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Abstract: This paper introduces a novel swarm-based metaheuristic called swarm magnetic optimizer (SMO). SMO 

imitates the behaviour of two magnets close to each other: pushing toward or pulling away from each other. This push-

pull mechanism is then adopted to become a novel search in SMO. SMO is set up as a swarm of magnets that move 

autonomously. In the early iteration, the pull strategy is dominant. Meanwhile, it declines during the iteration and is 

replaced by a push strategy. The determination between these two strategies is calculated stochastically. SMO consists 

of three sequential phases in every iteration where the corresponding magnet and its reference run a push or pull search 

in each phase. The reference used in each phase is the global best magnet, a randomly selected magnet, and a randomly 

generated magnet. This paper evaluates SMO through simulation to find the optimal solution for 23 functions. The 

performance of SMO is compared with five latest metaheuristics: mixed leader-based optimizer (MLBO), guided 

pelican algorithm (GPA), zebra optimization algorithm (ZOA), coati optimization algorithm (COA), and clouded 

leopard optimizer (CLO). The result shows that SMO is better than MLBO, GPA, ZOA, COA, and CLO in 

consecutively 22, 15, 11, 13, and 14 functions. The superiority of SMO, especially, is in solving high dimension 

functions. Meanwhile, in the fixed-dimension multimodal functions, SMO is still superior to MLBO but less superior 

to GPA, ZOA, COA, and CLO. 
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1. Introduction 

Metaheuristics is a well-known stochastic method 

for solving various optimization issues. Its popularity 

is a result of its advantage in locating viable solutions 

to various optimization problems by utilizing possible 

computation resources due to its stochastic approach 

but at the expense of a guarantee of locating the 

genuine optimality [1]. In every optimization issue, 

multiple potential solutions must be found [2]; hence, 

tracing all these potential solutions requires an 

exorbitant number of computational resources, 

making the problem nearly challenging to solve. In 

addition, metaheuristic is versatile enough to be 

implemented to handle different types of optimization 

problems without excessive effort on modification 

since it abstracts the problem detail [3] by focusing on 

the objectives, decision variables, and constraints. 

Various new metaheuristics have been proposed in 

recent years with their distinct mechanism or strategy. 

Most of them are swarm-based metaheuristics. Many 

of these swarm-based metaheuristics imitate animal 

behavior during hunting or foraging, such as the 

African vultures optimization algorithm (AVOA) [4], 

golden jackal optimizer (GJO) [5], Komodo mlipir 

algorithm (KMA) [6], pelican optimization algorithm 

(POA) [7], guided pelican algorithm (GPA) [8], zebra 

optimization algorithm (ZOA) [9], coati optimization 

algorithm (COA) [10], clouded leopard optimizer 

(CLO) [11], northern goshawk optimizer (NGO) [12], 

modified honey badger algorithm (MHBA) [13], 

fennec fox optimizer (FFA) [14], sparrow search 

algorithm (SSA) [15], osprey optimization algorithm 

(OOA) [2], reptile search algorithm (RSA) [16], 

marine predator algorithm (MPA) [17], Siberian tiger 

optimizer (STO) [3], and many others. Some 

metaheuristics, such as coronavirus herd immunity 

optimizer (CHIO) [18] and coronavirus optimization 

algorithm (COVIDOA) [19], are inspired by the 

mechanism of coronavirus. Some metaheuristics 

imitate the mechanism of leaders or influential 



Received:  April 29, 2023.     Revised: May 21, 2023.                                                                                                      265 

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023           DOI: 10.22266/ijies2023.0831.22 

 

members within a population and their followers. For 

example, multi-leader optimizer (MLO) [20], mixed 

leader-based optimizer (MLBO) [21], three influential 

member-based optimizers (TIMBO) [22], and 

randomly selected leader-based optimizer (RSLBO) 

[23], among others. Some metaheuristics, such as the 

total interaction algorithm (TIA) [24], the multiple 

interaction optimizer (MIO) [25], the golden search 

optimizer (GSO) [26], and the average and 

subtraction-based optimizer (ASBO) [27], do not 

employ metaphor in their names. 

Almost all metaheuristics perform the movement 

only by the corresponding solution. Meanwhile, the 

reference remains static. In many metaheuristics, the 

direction of this movement is unconditional because 

the corresponding solution always moves toward the 

reference. Meanwhile, in many latest metaheuristics, 

the direction of this guided search is conditional. The 

corresponding solution moves toward the reference 

only if the reference is better than the corresponding 

solution. Otherwise, the corresponding solution 

moves away from this reference. 

Ironically, moving toward a better solution or 

avoiding a worse solution never guarantees 

improvement. Although the probability of 

improvement is higher than before, this movement 

may push the corresponding solution toward the 

optimal local solution. Based on this circumstance, it 

is wiser that both directions are traced. Unfortunately, 

the metaheuristic that searches in both directions is 

hard to find. Moreover, utilizing the reference to 

perform a search may improve the searching 

performance. 

