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Abstract: In recent periods, cloud-computing environments are widely utilizing scientific workflows for executing 

large-scale applications. The workflow scheduling with the scientific standard for optimizing quality of service (QoS) 

parameters is a hard task. In the existing research studies, several metaheuristics optimization algorithms are employed 

for satisfying the QoS parameters such as resource utilization, cost, and makespan. Still, the existing metaheuristics 

optimization algorithms are insignificant for maintaining the balance between exploitation and exploration in a search 

space, because the algorithms are easily trapped in local optima. For addressing the above-stated issues, a data aware 

based adaptive gravitational search algorithm (DA-AGSA) technique is implemented to minimize the cost and 

makespan, and to schedule workflows in the cloud-computing platform. In the conventional GSA technique, a random 

coefficient is replaced by an adaptive weight function for improving convergence rate, and further, the weight function 

is multiplied with an acceleration term for facilitating quicker convergence. In this article, the performance of the DA-

AGSA technique is validated by utilizing workflow sim for scheduling multiple workflows. An extensive experimental 

investigation showed that the DA-AGSA technique almost reduced 20% of the cost and 15% of the makespan 

compared to the conventional optimization algorithms on the Montage, CyberShake, and Epigenomics workflows with 

1000 tasks. In addition, the DA-AGSA technique achieved a reliability of 0.99, 0.98, and 0.98 on the Montage, 

CyberShake and Epigenomics workflows with 1000 tasks. 

Keywords: Cloud computing, Gravitational search algorithm, Data aware scheduling, Machine learning, Workflow 

scheduling. 

 

 

1. Introduction 

In recent decades, cloud computing has delivered 

varied services to users through the internet, which is 

used for implementing dissimilar commercial 

applications [1]. However, computing includes 

numerous techniques such as grid, parallel, and 

distributed computing [2-3]. Generally, cloud 

computing involves multiple technologies that create 

a new way of handling information technology (IT). 

Cloud computing offers highly available and 

elastically scalable resources as subscription-based 

services like utility computing to execute scientific 

workflows [4-5]. The primary aim of the task 

scheduling methods is to increase the acceleration of 

the execution, where it allocates the resources to the 

workloads that have different execution times [6]. 

The proper allocation of resources effectively 

balances the workload and is further classified into 

dynamic and static methodologies [7]. Cloud 

workload scheduling provides an effective mapping 

between the resources and tasks, whereas a 

significant scheduling algorithm maintains an 

effective trade-off between resource utilization and 

user requirements [8]. 

Usually, cloud task scheduling is a 

nondeterministic polynomial (NP) hard optimization 

problem; therefore, several optimization algorithms 

are developed for addressing the aforementioned 

problem [9-10]. In most cases, the traditional 

metaheuristics-based optimization algorithms result 

in a higher computational time [11]. In addition, the 

optimal solution is obtained only by exploring a 

larger search region; in this case, the workflow 

should be well managed and defined [12-13]. In order 
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to overcome the aforementioned problems, a novel 

DA-AGSA technique is proposed in this manuscript 

for effective workflow scheduling in cloud 

environments. The proposed DA-AGSA technique 

improves data aware scheduling by determining the 

best resource or node for scheduling a task and best 

order of tasks to be executed. In this study, the 

effectiveness of the proposed DA-AGSA technique is 

analysed using reliability, cost and makespan on 

Montage, CyberShake and Epigenomics workflows 

with 1000 tasks. The experimental results represent 

that the proposed DA-AGSA technique has 

significantly reduced cost and makespan in workflow 

scheduling when compared to the existing 

optimization algorithms with better reliability.  

The research papers related to “workflow 

scheduling in the cloud computing platform” are 

briefly surveyed in section 2. The methodology 

explanation and the simulation outcomes of the DA-

AGSA technique are given in sections 3, and 4. The 

conclusion of the study is mentioned in section 5. 

