
2𝑛

𝑖=1

                                (14) 

5. Result and discussion 

5.1 Convergence of model loss analysis 

In this investigation, our CVAE served as the 

variational lower bound of the data's marginal 

likelihood. We employ a loss-measure method. The 

marginal likelihood also includes Kullback–Leibler 

(KL) divergence losses. Fig. 3 presents the losses of 

training the CVAE component for one repetition of 

running. 

We can see that some of the datasets on training 

and testing loss drastically with increasing iteration  

 

 
(a) 

 
(b) 

Figure. 3 Validation loss during training of  

CVAE models: (a) China dataset, and (b) Desharnais 

dataset 

 

time and became stable after reaching values above 

10 epochs. Loss function values tend to be stable, 

which indicates that CVAE has entered a 

convergence condition. Overall it shows that the 

CVAE training process is very stable. The results 

indicate that the loss function is close to constant; 

therefore, the model has converged. On the other 

hand, our model takes little time to train and find the 

generalizability of the data set. 

5.2 Latent feature representation 

We evaluated the distribution of synthetic data 

using two conventional approaches, namely t-

distributed stochastic neighbor embedding (t-SNE) 

and principal component analysis (PCA) [51]. The t-

SNE plots (left position) and PCA (right position) can 

be seen in Fig. 4, respectively, showing that the 

modeler can visually search for correlations using 

high-dimensional data set visualization techniques. 

PCA reduces data dimensions while maintaining 

variation [52]. t-SNE preserves the metric 

characteristics of the original height dimension data. 

It keeps data that indicates which points are neighbors 

[51]. 
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(a) 

    
(b) 

Figure. 4 t-SNE and PCA Visualizations of latent mean Vector Z: (a) The t-SNE and PCA for China data and (b) 
The t-SNE and PCA for Desharnais data 

 

Fig. 4 shows a scatterplot of the learned features 

to visualize how well the distribution of synthetic 

data (orange color) resembles the real data set (blue 

color) in 2-Dimensional space. For each pattern, the 

plot indicates that the data points are closer together. 

Here, we will demonstrate how latent feature 

representation can be applied to a synthetic dataset. 

Therefore, we employ the concept of data point 

similarity. By visualizing the results, we obtain a 

better understanding of how well the model learns the 

distribution of the data. The results indicate that our 

method can help bridge the gap between real and 

synthetic data. 

5.3 Cumulative distribution of sums per feature 

In Fig. 5, we consider the cumulative number per 

feature both the real and synthetic data generated by 

our CVAE model. Most of the features in the 

synthetic data closely match the real data. In 

summary, our model with low privacy settings 

exhibits high-quality synthesis performance. In all 

cases, the synthetic data table is statistically similar 

to the real data table. We presume that the distribution 

per feature and difference plot generated by our 

model indicate a relatively high degree of similarity 

between the real data and the synthesized data. 

5.4 Statistical evaluation 

On the other side, we also perform testing based 

on statistical and descriptive analysis. Descriptive 

analysis is summarized from all variables in real and 

synthetic data using the minimum (Min), maximum 

(Max), mean, and standard deviation (Std) values 

presented in tables 2 and 3. 

Three analyses were performed to assure that the 

two datasets were statistically identical. Thirty 

random samples were drawn from two datasets. 

Tables 2 and 3 display the p-values for every test. All 

p-values for the t-test variables are greater than 0.05. 

This indicates that the means of the two datasets are 

not significantly different. To evaluate the variance 

of the two datasets, a Levene test was performed. All 

variables have p-values more than 0.05. Similarly, the 

p-value of the Kolmogorov-Smirnov test is greater 

than 0.05, indicating that the distribution of variables 

between the two datasets is statistically significant. 

Therefore, the two datasets are statistically 

comparable. If the p-value is below 0.05, the variance 

of the dataset is not statistically significant. 