Based on this gap and opportunity, this work aims 

to introduce a new swarm-based metaheuristic called 

swarm-magnetic optimizer (SMO). Due to its name, 

SMO adopts the interaction of two magnets that are 

close to each other, which is the push-pull mechanism. 

This mechanism is then transformed into a different 

search in SMO where two types of interaction exist 

between the corresponding solution and its reference. 

These two magnets may get closer or move away from 

each other.  

The novelty of this work is mainly on adapting the 

magnet's behavior, which is pushing and pulling 

movement, to become a new swarm-based 

metaheuristic. Meanwhile, the contribution of this 

work is as follows. 

 

• This work presents the central concept and the 

formalization of the swarm magnetic optimizer 

(SMO). 

• The 23 functions have been employed as a 

problem during the performance evaluation of 

SMO. 

• The comparative analysis regarding the 

performance of SMO is conducted by competing 

for SMO with five latest metaheuristics. 

• The investigation of the performance of SMO 

based on the evaluation result is conducted to 

find the strong and weak points of this proposed 

metaheuristic.  

 

The remainder of this paper is formulated as 

follows. In section two, the mechanism of swarm-

based metaheuristics is reviewed, including some 

latest metaheuristics, in the context of the interaction 

between the corresponding member and its reference. 

The references and the number of strategies in the 

guided search implemented in these metaheuristics 

are also reviewed. A detailed description of SMO is 

presented in section three. The description includes 

the magnet's behavior, its integration into the SMO 

concept, the pseudocode presentation of the algorithm, 

and its mathematical model of processes. In section 

four, we present the evaluation of SMO's performance 

in solving the 23 functions, its competition with other 

optimization methods, and the sensitivity analysis. 

The in-depth analysis regarding the result and 

findings, the drawback to the theory, limitations, and 

the computational complexity of SMO are discussed 

in section five. After all, the conclusion and proposal 

for future development are summarized in section six. 

2. Related works 

Swarm intelligence has emerged as a fundamental 

platform for developing new metaheuristics in recent 

years. Swarm-based metaheuristics are typically 

population-based, with a set of solutions constituting 

the population. Each solution operates as an 

autonomous agent, working to enhance its quality. 

Swarm-based metaheuristics, which rely on a 

population of solutions acting as autonomous agents, 

exhibit more intense interactions among agents than 

evolutionary-based metaheuristics like genetic 

algorithms (GA), resulting in better performance. 

Many studies that proposed new swarm-based 

metaheuristic used GA as their benchmark to prove 

that their proposed metaheuristic is better than GA, 

such as in KMA [6], MLBO [21], and ZOA [9]. 

The guided search is the central component of 

swarm-based metaheuristics. In this search, a 

member's movement is determined by its interaction 

with a reference solution. The primary goal of this 

search is to improve the current solution. The guided 

search has three common movements: first, the 

corresponding solution moves towards the reference; 

second, the corresponding solution avoids the 

reference; third, the reference avoids the  
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Table 1. Comparison among latest metaheuristics 

No Metaheuristic Guided Search 

1 MLBO [21] Based on the quality comparison, the corresponding member moves toward or avoids the 

mixture of the best and randomized members. 

2 GPA [8] The corresponding member moves toward the global best member if the latter is better than 

the corresponding member. Otherwise, the corresponding member avoids the global best 

member. 

3 ZOA [9] First, the corresponding member moves toward the best member. Second, the corresponding 

member moves toward a randomly selected member. 

4 COA [10] First, the corresponding member moves toward the best member. Second, the corresponding 

member moves toward or avoids a randomized member within the search space based on the 

quality comparison. 

5 CLO [11] Based on the quality comparison, the corresponding member moves toward or avoids a 

randomly selected member. As distinction with RSLBO [23] and NGO [12], CLO performs 

neighbourhood search with non-linear space reduction during the iteration and it begins with 

wide space. 

6 RSLBO [23] Based on the quality comparison, the corresponding member moves toward or avoids a 

randomly selected member. As distinction with CLO [11] and NGO [12], RSLBO does not 

deploys any neighbourhood search during the iteration. 

7 TIA [24] Based on the quality comparison, the corresponding member moves toward or avoids all other 

members based on the quality comparison between the corresponding member and its partner. 

8 MIO [25] The corresponding member moves toward or avoids some randomly selected members based 

on the quality comparison. 

9 GSO [26] The corresponding member moves toward the mixture of the global best member and the local 

best member. 

10 NGO [12] Based on the quality comparison, the corresponding member moves toward or avoids a 

randomly selected member. As distinction with CLO [11] and RSLBO [12], NGO performs 

neighbourhood search with linear space reduction during the iteration and it begins with narrow 

space. 

11 OOA [2] The corresponding member moves toward a randomly selected better member or global best 

member. 

12 MPA [17] The corresponding member moves towards the local best member, while the local best member 

avoids it. Additionally, the corresponding member can move toward the gap between two 

randomly selected members. The decision is determined based on the phase during the 

iteration. 

13 MHBA [13] The global best member avoids the corresponding member. 

14 FFA [14] Based on the quality comparison, the corresponding member moves toward or avoids a 

randomly selected member. 

15 this work Corresponding members and references move toward each other, or corresponding members 

and references avoid each other. 