2. Related works 

Qin [14] introduced a hybrid collaborative multi-

objective fruit-fly optimization algorithm 

(HCMFOA) for optimizing the cost and running time 

in cloud environments. The introduced HCMFOA 

utilized a reference point-based clustering technique 

for dividing a single swarm into multi-sub-swarms. 

In this study, the hybridization includes two rules 

namely assignments and non-linear weight vectors, 

which were utilized for initializing the fruit-flies-

location in the search space. Additionally, three 

neighborhood operations were carried out in the 

collaborative-smell-based-foraging and the crossover 

operator was utilized for performing exploitations in 

the local regions. The extensive experimental 

outcomes demonstrated that the introduced 

HCMFOA achieved better performance related to the 

prior state-of-the-art models. In addition to this, 

Aggarwal [15] introduced an improved FOA for 

minimizing the cost and makespan in the cloud 

platform to schedule multiple workflows. As 

depicted in the resulting section, the developed 

improved FOA outperformed the existing 

optimization algorithms in terms of cost and 

makespan. However, the metaheuristic-based 

optimization algorithms like HCMFOA and 

improved FOA consist of concerns like higher 

dimensional non-linear optimization and being 

trapped into a local optimum at the later evolutional 

phases.  

Loheswaran [16] implemented an upgraded FOA 

to optimize the resource management and task 

scheduling processes. The implemented upgraded 

FOA was related to the existing optimization 

algorithms and the obtained experimental outcomes 

show that the implemented algorithm was better than 

the existing optimization algorithms in terms of 

resource utilization and task allocation. Additionally, 

Fu [17] developed a multi-objective discrete FOA for 

workflow scheduling in the cloud environment. In 

this study, the multi-objective discrete FOA consists 

of 5-search approaches genetic search, vision search, 

smell search, solution representation and heuristic 

decoding rules. In the resulting section, the 

experimental investigation was conducted on 25 

instances. The obtained experimental outcome 

showed that the presented multi-objective discrete 

FOA performs more effectively on the 25 instances 

than its peers. The scheduling process was complex 

in the conventional FOA, so, a novel hybrid machine-

learning model can be included with the presented 

system to further enhance scheduling mechanism. 

Aziza and Krichen [18] used genetic algorithms 

based on heterogeneous earliest finish times for 

workflow scheduling in the cloud platform. The 

experiments conducted on the real-time workflow 

databases demonstrated that the developed algorithm 

achieved maximum performance than the other 

optimization strategies. The presented strategy has 

not focused on the power consumption of data centers, 

which needs to be concentrated while planning 

workflows in the cloud environments. Abualigah and 

Diabat [19] implemented a hybrid Ant-Lion 

optimization (ALO) algorithm to solve task 

scheduling issues in the cloud platforms. In this study, 

the hybrid ALO superiorly increases resource 

utilization and reduces the makespan. Here, the ALO 

comprises an elite-based differential evolution 

methodology for improving exploitation and 

exploration ability. Additionally, Saeedi [20] 

implemented an improved multi-objective Particle 

swarm optimization (PSO) algorithm in a cloud 

environment for minimizing energy consumption, 

cost and makespan, and maximizing reliability. In 

this application, the conventional ALO and PSO 

algorithms were trapped in local optima. 

Konjaang [21] has presented a multi-objective 

workflow optimization strategy (MOWOS) in cloud 

computing platform. The efficacy of the developed 

MOWOS was validated by means of execution cost. 

In addition to this, Zeedan [22] presented a hybrid 

optimization algorithm named enhanced binary 

artificial bee colony with pareto front (EBABC-PF) 

for effective workflow scheduling in the cloud 

environment. However, the higher execution cost and 

processing cost were the major concerns in the  
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Figure. 1 Graphical presentation of sample workflow  

 

existing MOWOS and EBABC-PF models. To 

address the aforementioned issues, a novel DA-

AGSA technique is implemented for workflow 

scheduling in cloud computing platforms to reduce 

the cost and makespan parameters. 