5.5 Comparison with existing methods 

We compare our CVAE proposed technique with 

six method state-of-the-art synthesizers [53, 55-56], 

including SMOTER [54] which was modified from  
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(b) 

Figure. 5 Cumulative distribution in dataset per feature: (a) Similarities China dataset between real (blue) and 

synthetic (orange) and (b) Similarities Desharnais dataset between real (blue) and synthetic (orange) 

 
Table 2. Descriptive statistical features of china dataset  

Variable 

Real Data Synthetic Data 
Statistical tests  

(p-value) 

Min Max Mean Std Min Max Mean Std 
t-

test 
Levene 

ks-

test 

AFP 9.00 17518.00 486.85 1059.17 3.39 5402.85 459.45 627.33 0.62 0.01 0.11 

Input 0.00 9404.00 167.09 486.33 10.58 1484.38 151.69 180.91 0.51 0.00 0.24 

Output 0.00 2455.00 113.60 221.27 0.07 1770.48 112.68 202.37 0.94 0.12 0.26 

Enquiry 0.00 952.00 61.60 105.42 0.11 762.34 70.97 78.91 0.11 0.00 0.13 

File 0.00 2955.00 91.23 210.27 0.12 1847.76 93.63 207.39 0.85 0.47 0.28 

Interface 0.00 1572.00 24.23 85.04 0.02 842.83 36.69 88.43 0.02 0.17 0.29 

Added 0.00 13580.00 360.35 829.84 7.04 3070.12 353.55 458.05 0.87 0.00 0.54 

Changed 0.00 5193.00 85.06 290.85 0.05 3466.76 125.00 263.14 0.02 0.49 0.61 

Deleted 0.00 2657.00 12.35 124.22 0.13 358.83 16.55 26.75 0.45 0.67 0.26 

PDR_AFP 0.30 83.80 11.77 12.10 1.89 86.05 12.17 9.60 0.56 0.21 0.50 

PDR_UFP 0.30 96.60 12.07 12.81 0.70 93.55 12.54 10.05 0.53 0.49 0.22 

NPDR_AFP 0.40 101.00 13.26 14.00 0.27 99.20 13.55 11.24 0.72 0.86 0.78 

NPDU_UFP 0.40 108.30 13.62 14.84 0.02 104.77 13.84 12.87 0.80 0.00 0.65 

Resource 1.00 4.00 1.45 0.82 0.00 4.40 1.45 0.66 0.86 0.06 0.66 

Duration 1.00 84.00 8.71 7.34 1.98 75.98 8.73 6.07 0.97 0.80 0.65 

Effort 26.00 54620.00 3921.04 6480.85 742.52 32307.78 4239.07 4941.27 0.39 0.00 0.16 

 

SEE, generative adversarial networks (GAN) [18, 55], 

Conditional Tabular Generative Adversarial 

Networks (CTGAN) [42, 56], Gaussian Copula (GC) 

[53, 56], Copula GAN (CGAN) [44], and 

Variantional Autoencoder (VAE) [34]. 

The lower MAE, RMSE, and RAE values 

conclusively show better results. On the other hand, 

the R2 have higher values. Table 4 compares the 

performance metrics for the proposed CVAE model 

with different data augmentation methods for the two  
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Table 3. Descriptive statistical features of desharnais dataset  

Variable 

Real Data Synthetic Data 
Statistical tests  

(p-value) 

Min Max Mean Std Min Max Mean Std 
t-

test 
Levene 

ks-

test 

TeamExp -1.00 4.00 2.18 1.41 0.00 3.89 2.39 0.99 0.50 0.00 0.00 

ManagerExp -1.00 7.00 2.53 1.64 0.27 6.10 1.07 1.07 0.55 0.00 0.01 

Transactions 9.00 886.00 182.12 144.03 48.71 690.55 173.82 126.22 0.72 0.22 0.17 

Entities 7.00 387.00 122.33 84.88 49.61 341.94 117.77 61.04 0.68 0.01 0.01 

PointsNonAdjust 73.00 1127.00 304.45 180.21 117.80 737.37 282.12 132.68 0.68 0.03 0.24 

Adjustment 5.00 52.00 27.62 10.59 2.23 47.68 25.82 8.67 0.64 0.06 0.02 

PointsAdjust 62.00 1116.00 289.23 185.76 116.54 790.27 265.66 160.19 0.51 0.13 0.05 

Language 1.00 3.00 1.55 0.70 0.83 3.71 1.60 0.64 0.62 0.45 0.85 

 

resulting datasets. The results show that our CVAE 

approach has the best data augmentation performance 

quality with the accuracy value (MAE; RMSE; RAE; 

R2) in each dataset of China (923.330; 1470.536; 

0.436; 0.848) and Desharnais (9.540; 11.694; 0.041; 

0.978). 