 

corresponding solution. The first movement is 

employed when the reference solution is either the 

best or a randomly selected solution, but its quality is 

superior to that of the corresponding solution. The 

second movement is performed when the reference is 

a random solution, and its quality is worse than the 

corresponding solution. The third movement is 

performed when the reference is the best solution. The 

third movement is designed to improve the quality of 

the best solution by avoiding a worse solution. These 

three movements are illustrated in Fig. 1. Fig. 1 (a), 

Fig. 1 (b), and Fig. 1 (c) represent the first, second, 

and third movements consecutively. 

Many swarm-based metaheuristics have adopted 

these three movements in various ways. Table 1 

presents the mechanism in the guided search 

performed in several latest metaheuristics. The 

neighborhood search during iteration is reviewed for 

metaheuristics that performs same guided search as in 

CLO [11], RSLBO [23], and NGO [12]. 

Table 1 shows that the corresponding member 

performs the movement in almost all metaheuristics 

while the reference remains static. Meanwhile, in a 

few metaheuristics, the reference performs movement 

too. Table 1 also indicates several options in choosing 

the reference, whether it is a global best member, a 

local best member, a randomly selected member, a 

randomized member, a randomly selected better 

member, or a combination.  

In some metaheuristics, the quality comparison is 

implemented to increase the probability of 

improvement by moving toward a better solution or 

avoiding a worse one. Meanwhile, as stated  
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(a) 

 
(b) 

 
(c) 

Figure. 1 Common guided search in swarm-based 

metaheuristic 

 

previously, this movement does not guarantee 

improvement; in particular, it leads to local optimal 

entrapment.  

Based on this circumstance, several spaces exist 

for proposing a new swarm-based metaheuristic, 

which motivates this work. First, a new approach can 

be chosen by activating the reference so that both the 

corresponding member and its reference perform 

searching. Second, in a particular condition, moving 

toward a worse solution or avoiding a better solution 

is needed to avoid the local optimal entrapment. 

3. Model 

The central concept of the proposed SMO is based 

on the behavior of two magnets, especially the push 

and pull behavior. When two magnets with different 

poles are close, these two magnets will push toward 

each other. On the other side, when two magnets with 

the same pole are close, these two magnets will pull 

away from each other. This behavior is adopted in the 

proposed SMO. 

As a swarm-based metaheuristic, the system can 

be perceived as a collection or swarm of magnets. 

Each magnet represents each solution. The interaction  

 

 
(a) 

 
(b) 

Figure. 2 Push and pull behaviour 

 

between a magnet and its reference guides the 

former's movement within the search space. During 

each interaction, two movements occur, one for the 

corresponding magnet and another for the reference. 

This movement can be pushed toward or pulled away 

from each other. This process is visualized using Fig. 

2, where the push behavior is presented in Fig. 2 (a) 

while the pulling behavior is presented in Fig. 2 (b). 

Each movement generates a candidate. It means there 

are two candidates in every interaction. Then, the best 

candidate between these two candidates is selected to 

compare with the corresponding magnet. This final 

candidate replaces the current corresponding magnet 

only if it can improve the corresponding magnet. 

After a magnet moves to a new location, the global 

best magnet will be updated. This corresponding 

magnet replaces the current value of the global best 

magnet only if the improvement occurs. 

There are three phases performed sequentially by 

each magnet in every iteration. Interaction is 

performed in every phase. The corresponding magnet 

interacts with the global best magnet in the first phase. 

In the second phase, the corresponding magnet 

interacts with a randomly selected magnet among the 

swarm of magnets. In the third phase, the 

corresponding magnet interacts with a randomized 

magnet within the search space. 

The iteration stochastically determines and 

controls the decision between push and pull. During 

early iterations, the magnet prefers pulling away 

rather than pushing towards, but this preference 

decreases as the iteration increases. In the late 

iteration, the corresponding magnet prefers pushing  
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Figure. 3 Probability of push and pull during iteration 

 

c11 first candidate of the first phase 

c12 second candidate of the first phase 

c21 first candidate of the second phase 

c22 second candidate of the second phase 

c31 first candidate of the third phase 

c32 second candidate of the third phase 

cb best candidate 

f objective function 

m magnet 

M collection of magnets 

mb global best magnet 

mt targeted magnet 

ms selected magnet 

ml the lower boundary of the magnet 

mu the upper boundary of the magnet 

r1, r3 floating point random number between 0 

and 1 

r2 integer random number between 1 and 2 

t iteration 

tm maximum iteration 

th threshold 

 

towards rather than pulling away. The probability of 

push and pull during the iteration is visualized using 

Fig. 3. The pushing behavior represents 

intensification, while the pulling behavior represents 

diversification. Below is the annotation used in the 

formalization of the model. The formalization of the 

proposed SMO is presented in Algorithm 1. 

Meanwhile, Eq. (1) to Eq. (12) are used to explain 

each process. 

As a metaheuristic, SMO consists of two steps. 