3. Methodology 

In this research manuscript, the performance of 

the proposed DA-AGSA technique is tested on the 

Montage, CyberShake and Epigenomics workflows. 

The CyberShake workflow is utilized in earthquake 

science for epitomizing earthquake hazards by 

creating synthetic seismograms. Further, the 

Montage workflow is one of the astronomical 

applications, which is generated by the National 

Aeronautics and Space Administration/Infrared 

Processing and Analysis Centre. In addition, the 

Epigenomics workflows are created by the Pegasus 

team and USC Epigenomics center to automate 

several operations in genome sequence processing. 

3.1 Problem definition 

In cloud computing environments, large scale 

applications are deployed in the form of 

workflows  𝑊 = (𝑇, 𝐸) . Pictorially, the workflows 

are stated utilizing a Directed Acyclic-Graph, and the 

term 𝑇 = {𝑇1, 𝑇2, … 𝑇𝑛}  is represented as tasks. 

Generally, the applications are categorized into 

numerous independent and dependent subtasks. Fig. 

1 represents a sample workflow. With reference to 

Fig. 1, the whole application is partitioned into 7 sub-

tasks like 𝑇1, 𝑇2, … . 𝑇7 , and it falls between 5 

dissimilar levels (levels 0 to 4). In level 2, the tasks 

𝑇3  and 𝑇4  are independent because these two tasks 

are at similar levels. So, the tasks 𝑇3  and 𝑇4  are 

executed subsequently on dissimilar resources [23-

24].  

Once the execution of a task 𝑇2 is completed at 

level 1, the tasks 𝑇3  and 𝑇4  are executed with the 

output data of the task  𝑇2 . Similarly, the task 𝑇2 

execution depends on the task 𝑇1. In this scenario, the 

IaaS cloud provider is considered for resource 

heterogeneity, where various Virtual Machines 

(VMs) are available with dissimilar configurations. 

The 2-dimensional bid is achieved by combining the 

cloud marketplace with the cloud service provider, 

and it is defined in Eq. (1). 

 

𝐵𝑉𝑀𝑖 = (𝑃𝑉𝑀𝑖, 𝐶𝑉𝑀𝑖)                                   (1) 

 

Where, 𝐶𝑉𝑀𝑖 represents execution cost and 𝑃𝑉𝑀𝑖 

states the processing capacity of the VMs. On a 

resource  𝑉𝑀𝑙 , the execution time of a task is 

computed by utilizing Eq. (2). 

 

𝐸𝑇𝑗
𝑙 =

𝑆𝑇𝑗

(𝑃𝑉𝑀𝑙
×(1−𝑃𝑣𝑎𝑟𝑙

))
                              (2) 

 

Where, 𝐸𝑇𝑗
𝑙  represents execution time, 𝑇𝑗 =

{𝑇1, 𝑇2, 𝑇3, … 𝑇𝐽}∀{1,2,3, . . 𝐽}  indicates a task, 𝑆𝑇𝑗
 

represents the size of a task which is in bytes and, and 

𝑃𝑣𝑎𝑟𝑙
 states processing capacity of VM represented in 

Million Instructions per Second (MIPS). Usually, the 

workflow involves task dependency, the transfer time 

of data 𝐷𝑇𝑗𝑘 is computed using Eq. (3). 

 

𝐷𝑇𝑗𝑘 =
𝐷𝑜𝑢𝑡𝑇𝑗

𝑏𝑤
                                          (3) 

 

Where, 𝐷𝑜𝑢𝑡  represents generated data and the 

bandwidth between every VM is represented as 𝑏𝑤. 

Further, the data transferring rate between the 

scheduled tasks on a similar resource is zero. On a 

resource 𝑉𝑀𝑙, the total processing time 𝑃𝑇𝑗
𝑙 of every 

task 𝑇𝑗 is computed using Eq. (4). 