Our CVAE method achieves the best working 

accuracy under the MAE, RMSE, RAE, and R2 

parameter assessment. In contrast, CTGAN has the 

worst performance (MAE and RMSE) in the China 

and Desharnais datasets. Meanwhile, CTGAN has 

the worst performance (RAE and R2) in the China 

dataset. Copula GAN has the worst performance 

RAE on the Desharnais dataset. Lastly, Copula GAN 

has the worst performance R2 on the Desharnais. 

Fig. 4 demonstrates that the probability 

distribution function of the scatterplot generated by 

CVAE closely resembles that of the real dataset, 

indicating that CVAE makes a strong assumption that 

it can analyze the distribution characteristics of 

historical data to generate high-quality samples that 

closely resemble real data. Where progressive CVAE 

training is used to get a reasonably large training 

speed and make very good synthetic data from the 

input data. CVAE is utilized to examine encoder and 

decoder that can learn complex probability 

distributions from provided data and infer posterior 

distribution values based on latent variables.  

Although according to Liang et al. (2018), how to 

include an automatic encoder of variational through 

augmentation structures while failing to consider 

additional information can be used more elegantly 

[57]. Thus, we concentrate on the selected probability 

function and study the regularization hyperparameter 

tuning to address this. Berthelot et al. (2018) have 

investigated the use of autoencoders within the 

framework of regularization in order to enhance 

linear interpolation [58]. This is because the 

Kullback-Leibler divergence (KL) is used as a 

conventional metric to identify the difference 

between the desired probability distributions [59]. 

The KL divergence enables the model to seamlessly 

normalize and interpolate latent space. However, if 

the KL divergence is not fine-tuned, it can result in a 

suboptimal network model [60].  

We argue that modifying the CVAE method could 

encourage the model to learned interpretable data 

representations. The modified CVAE has an 

embedding component to conduct training in a 

supervised manner. A new objective function is 

applied to CVAE training to improve reconstruction 

capability.  

Unfortunately, the GAN and Copula GAN 

encountered difficulties during training, which 

resulted in the loss of no explicit representation that 

had to be correctly synchronized, making optimal 

model parameters difficult and time-consuming. On 

the other hand, the fluctuating loss function of 

CTGAN and difficulty in converging causes poor 

performance [43], and this method has difficulty 

resolving the issue that continuous columns may have 

multiple modes while discrete columns are 

occasionally unbalanced, making modeling difficult. 

SMOTER, on the other hand, makes synthetic 

minority samples based on real samples and their 

neighbors. However, the over-sampling method tends 

to cause overfitting problems because duplicated 

samples are sometimes meaningless. In addition, this 

traditional method belongs to the shallow learning 

division and has trouble with data that is imbalanced 

and high-dimensional data [61]. However, this 

technique is susceptible to errors in generating noise 

samples, leading to overgeneralization or high 

variance. 

Meanwhile, Fig. 6 compares the data 

augmentation method with MAE, RMSE, RAE, and 

R2. In this regard, we also observe that the 

measurement error rates for all models are presented 

in the visualization to make it easier to observe the 

performance of the data augmentation method. 