The first step is initialization, presented in lines 2 to 6 

in algorithm 1. The second step is iteration which is 

presented in lines 7 to 25 in algorithm 25. In the 

initialization, each magnet is distributed uniformly 

within the search space as presented in Eq. (1). Then, 

the global best magnet is updated by using Eq. (2), 

where the objective score between the corresponding 

magnet and the global best magnet is considered 

during this evaluation for the update. 

 

𝑚 = 𝑈(𝑚𝑙 ,𝑚𝑢)    (1) 

algorithm 1: swarm magnetic optimizer 

1 begin 

2   for all m in M   

3     distribute m uniformly using Eq. (1)   

5     update mb using Eq. (2) 

6   end for 

7   for t=1: tm 

8     define th using Eq. (3) 

9     define mt using Eq. (1) 

10     for all m in M 

11       calculate c11, c12 using Eq. (4), Eq. (5) 

12       find cb using Eq. (6) 

13       update m using Eq. (7) 

14       update mb using Eq. (2) 

15       define ms using Eq. (8) 

16       calculate c21, c22 using Eq. (9), Eq. (10) 

17       find cb using Eq. (6) 

18       update m using Eq. (7) 

19       update mb using Eq. (2) 

20 calculate c31, c32 using Eq. (11), Eq. (12) 

21       find cb using Eq. (6) 

22       update m using Eq. (7) 

23       update mb using Eq. (2) 

24     end for 

25   end for 

26 end 

27 output: mb 

 

𝑚𝑏′ = {
𝑚, 𝑓(𝑚) < 𝑓(𝑚𝑏)

𝑚𝑏 , 𝑒𝑙𝑠𝑒
   (2) 

 

There are two processes determined at the 

beginning of every iteration. The first process 

calculates the threshold, which is formalized using Eq. 

(3). The second process determines the targeted 

magnet used for the reference in the third phase. 

 

𝑡ℎ =
𝑡

𝑡𝑚
    (3) 

 

The first phase is presented in lines 11 to 14 in 

Algorithm 1. It is shown that the global best magnet 

is used for reference in this first phase. In the first 

phase, two candidates are generated using Eq. (4) and 

(5), respectively. Eq. (6) selects the best candidate, 

and Eq. (7) determines whether the best candidate 

should replace the corresponding magnet's current 

value. Eq. (7) is also used in the second and third 

phases to decide whether the best candidate should 

replace the current value of the corresponding magnet. 

 

𝑐11 = {
𝑚 + 𝑟2. (𝑚𝑏 − 𝑟3.𝑚), 𝑟1 < 𝑡ℎ

𝑚 + 𝑟2. (𝑚 − 𝑟3.𝑚𝑏), 𝑒𝑙𝑠𝑒
  (4) 
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𝑐12 = {
𝑚𝑏 + 𝑟2. (𝑚 − 𝑟3.𝑚𝑏), 𝑟1 < 𝑡ℎ

𝑚𝑏 + 𝑟2. (𝑚𝑏 − 𝑟3.𝑚), 𝑒𝑙𝑠𝑒
  (5) 

 

𝑐𝑏 = {
𝑐∗1, 𝑓(𝑐∗1) < 𝑓(𝑐∗2)

𝑐∗2, 𝑒𝑙𝑠𝑒
   (6) 

 

𝑚′ = {
𝑐𝑏 , 𝑓(𝑐𝑏) < 𝑓(𝑚)

𝑚, 𝑒𝑙𝑠𝑒
   (7) 

 

The second phase is presented in lines 15 to 19 in 

Algorithm 1. In the beginning, a reference is randomly 

selected among the swarm of magnets, and this 

process is formalized using Eq. (8). In this second 

phase, the first candidate is determined by using Eq. 

(9). In contrast, the second candidate is determined by 

using Eq. (10). 

 

𝑚𝑠 = 𝑈(𝑀)    (8) 

 

𝑐21 = {
𝑚 + 𝑟2. (𝑚𝑠 − 𝑟3.𝑚), 𝑟1 < 𝑡ℎ

𝑚 + 𝑟2. (𝑚 − 𝑟3.𝑚𝑠), 𝑒𝑙𝑠𝑒
  (9) 

 

𝑐22 = {
𝑚𝑠 + 𝑟2. (𝑚 − 𝑟3.𝑚𝑠), 𝑟1 < 𝑡ℎ

𝑚𝑠 + 𝑟2. (𝑚𝑠 − 𝑟3.𝑚), 𝑒𝑙𝑠𝑒
   (10) 

 

The third phase is presented in lines 20 to 23 in 

Algorithm 1. In this third phase, the first candidate is 

generated using Eq. (11), while the second is 

generated using Eq. (12). 