 

𝑃𝑇𝑗
𝑙 = 𝐸𝑇𝑗

𝑙 + (∑ 𝐷𝑇𝑗𝑘 × 𝑄𝑒
𝑙 )                        (4) 

 

Where, 𝑒 represents the number of edges inter-

connected with every task 𝑇𝑗, and 𝑄 = 0, if two tasks 

are scheduled on similar VMs, else one [25-27]. In 

this manuscript, the DA-AGSA technique is used to 

find the optimal schedule in the workflows: Montage, 

CyberShake and Epigenomics, for minimizing the 

total execution time and cost.  
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3.2 Workflow scheduling using DA-AGSA 

technique  

Most of the conventional metaheuristics-based 

optimization algorithms suffer from high-

dimensional non-linear optimization issues. 

The AGSA technique divides the population in an 

effective manner, where each population group 

determines dissimilar possible solutions in a run of 

the heuristic search.  

The optimization algorithm with data aware 

scheduling allows the user to minimize the end-to-

end workflow turn-around time successfully [28]. 

First, data aware scheduling is one of the effective 

techniques utilized in distributed computing systems 

for scheduling tasks based on the data location and 

data dependencies. The primary objective of the data 

aware scheduling is to reduce the communication 

costs and data movements between the nodes in a 

system by scheduling the tasks on the similar rack or 

node. The data aware scheduling significantly 

enhances the efficiency and performance of the 

system by decreasing the time needed to access data 

and network traffic. The optimization algorithm in 

data aware scheduling effectively makes decisions 

about where to schedule the tasks based on the data 

location and data dependencies, and also makes 

decisions about the order in which tasks should be 

executed. 

In the developed DA-AGSA technique, based on 

Newton’s gravity law, the particles are attracted to 

other particles with the usage of “Gravitational 

Force”, which is directly proportional to the mass 

produced and inversely proportional to the square of 

distance between the particles [29]. The 

“Gravitational Force” F is mathematically 

represented in Eq. (5) [30]. In the developed DA-

AGSA technique, the gravitational constant value 𝐺 

is decreased with age and it is computed utilizing Eq. 

(6) and Eq. (7). 

 

𝐹 = 𝐺
𝑀1𝑀2

𝑅2                                              (5) 

 

Where, 𝑀1𝑎𝑛𝑑 𝑀2 are represented as the mass of 

the 1st and 2nd particles, and 𝑅2  is stated as the 

distance between the two particles. 

 

𝐺(𝑡) = 𝐺(𝑡0) × (
𝑡0

𝑡
)𝛽 , 𝛽 < 1                          (6) 

 

𝐺(𝑡 + 1) = 𝐺(𝑡)𝑒𝑥𝑝 (−
𝛼𝑡

𝑇
)                            (7) 

 

In the DA-AGSA technique, each agent or mass 

is determined by its passive gravitational mass, 

inertial mass, active gravitational mass, and position. 

By considering the aspects of the aforementioned 

masses, newton’s law is updated, as mentioned in Eq. 

(8). 

 

𝐹𝑖𝑗 = 𝐺
𝑀𝑎𝑗×𝑀𝑝𝑖

𝑅2                                              (8) 

 

Where, 𝑎𝑖 =
𝐹𝑖𝑗

𝑀𝑖𝑖
 

 
By considering a network with 𝑁 masses (agents), 

the position of the 𝑖𝑡ℎ  agent is defined, and it is 

mathematically denoted in Eq. (9). In a particular 

time 𝑡, the force that acts on a mass 𝑖 from a mass 𝑗 

is determined using Eq. (10) and the Euclidean 

distance between two search agents 𝑖 and 𝑗  is 

computed by utilizing Eq. (11). 

 

𝑋𝑖 = (𝑥𝑖
1, … . , 𝑥𝑖

𝑑 , … . . 𝑥𝑖
𝑛), 𝑓𝑜𝑟 𝑖 = 1,2,3, … . , 𝑁 (9) 

 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖(𝑡)×𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡)+𝜖
[𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)]  (10) 

 

𝑅𝑖𝑗(𝑡) = ‖𝑋𝑖(𝑡), 𝑋𝑗(𝑡)‖
2
                               (11) 

 

For accounting stochastic characteristics to the 

optimization technique, the force that acts on the 

agent 𝑖 is assumed as the weighted sum of 𝑑𝑡ℎ force 

components in a dimension 𝑑, and it is exerted from 

another agent, which is mathematically specified in 

Eq. (12). 