5.6 Impact of synthetic data on regression 

The subsection of this study was to explore the 

effect of generating synthetic data using the data  
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Table 4. The Comparison of data augmentation methods 

Methods 
MAE RMSE RAE R2 

China Desharnais China Desharnais China Desharnais China Desharnais 

Proposed 923.330 9.540 1470.536 11.694 0.436 0.041 0.848 0.978 

SMOTER 3619.279 22.170 6508.558 28.271 0.463 0.093 0.609 0.906 

GAN 1434.644 54.915 2374.863 64.251 0.504 0.456 0.806 0.821 

CTGAN 6732.047 235.904 10544.891 275.655 4.232 3.362 -24.706 -9.089 

GC 1727.861 63.056 2337.679 85.551 0.519 0.551 0.707 0.636 

CGAN 2634.554 68.022 3384.649 109.199 2.740 3.462 -6.398 -16.103 

VAE 1450.081 126.205 2180.152 157.290 0.851 1.299 0.244 -0.341 

 

    

    
                                                (a)                                                                                                (b) 

Figure. 6 Comparison of the evaluation metrics across various data augmentation methods:  

(a) China dataset and (b) Desharnais dataset 

 

augmentation approach that was presented in this 

paper. We used synthetic data that was produced 

from two real-life data sets that are available to the 

public in order to assess how much of an impact they 

had on the performance of baseline machine learning 

algorithms in the field of regression. Our research 

produces synthetic data the same quantity of real data, 

which is then combined with real data and synthetics 

(synthetic, where 𝒟 ≈ 𝒟′ then 𝒟∗ = 𝒟 ∪ 𝒟′). 

Several machine learning methods, such as 

support vector regression (SVR), and artificial neural 

networks (ANN), have been widely applied in the 

context of SEE, which is considered a necessary step 

[62]. On the other hand, other machine learning 

methods, like k-nearest neighbor (kNN), 

classification and regression tree (CART), and 

random forest (RF), are still ignored. In this study, 

five baseline machine learning algorithms, including 

CART, kNN, Multilayer Perceptron (MLP), SVR, 

and RF, will be used to evaluate the quality of the 

generated synthetic data. 

Tables 5 and 6 list five baseline machine learning 

performance comparisons. The reported values are 

ten times the average of each SEE data set used to 

measure the difference in performance between the 

two datasets (real and synthetic dataset) using the 

MAE and RMSE performance values for each ML 

regressor model (without parameter setting, where 

parameters are chosen randomly within a range). 

Table 5 shows that the number of estimated 

attempts is correctly regressed for the CART 

(781.972; 2400.498), kNN (657.558; 1466.325), and 

RF (464.299; 1159.219) models for our proposed 

CVAE. Meanwhile, the MLP (2000.044; 3162.108) 

and SVR (1565.578; 2536.080) models are better for 

VAE. The performance of CVAE data is better than 

the five methods of SMOTER, GAN, CTGAN, 

Gaussian copula, and Copula GAN. Overall, this  
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Table 5. Comparison of the machine learning in evaluating the quality of China synthetic data 

ML 
Evaluation 

Metric 

Generated China Data Synthetic 

Real Proposed SMOTER GAN CTGAN GC CGAN VAE 

CART 
MAE 1032.260 781.972 1265.821 1351.340 10898.370 1866.030 3396.620 1296.500 

RMSE 2771.457 2400.498 3573.893 3440.989 16763.359 2634.495 5890.566 1977.003 

kNN 
MAE 1301.996 657.558 1650.629 1430.827 8806.346 2030.300 2788.059 1155.856 

RMSE 2584.747 1466.325 4219.714 3537.873 13285.989 2777.262 3936.318 1706.865 

MLP 
MAE 3212.537 2888.008 9704.693 2929.992 7227.012 5736.290 2916.550 2000.044 

RMSE 6578.298 5174.416 14566.449 6411.518 12466.135 7341.010 4544.227 3162.108 

SVR 
MAE 2592.019 2105.460 8097.759 2774.480 5310.070 3538.668 2465.435 1565.578 

RMSE 5997.487 4651.251 11396.782 6165.452 10448.966 4876.865 3799.945 2536.080 

RF 
MAE 626.885 464.299 777.796 869.848 8240.996 1683.556 2773.386 1119.743 

RMSE 2116.267 1159.219 1696.306 2110.294 11820.325 2279.200 3546.330 1543.388 

 
Table 6. Comparison of the machine learning in evaluating the quality of desharnais synthetic data 