 

𝑐31 = {
𝑚 + 𝑟2. (𝑚𝑡 − 𝑟3.𝑚), 𝑟1 < 𝑡ℎ

𝑚 + 𝑟2. (𝑚 − 𝑟3.𝑚𝑡), 𝑒𝑙𝑠𝑒
      (11) 

 

𝑐32 = {
𝑚𝑡 + 𝑟2. (𝑚 − 𝑟3.𝑚𝑡), 𝑟1 < 𝑡ℎ

𝑚𝑡 + 𝑟2. (𝑚𝑡 − 𝑟3.𝑚), 𝑒𝑙𝑠𝑒
      (12) 

4. Simulation and result 

In this section, the proposed SMO is evaluated 

through a performance competition with five other 

metaheuristics in the first part of the evaluation. The 

second part of the evaluation will be described 

separately. The second part is the evaluation of the 

hyperparameter. Due to their extensive coverage, the 

23 classic functions are chosen as the problems. The 

list of these 23 functions is presented in Table 2. 

In the first evaluation, there are five competitors: 

MLBO, GPA, ZOA, COA, and CLO. These five 

competitors are the latest ones. All these competitors 

deploy a strict acceptance approach because, in many 

previous works, strict acceptance has been proven 

better than non-strict acceptance. GPA is the only 

metaheuristic that generates multiple candidates in a 

single search. Meanwhile, the other metaheuristics, 

including SMO, generates a single candidate only. 

MLBO is the only competitor that performs single-

phase search only. 

Table 2 shows that these 23 functions can be split 

into three groups: high-dimension unimodal, high-

dimension multimodal, and fixed-dimension 

multimodal functions. The result is presented in Table 

3, Table 4, and Table 5, which represent the first, 

second, and third groups consecutively. In this test, 

the population size is five, and the maximum iteration 

is 20. 

Table 3 shows the superior performance of SMO 

among its competitors. SMO becomes the best 

performer in solving almost all high-dimension 

unimodal functions. All metaheuristics achieve the 

same result, the optimal global solution for solving 

Schwefel 2.22. Meanwhile, MLBO is the worst 

performer, and GPA is the second worst performer in 

solving five functions. Both SMO and ZOA perform 

equally in solving Sphere. The result achieved by 

SMO and ZOA is far better than the other 

metaheuristics. The vast performance gap between 

SMO and MLBO and GPA is also found in Schwefel 

1.2, Schwefel 2.21, Rosenbrock, Step, and Quartic. 

Table 4 shows that competition among these 

metaheuristics becomes tighter in solving the high-

dimension multimodal functions. SMO performs in 

the first rank in solving three functions (Rastrigin, 

Griewank, and Penalized), second rank in solving one 

function (Penalized 2), and fourth rank in solving two 

functions (Schwefel and Ackley). Table 4 also shows 

that the performance among metaheuristics in solving 

Schwefel is narrow, although the performance gap 

between the best and worst performers in other 

functions is wide. 

Table 5 shows that the competition among 

metaheuristics is tough in solving fixed-dimension 

multimodal functions. SMO performs best in only two 

functions (Six hump camel and Hartman 3). 

Meanwhile, SMO is in the second rank in two 

functions (Shekel Foxholes and Kowalik), third rank 

in one function (Goldstein-Price), fourth rank in two 

functions (Branin and Shekel 5), and fifth rank in 

three functions (Hartman 6, Shekel 7, and Shekel 10). 

Table 5 also shows that the performance gap among 

metaheuristics is narrow compared to the 

circumstance in high dimension function. The 

performance gap is tight in eight functions (Kowalik, 

Six Hump Camel, Branin, Hartman 3, Hartman 6, 

Shekel 5, Shekel 7, and Shekel 10). It means that 

SMO is still competitive in solving fixed-dimension 

functions, although it is not superior to high-

dimension functions. 

The result in Table 3 to Table 5 is summarized in 

Table 6. Table 6 presents SMO's superiority over its 

competitors based on the group of functions. The data 
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Table 2. List of 23 functions 