 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑(𝑡)𝑁
𝑗=1,𝑗≠1                       (12) 

 

The conventional GSA technique is trapped into 

local optima, where this problem is avoided by 

performing the exploration search at the beginning. 

The conventional GSA technique’s efficiency is 

further improved, if the 𝐾𝑏𝑒𝑠𝑡 agents are attracted 

with other search agents, and it is mathematically 

expressed in Eq. (13). 

 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝑗𝜖𝐾𝑏𝑒𝑠𝑡,𝑗≠1 𝐹𝑖𝑗

𝑑(𝑡)              (13) 

 

Where,  𝑟𝑎𝑛𝑑𝑗 indicates random coefficient value. 

The velocity 𝑣𝑖
𝑑(𝑡) and the position 𝑥𝑖

𝑑(𝑡 + 1) of the 

agents are computed utilizing Eq. (14) and Eq. (15). 

 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1)                  (14) 

 

𝑣𝑖
𝑑(𝑡) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡)                (15) 
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At the beginning, the gravitational constant value 

𝐺  is initialized that increases the search accuracy. 

The 𝐺  is expressed as a function with time  𝑡 , and 

initial value 𝐺0, as mentioned in Eq. (16). 

 

𝐺(𝑡) = 𝐺(𝐺0, 𝑡)                                           (16) 

 

The gravitational 𝑚𝑖(𝑡)  and the inertial mass 

𝑀𝑖(𝑡) is updated, as stated in Eq. (17), Eq. (18), and 

Eq. (19).  

 

𝑀𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖, 𝑖 = 1,2,3, … 𝑁      (17) 

 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)
                               (18) 

 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

                                        (19) 

 

Where, 𝑓𝑖𝑡𝑖(𝑡) specifies fitness value of an agent 

𝑖 at a time interval 𝑡. The objective 𝑓𝑖𝑡𝑖(𝑡) function 

values are specified in Eq. (20) and Eq. (21). The 

minimization issue 𝑤𝑜𝑟𝑠𝑡(𝑡)  and 𝑏𝑒𝑠𝑡(𝑡)  are 

mathematically denoted in Eq. (22) and Eq. (23).  

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥 (𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑏𝑜𝑢𝑛𝑑[𝑗])   (20) 

 

𝐶𝑜𝑠𝑡 =  

𝑠𝑢𝑚 𝑜𝑓 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡[𝑗] 𝑖𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗] > 0  (21) 

 
𝑤𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑎𝑥𝑗𝜖{1,2….𝑁}𝑓𝑖𝑡𝑗(𝑡)                   (22) 

 

𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛𝑗𝜖{1,2….𝑁}𝑓𝑖𝑡𝑗(𝑡)                    (23)  

 

On the other hand, the random coefficient value 

𝑟𝑎𝑛𝑑𝑗 in Eq. (15) is replaced by the adaptive weight 

functions 𝑤1  and 𝑤2  in order to improve the 

convergence rate of the conventional GSA technique. 

The mathematical expressions of the weight 

functions 𝑤1 and 𝑤2 are stated in Eq. (24) and (25). 

 

𝑤1 = 𝑤𝑖
𝑡 = |

𝑚𝑖𝑛 (𝑓𝑖𝑡𝑖
𝑡,𝑚𝑒𝑎𝑛(𝑓𝑖𝑡𝑡))

𝑚𝑎𝑥 (𝑓𝑖𝑡𝑖
𝑡,𝑚𝑒𝑎𝑛(𝑓𝑖𝑡𝑡))

|              (24) 

 

𝑤2 = 𝑤𝑡 = 𝑤𝑚𝑖𝑛 − 𝑡 ×
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑇
           (25) 

 

Where, 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 are indicated as user defined 

parameters. The updated velocity 𝑣𝑖
𝑑(𝑡) is given in 

Eq. (26). 