ML 
Evaluation 

Metric 

Generated Desharnais Data Synthetic 

Real Proposed SMOTER GAN CTGAN GC CGAN VAE 

CART 
MAE 22.058 26.423 20.642 41.217 254.411 109.764 150.529 87.382 

RMSE 33.760 35.345 32.971 83.942 321.637 149.342 196.939 114.668 

kNN 
MAE 62.686 37.866 43.809 67.459 235.568 68.098 75.333 89.588 

RMSE 69.242 60.025 64.163 107.319 271.431 87.190 104.622 112.965 

MLP 
MAE 154.280 212.267 395.142 218.003 317.533 225.420 67.912 156.001 

RMSE 193.998 262.215 472.998 289.818 413.542 260.046 123.525 181.816 

SVR 
MAE 118.515 119.061 211.630 138.575 214.598 116.831 61.391 88.328 

RMSE 134.559 161.803 281.686 204.607 265.351 142.598 118.491 100.689 

RF 
MAE 18.710 17.027 18.849 34.677 221.729 73.170 73.205 89.349 

RMSE 31.257 26.081 25.729 65.470 257.585 96.209 107.865 104.557 

 

shows that China synthetic data is better than real 

data. 

Table 6 shows that the number of estimated 

attempts is correctly regressed for the kNN (37.866; 

60.025) and RF (17.027; 26.081) models for our 

proposed CVAE. While the CART model (20.642; 

32.971) is better for SMOTER, and Copula GAN is 

better for MLP (67.912; 123.525) and SVR (61.391; 

118.491) models. The performance of CVAE data is 

better than the four methods of GAN, CTGAN, 

Copula GAN, and VAE. Overall, this shows that 

Desharnais' synthetic data is better than the real data. 

In this case, the comparison of using synthetic 

results in improving the quality of performance on 

baseline machine learning baselines in the SEE 

context rather than using real data. This can be seen 

in the MAE and RMSE values which have the lowest 

values indicating the best performance. Our synthetic 

project generator (CVAE) consistently improves 

machine learning performance, such as CART, kNN, 

SVR, MLP, and RF on china dataset. Meanwhile, the 

desharnais dataset shows that it consistently 

improves the performance of machine learning, such 

as KNN and RF. In addition, we can see that the 

magnitude of the difference in performance varies 

depending on the competing data sets and methods. 

VAE performance is better for machine learning 

models such as CART, MLP, and SVR than other 

data augmentation methods on china data set. On the 

other hand, SMOTER is also known as minority 

sampling technique and performs better than random 

sampling on desharnais datasets, consistently 

improves machine learning performance, such as 

CART. On the other hand, CGAN works well on 

desharnais datasets by enhancing the performance of 

machine learning, such as MLP and SVR. Overall it 

shows that using the generated synthetic data can 

improve machine learning performance better than 

using real data. 

6. Conclusion 

Our proposed CVAE-relevance function method 

is better than existing data augmentation methods. 

We employ a robust strategy by redesigning the 

DNN-based CVAE to perform categorical data 

conversion using vector-embedded ordinal coding 

and attribute labels to accelerate the convergence of 

the training process. Furthermore, to strengthen the 

correlation between attributes in the regression, we 

use a reconstructed probability distribution which 

aims to account for the variability of the distribution 

of variables in assisting the extraction of correlations 

in synthetic data. We train examples randomly in 

each epoch and perform hyperparameter tuning on 

our model. This helps increase generalizability. Our 

use of synthetic data results in improved quality of 

performance on popular machine learning baselines 

in SEE contexts than using real data. 

The creation of the dataset's ordinal features 

(categories) is modeled by ordinal encoding. This 

modeling makes sense because of the effectiveness of 
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our data imputation and synthetic projects. However, 

our feature modeling may not correspond to reality. 

Other strategies that emphasize customer preferences 

or encode expert knowledge into a selection of 

training examples could improve predictive 

performance, leading to future research questions. 
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