No Function Type Dim Space Target 

1 Sphere high dimension unimodal function 50 [-100, 100] 0 

2 Schwefel 2.22 high dimension unimodal function 50 [-100, 100] 0 

3 Schwefel 1.2 high dimension unimodal function 50 [-100, 100] 0 

4 Schwefel 2.21 high dimension unimodal function 50 [-100, 100] 0 

5 Rosenbrock high dimension unimodal function 50 [-30, 30] 0 

6 Step high dimension unimodal function 50 [-100, 100] 0 

7 Quartic high dimension unimodal function 50 [-1.28, 1.28] 0 

8 Schwefel high dimension multimodal function 50 [-500, 500] -20,945 

9 Ratsrigin high dimension multimodal function 50 [-5.12, 5.12] 0 

10 Ackley high dimension multimodal function 50 [-32, 32] 0 

11 Griewank high dimension multimodal function 50 [-600, 600] 0 

12 Penalized high dimension multimodal function 50 [-50, 50] 0 

13 Penalized 2 high dimension multimodal function 50 [-50, 50] 0 

14 Shekel Foxholes fixed dimension multimodal function 2 [-65, 65] 1 

15 Kowalik fixed dimension multimodal function 4 [-5, 5] 0.0003 

16 Six Hump Camel fixed dimension multimodal function 2 [-5, 5] -1.0316 

17 Branin fixed dimension multimodal function 2 [-5, 5] 0.398 

18 Goldstein-Price fixed dimension multimodal function 2 [-2, 2] 3 

19 Hartman 3 fixed dimension multimodal function 3 [1, 3] -3.86 

20 Hartman 6 fixed dimension multimodal function 6 [0, 1] -3.32 

21 Shekel 5 fixed dimension multimodal function 4 [0, 10] -10.153 

22 Shekel 7 fixed dimension multimodal function 4 [0, 10] -10.402 

23 Shekel 10 fixed dimension multimodal function 4 [0, 10] -10.536 

 
Table 3. Fitness score comparison in solving high dimension unimodal functions 

F Parameter MLBO [21] GPA [8] ZOA [9] COA [10] CLO [11] SMO 

1 mean 2.8645x104 1.1244x104 0.0008 3.2444 2.0701x101 0.0008 

standard dev 5.3100x103 2.6471x103 0.0012 2.4053 1.2466x101 0.0013 

mean rank 6 5 1 3 4 1 

2 mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

standard dev 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 1 1 1 1 1 1 

3 mean 6.8084x104 3.9778x104 1.6941x102 7.5127x103 1.9333x104 5.6140x101 

standard dev 2.8906x104 1.0676x104 3.2175x102 7.3670x103 1.0256x104 7.6023x101 

mean rank 6 5 2 3 4 1 

4 mean 5.0506x101 4.2358x101 0.0709 4.2816 9.7554 0.0838 

standard dev 5.0704 1.4808x101 0.0509 1.9818 7.5739 0.0372 

mean rank 6 5 1 3 4 2 

5 mean 2.4788x107 4.2962x106 4.8955x101 1.5018x102 7.3821x102 4.8920x101 

standard dev 8.4343x106 1.7169x106 0.0325 1.5383x102 6.7116x102 0.0439 

mean rank 6 5 2 3 4 1 

6 mean 2.7414x104 1.0514x104 1.0708x101 1.5564x101 3.4657x101 1.0438x101 

standard dev 4.0526x103 1.5871x103 0.5725 2.3770 1.8700x101 0.3540 

mean rank 6 5 2 3 4 1 

7 mean 2.4160x101 4.1759 0.0221 0.0879 0.0835 0.0133 

standard dev 1.4549x101 1.1952 0.0122 0.0400 0.0494 0.0093 

mean rank 6 5 2 4 3 1 

 

Table 4. Fitness score comparison in solving high-dimension multimodal functions 

F Parameter MLBO [21] GPA [8] ZOA [9] COA [10] CLO [11] SMO 

8 mean -3.5269x103 -5.1767x103 -2.8683x103 -4.7466x103 -4.4451x103 -4.4367x103 

standard dev 7.0070x102 7.9327x102 6.1864x102 5.6517x102 6.1889x102 4.8114x102 

mean rank 5 1 6 2 3 4 

9 mean 4.5401x102 4.1164x102 0.0079 4.1679 1.2851x102 0.0067 

standard dev 4.8060x101 3.6427x101 0.0211 4.2408 6.4398x101 0.0111 

mean rank 6 5 2 3 4 1 
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10 mean 1.7181x101 1.3832x101 0.0052 0.4640 1.8293 1.0999x101 

standard dev 0.5836 0.6989 0.0024 0.1892 0.6243 1.0264x101 

mean rank 6 5 1 2 3 4 

11 mean 2.5520x102 9.0778x101 0.0090 0.5662 1.0674 0.0086 

standard dev 4.5564x101 1.5608x101 0.0294 0.3236 0.3863 0.0319 

mean rank 6 5 2 3 4 1 

12 mean 2.0627x107 2.3164x105 1.0598 1.2221 1.4696 0.9404 

standard dev 1.5016x107 1.8363x105 0.1468 0.2260 0.3814 0.1213 

mean rank 6 5 2 3 4 1 

13 mean 6.8830x107 6.3041x106 3.1206 4.0046 6.1079 3.1340 

standard dev 4.0582x107 3.2578x106 0.0552 0.4259 2.8029 0.0603 

mean rank 6 5 1 3 4 2 

 
Table 5. Fitness score comparison in solving fixed dimension multimodal functions 

F Parameter MLBO [21] GPA [8] ZOA [9] COA [10] CLO [11] SMO 

14 mean 1.3264x101 5.6492 3.1506 5.2939 6.4448 4.3548 

standard dev 6.5580 3.9200 2.1696 3.2633 3.7604 2.7929 

mean rank 6 4 1 3 5 2 

15 mean 0.0366 0.0123 0.0034 0.0023 0.0048 0.0030 

standard dev 0.0299 0.0102 0.0052 0.0021 0.0047 0.0053 

mean rank 6 5 3 1 4 2 

16 mean -0.9025 -1.0203 -1.0291 -1.0303 -1.0305 -1.0306 

standard dev 0.1889 0.0116 0.0051 0.0019 0.0016 0.0020 

mean rank 6 5 4 3 2 1 

17 mean 0.5050 0.4043 0.4010 0.4020 0.4003 0.4026 

standard dev 0.1689 0.0050 0.0067 0.0012 0.0053 0.0090 

mean rank 6 5 2 3 1 4 

18 mean 2.5947x101 3.0670 3.1012 8.9158 1.1096x101 3.1460 

standard dev 3.7037x101 0.0572 0.2389 1.6070x101 1.9451x101 0.6249 

mean rank 6 1 2 4 5 3 

19 mean -0.0353 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

standard dev 0.0164 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 6 1 1 1 1 1 