 

𝑣𝑖
𝑑(𝑡) = 𝑤2 × 𝑣𝑖

𝑑(𝑡) + 𝑤1 × 𝑎𝑖
𝑑(𝑡)            (26) 

 

    The adaptive weight functions guide convergence 

of the optimization algorithm as the solutions to 

exhibit precise movements, when moving towards 

the global optimum. The parameter-settings of the 

DA-AGSA technique are: total number of iterations 

is 100, 𝛼 = 20, 𝛽 = 10, and 𝐺0 is 100. In addition, 

the steps involved in the DA-AGSA technique are 

given below: 

Steps involved in the DA-AGSA technique 

1. Performed AGSA in data aware workflow 

scheduling 

2. In AGSA, randomly initialize the population 

and replace random coefficient by an adaptive 

weight function 

3. Compute worst and best fitness values 

4. For every agent, do: 

Compute fitness 

Compute mass 

Compute mass force  

Compute mass acceleration 

Update mass velocity 

Identify new position of an agent 

End For 

5. If the stopping criteria is not met, then, again 

go to Step 2, else stop. 

4. Simulation results 

In this research manuscript, the experimental 

investigation of the DA-AGSA technique is 

performed utilizing the workflow sim framework on 

a computer with 16GB random access memory, 4TB 

hard disk, 3.2 GHz computer processing unit and the 

Win-10 (64-bit) operating system. In this manuscript, 

the performance of the developed DA-AGSA 

technique is validated on the Montage, CyberShake 

and Epigenomics workflows with 1000 tasks and the 

experimental results are compared with five 

metaheuristics optimization algorithms like FOA, 

Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Genetic Algorithm (GA) and 

DA-GSA. The effectiveness of the DA-AGSA 

technique is investigated by means of makespan, cost, 

and reliability. The makespan of a workflow is 

determined as the latest finished time on all the VMs 

and the cost is determined by multiplying the task 

duration of a task to the allocated VMs price for all 

the tasks. The reliability is defined as the probability 

of task execution over the allocated processor 

successfully without errors. 

4.1 Quantitative analysis 

In this sub-section, the developed DA-AGSA 

technique is compared with FOA, ACO, PSO, GA 

and DA-GSA based on two scheduling objectives  



Received:  April 19, 2023.     Revised: May 21, 2023.                                                                                                      259 

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023           DOI: 10.22266/ijies2023.0831.21 

 

Table 1. Experimental results of the developed DA-AGSA technique in terms of cost and makespan 

Workflows Measures Optimization techniques 

FOA PSO GA ACO DA-GSA  DA-AGSA 

Montage Cost 5142.99 5034.99 5584.80 4604.80 4590.45 4322.43 

Makespan 4827.77 5115.77 4900.46 4778.23 4678.44 4549.70 

CyberShake Cost 52231.33 50983.04 56312.87 46288.62 43234.90 41384.92 

Makespan 158819.33 155981.76 159688.11 144670.71 139393.43 126495.48 

Epigenomics Cost 553203.16 529891.16 583102.87 470317.95 460943.83 451568.86 

Makespan 208308.05 185860.05 194636.14 168008.04 154345.81 144146.80 

 
Figure. 2 Makespan and cost analysis on Montage 

workflow 

 

 
Figure. 3 Makespan and cost analysis on CyberShake 

workflow 

 
Figure. 4 Makespan and cost analysis on Epigenomics 

workflow 

 

such as cost and makespan. In this study, the 

optimization algorithms are executed for 100 

iterations with 1000 tasks, and the experimental 

results state that the DA-AGSA obtained high 

performance when compared to the existing 

algorithms in light of cost and makespan. 

Experimental results are represented in the Fig. 2, Fig. 

3, and Fig. 4 for Montage, CyberShake and 

Epigenomics workflows. Table 1 clearly denotes that 

the DA-AGSA technique outperformed the existing 

algorithms like FOA, ACO, PSO, GA, and DA-GSA 

in both parameters. 

In addition, the percentage-wise improvement of 

the developed DA-AGSA technique is represented in 

Fig. 5 and Table 2. On the Montage workflow, the 

DA-AGSA technique is 18.98%, 16.48%, 29.20%, 

6.53% and 6.20% better compared to the existing 

optimization techniques like FOA, PSO, GA, ACO, 

and DA-GSA in light of cost. Correspondingly, the 

DA-AGSA technique showed 6.11%, 12.44%, 7.70%, 

5.02%, and 2.82% improvement in terms of 

makespan related to other optimization algorithms.  

On the CyberShake workflow, the improvement 

percentage is 26.20%, 23.19%, 36.07%, 11.84%, and 

4.47% in light of cost, and 25.55%, 23.31%, 26.24%, 

14.36%, and 10.19% by means of makespan related 

to other algorithms like FOA, PSO, GA, ACO, and 

DA-GSA. 

Correspondingly, in the Epigenomics workflow, 

the implemented DA-AGSA technique showed an 

improvement of 22.50%, 17.34%, 29.12%, 4.15%, 

and 2.07% in light of cost, and 44.51%, 28.93%, 

35.02%, 16.55%, and 7.07% in terms of makespan 

related to the FOA, PSO, GA, ACO, and DA-GSA 

algorithms. The experimental examination showed 

that the developed DA-AGSA technique is more 

effective in optimizing the parameters related to other 

algorithms.  

In addition to this, the implemented DA-AGSA 

technique has achieved reliability of 0.99, 0.98 and 

0.98 on the Montage, CyberShake and Epigenomics 

workflows with 1000 tasks. The attained reliability 

results are better when compared to the optimization 

algorithms. 

4.2 Comparative analysis 

In this section, initially comparative evaluation is 

carried out between the DA-AGSA technique and the 

existing MOWOS technique [21], which is 

implemented by J.K. Konjaang, and L. Xu. As  
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Table 2. Percentage-wise results of the developed DA-AGSA technique over the existing algorithms in terms of cost and 

makespan 

Workflows Measures Optimization techniques 

FOA (%) PSO (%) GA (%) ACO (%) DA-GSA (%) 

Montage Cost 18.98 16.48 29.20 6.53 6.20 

Makespan 6.11 12.44 7.70 5.02 2.82 

CyberShake Cost 26.20 23.19 36.07 11.84 4.47 

Makespan 25.55 23.31 26.24 14.36 10.19 

Epigenomics Cost 22.50 17.34 29.12 4.15 2.07 

Makespan 44.51 28.93 35.02 16.55 7.07 

 

 
Figure. 5 Percentage-wise comparison of the DA-AGSA technique over the existing algorithms in terms of cost and 

makespan 

 

Table 3. Comparative evaluation between the DA-AGSA 

technique and MOWOS 

Models Workflows Workflow 

tasks 

Execution 

cost 

MOWOS 

[21] 

Montage  

1000 

5,000 

CyberShake 62,000 

DA-

AGSA  

Montage 4,590.45 

CyberShake 43,234.90 

 

depicted in the resulting section, the MOWOS has an 

execution cost of 5,000 and 62,000 on the Montage 

and CyberShake workflows with 1000 tasks. Related 

to this existing model, the proposed DA-AGSA 

technique has a lower cost of 4,590.45 and 43,234.90 

on the Montage and CyberShake workflows with 

1000 tasks, and it is indicated in Table 3.  

On the other hand, Zeedan [22] developed a 

hybrid optimization algorithm named EBABC-PF for 

effective workflow scheduling in cloud environments.  

As stated in Table 4, the performance analysis was 

carried out with different tasks (100 and 1000) and 

VMs (20 and 80) on the Montage, CyberShake, and 
Epigenomics workflows by means of processing cost. 