20 mean -2.6473 -3.2120 -2.9871 -3.0724 -2.9959 -2.9425 

standard dev 0.4478 0.0928 0.1647 0.1664 0.1948 0.1616 

mean rank 6 1 4 2 3 5 

21 mean -2.0629 -5.4980 -2.9400 -4.3721 -4.5464 -3.3548 

standard dev 2.0741 2.8134 1.1973 1.8207 2.0702 1.9131 

mean rank 6 1 5 3 2 4 

22 mean -1.8598 -4.3249 -3.2309 -5.3018 -4.9378 -2.5638 

standard dev 0.7794 2.4282 1.4528 2.4630 2.0911 0.8129 

mean rank 6 3 4 1 2 5 

23 mean -2.2247 -5.7304 -3.9953 -3.9771 -4.2944 -3.3806 

standard dev 1.3760 2.6453 2.0663 1.8925 1.4361 1.7756 

mean rank 6 1 3 4 2 5 

 

 
Table 6. Group-based superiority of SMO 

Group Number of Functions Where SMO is 

Better 

MLBO 

[21] 

GPA 

[8] 

ZOA 

[9] 

COA 

[10] 

CLO 

[11] 

1 6 6 4 6 6 

2 6 5 4 4 4 

3 10 4 3 3 4 

Total 22 15 11 13 14 

 

represents the number of functions where SMO is 

better than its competitor. Table 6 strengthens the 

circumstance that SMO is superior in solving high-

dimension functions, whether unimodal or 

multimodal functions. Meanwhile, SMO is less 

superior in fixed dimension functions, except 

compared to MLBO. SMO is superior to MLBO by 

achieving better performance in ten out of ten 

functions. 
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Table 7. Relation between maximum iteration and the 

average fitness score 

F Average Fitness Score Significantly 

Improved? tm = 40 tm = 80 

1 0.0000 0.0000 no 

2 0.0000 0.0000 no 

3 0.0017 0.0000 yes 

4 0.0000 0.0000 no 

5 4.8897x101 4.8928x101 no 

6 1.0317x101 1.0202x101 no 

7 0.0071 0.0019 yes 

8 -4.7562x103 -5.1448x103 no 

9 0.0000 0.0000 yes 

10 1.6281x101 8.6025 no 

11 0.0040 0.0000 yes 

12 0.9682 1.0151 no 

13 3.0189 3.0151 no 

14 2.1839 1.9064 no 

15 0.0043 0.0017 yes 

16 -1.0314 -1.0314 no 

17 0.3998 0.3981 no 

18 3.0284 3.0000 no 

19 -0.0495 -0.0495 no 

20 -3.0953 -3.1052 no 

21 -4.5351 -4.4114 no 

22 -3.9071 -5.2746 no 

23 -4.5654 -5.0012 no 

 

 

Table 8. Relation between swam size and the average 

fitness score 

F Average Fitness Score Significantly 

Improved? n(M) = 10 n(M) = 20 

1 0.0005 0.0011 no 

2 0.0000 0.0000 no 

3 1.1868x102 9.8309x101 no 

4 0.0735 0.0621 no 

5 4.9231x101 4.8869x101 no 

6 9.3452 8.7973 no 

7 0.0101 0.0064 no 

8 -4.6261x103 -5.0398x103 no 

9 0.0091 0.0030 yes 

10 1.4368x101 1.3369x101 no 

11 0.0115 0.0027 yes 

12 0.8240 0.6979 no 

13 3.1349 3.0632 no 

14 1.9687 1.1863 no 

15 0.0030 0.0038 no 

16 -1.0314 -1.0316 no 

17 0.3981 0.3981 no 

18 3.0000 3.0000 no 

19 -0.0495 -0.0495 no 

20 -3.0651 -3.1408 no 

21 -4.2685 -5.8953 no 

22 -4.1789 -5.9434 no 

23 -4.2616 -5.6032 no 

 

Meanwhile, in the third group, SMO is better than 

GPA and CLO in four functions and better than ZOA 

and COA in three functions. Overall, SMO is better 

than MLBO, GPA, ZOA, COA, and CLO in 

consecutively, 22, 15, 11, 13, and 14 functions. 

Although SMO is better than ZOA in 11 functions, it 

is draw in 3. It means that ZOA is better than SMO in 

9 functions.  

The second evaluation is regarding the 

hyperparameter test. As the SMO has no adjusted 

parameters, the hyperparameter test is performed to 

evaluate the influence of the maximum iteration and 

swarm size. In this evaluation, the 23 functions are 

used as problems. In the test to evaluate the relation 

between maximum iteration and the performance of 

SMO, there are two values of maximum iteration: 40 

and 80. The result is presented in Table 7. Meanwhile, 

in the test to evaluate the relation between swarm size 

and the performance of SMO, there are two values of 

swarm size: 10 and 20. The result is presented in 

Table 8. 