Here, the cost of each VM is 2.224 ($/𝐻𝑟). As seen 

in Tables 4 and 3, the proposed DA-AGSA technique 

has lower processing cost and execution cost than the 

comparative techniques. The extensive experimental 

investigation states that the DA-AGSA technique has 

significantly solved the issue of high cost, which was 

a major concern stated in the literature section. 

5. Conclusion 

In recent decades, workflow scheduling has 

played a crucial part in cloud-computing applications 

and environments. Several nature-inspired 

optimization algorithms are employed for workflow 

scheduling in the cloud platform. The existing 

optimization algorithms fall highly into local optima 

for maintaining the balance between exploitation and 

exploration spaces. In this manuscript, a new DA-

AGSA technique is implemented for workflow 

scheduling that effectively reduces the makespan and 

cost parameters with optimal solutions. Here, the 

proposed DA-AGSA technique is implemented on a 

workflow sim platform, and the simulation result is 

analysed on the Montage, CyberShake and 

Epigenomics workflows. The experimental result on 

Montage workflow indicates that the developed DA-

AGSA technique is superior compared to the FOA, 

PSO, GA, ACO, and DA-GSA algorithms by 18.98%, 

16.48%, 29.20%, 6.53% and 6.20% in terms of cost, 

and 6.11%, 12.44%, 7.70%, 5.02%, and 2.82% by  
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Table 4. Comparative evaluation between the DA-AGSA technique and EBABC-PF technique 

Processing cost 

 

Tasks 

 

VMs 

Montage CyberShake Epigenomics 

EBABC-PF [22] DA-AGSA 
EBABC-PF 

[22] 

DA-

AGSA 

EBABC-PF 

[22] 
DA-AGSA 

100 20 653.11 432.36 959.89 654.31 1459.89 834.31 

100 80 1525.87 624.22 1994.69 822.11 2629.70 1022.07 

1000 20 1649.30 532.75 2205.16 755.99 2539.53 966.31 

1000 80 3294.64 742.06 3447.45 934.87 3302.38 1140.07 

means of makespan. The DA-AGSA technique 

showed better performance on the CyberShake and 

Epigenomics workflows in terms of cost and 

makespan. In addition, the DA-AGSA technique has 

achieved a reliability of 0.99, 0.98 and 0.98 on the 

three workflows with 1000 tasks. As a future 

extension, a new hybrid metaheuristics optimization 

technique can be implemented for further enhancing 

workflow scheduling in a cloud platform. 

Nomenclature 

Parameters Definition 

𝐶𝑉𝑀𝑖 Execution cost 

𝑃𝑉𝑀𝑖  Processing capacity 

of the VMs 

𝐸𝑇𝑗
𝑙 Execution time 

𝑇𝑗

= {𝑇1, 𝑇2, 𝑇3, … 𝑇𝐽}∀{1,2,3, . . 𝐽} 

Task 

𝑆𝑇𝑗
 Size of a task 

𝑃𝑣𝑎𝑟𝑙
 Processing capacity 

of VMs 

𝐷𝑇𝑗𝑘  Transfer time of 

data 

𝐷𝑜𝑢𝑡 Generated data 

𝑏𝑤 Bandwidth between 

every VM 

𝑃𝑇𝑗
𝑙 Total processing 

time 

F Gravitational force 

𝑒 Number of edges 

inter-connected with 

every task 𝑇𝑗  

𝑀1𝑎𝑛𝑑 𝑀2 Mass of the 1st and 

2nd particles 

𝑅2 Distance between 

the two particles 

𝑟𝑎𝑛𝑑𝑗 Random coefficient 

value 

𝑣𝑖
𝑑(𝑡) Velocity 

𝑥𝑖
𝑑(𝑡 + 1) Position 

𝑓𝑖𝑡𝑖(𝑡) Fitness value of an 

agent 𝑖 
𝑤1 and 𝑤2 Adaptive weight 

functions 
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