Table 7 indicates that the increase in maximum 

iteration improves the performance of SMO in five 

functions. Two functions are high-dimension 

unimodal, two are high-dimension multimodal, and 

one is fixed-dimension multimodal. Meanwhile, in 

high maximum iteration, SMO can find the global 

optimal of eight functions (Sphere, Schwefel 2.22, 

Schwefel 1.2, Schwefel 2.21, Rastrigin, Griewank, 

Branin, and Goldstein Price). 

Table 8 shows that the increase in swarm size 

improves the performance of SMO significantly only 

in two functions. These two functions are Rastrigin 

and Griewank. Meanwhile, in the high swarm size 

circumstance, there are four functions with their 

global optimal: Schwefel 2.22, Six Hump Camel, 

Branin, and Goldstein Price. 

5. Discussion 

The in-depth analysis of SMO is conducted based 

on the intensification and diversification capabilities 

of SMO. The superior performance of SMO in 

solving high-dimensional functions with a single 

peak attest to its total intensification capacity. On the 

other hand, the superiority of SMO in solving high-

dimension multimodal functions proves that SMO 

also has superior diversification capabilities. 

Meanwhile, the fierce competition in solving fixed-

dimension multimodal functions shows that the 

competition in proposing a new metaheuristic 

becomes more difficult. 

The superiority of SMO to these five competitors 

shows that implementing both getting closer or 

moving away from the better reference can be an 
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alternative for improvement rather than just getting 

closer to the better reference or avoiding worse 

reference as implemented in these all competitors. 

Pulling away gives two advantages. First, it allows 

tracing other search spaces in case getting closer to 

the reference means getting closer to the local optimal 

entrapment. Second, it also forces the optimal global 

solution to move on and not just sit as a reference. 

The corresponding solution performs the movement 

or search in these five competitors while the reference 

remains static. 

The competitiveness of ZOA can be traced to the 

neighbourhood search implemented in ZOA. In the 

second phase, the zebra's escaping strategy inspires 

the search when a predator attack [9]. In this 

neighbourhood search, the local search space is 

narrow and reduced linearly during the iteration. 

Meanwhile, the SMO does not perform any 

neighbourhood search because all movements 

performed in SMO are guided searches. This 

circumstance can be seen as an opportunity to 

improve the current form of SMO by implementing 

neighbourhood search. In ZOA, this neighbourhood 

search is not mandatory but determined stochastically 

[9]. In the second phase of ZOA, there are two 

choices in the second phase: neighbourhood search 

and guided search toward a randomized solution [9]. 

The neighbourhood search is also performed in 

COA [10], CLO [11], and GPA [8]. The local search 

space is also reduced during the iteration of these 

three metaheuristics. It starts with a vast space. This 

circumstance indicates that the short jump is still 

needed besides the long jump. The long jump can 

make the agent traces the search space faster. 

However, the short jump seems necessary in tackling 

the problem where the optimal global solution lies in 

the narrow area. The long jump may throw the agent 

away from this narrow area. 

The almost absolute superiority of SMO to 

MLBO indicates that multiple searches performed 

explicitly in multiple phases in the iteration stage 

become the critical factor in creating a significant 

performance gap between SMO and MLBO. 

Although MLBO uses not only a single reference, 

MLBO performs only one search because it mixes the 

best solution and randomized solution to become a 

single reference [21]. 

The complexity analysis of SMO can be divided 

into two stages. The complexity can be presented as 

O(n(X)d) in the initialization stage. This 

representation means that the computational 

complexity of SMO in the initialization stage is 

proportional to the swarm size and the dimension. 

Meanwhile, in the iteration stage, the complexity can 

be presented as O(6n(X)d.tm). It means that the 

complexity is proportional to the maximum iteration 

besides the swarm size and the dimension. 

Meanwhile, six movements are distributed into three 

phases, and each phase performs two movements. 

6. Conclusion 

The swarm magnetic optimizer (SMO), a new 

swarm-based metaheuristic that adopts the magnet's 

behavior, has been presented in this work. SMO's 

performance has also been evaluated through 

simulation that challenges SMO to find the optimal 

solution for the 23 functions. Moreover, SMO has 

competed with five latest metaheuristics. The result 

shows that SMO performs well by outperforming 

MLBO, GPA, ZOA, COA, and CLO consecutively in 

the 22, 15, 11, 13, and 14 functions. SMO is superior 

to these five metaheuristics in solving high-dimension 

functions. Meanwhile, although the performance gap 

is narrow, SMO is less superior to GPA, ZOA, COA, 

and CLO in solving fixed-dimension multimodal 

functions. 

There are several opportunities for future work 

based on the development of SMO. SMO can be 

modified to solve multi-objective problems or 

combinatorial problems. More studies can also be 

conducted to implement SMO in solving various real-

world optimization problems in various sectors, 

whether engineering or non-engineering problems. 

The hybridization of SMO with other metaheuristics 

is also challenging work. Specifically, the 

hybridization of SMO and ZOA as its most difficult 

competitor to beat is interesting.  
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