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Abstract: Due to global lockdown policies implemented against COVID-19, there has been an impact on electricity 

consumption. Several countries have emphasized the significance of ensuring electricity supply security during the 

pandemic to maintain the livelihood of people. Accurate forecasting of electricity demand plays a crucial role in 

ensuring energy security across all nations; accordingly to achieve this objective, this study employs metaheuristics 

optimization algorithms to enhance the prediction model's operation, such as Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and Random Forest (RF), at an optimized level to minimize errors. Two metaheuristics 

optimization methods, Particle Swarm Optimization (PSO) and Genetic Algorithms (GA), are utilized. The suggested 

prediction models are trained using daily power usage data from three US urban regions. In terms of prediction 

accuracy, the findings show that KNN with PSO surpasses the other models. The COVID-19 pandemic reduced power 

usage by 20% relative to pre-pandemic levels. 

Keywords: COVID-19, Metaheuristics optimization algorithms, Support vector machine, Particle swarm optimization, 

Genetic algorithms. 

 

 

1. Introduction 

Predicting electricity demand at the city level can 

help with power plant energy efficiency, resource 

planning, greenhouse gas emissions tracking, 

program evaluation, reserve requirements and system 

infrastructure analysis. Hence, knowing building 

energy consumption on a city-wide scale is crucial for 

promoting urban sustainability, reducing carbon 

emissions, and increasing global energy efficiency 

[1]. 

The consumption of electricity on a city-wide 

scale is influenced by temperature. The ambient 

temperature, population, and income are all 

significant drivers of energy usage in cities [2], which 

is mostly owing to the significant energy 

consumption necessary for heating and cooling 

buildings, which is heavily dependent on outdoor air 

temperature [3]. Since climate change causes 

frequent increase, intense, and long-lasting extreme 

weather events such as heat waves, evaluating 

temperature-sensitive city-scale power use has 

become critical. Climate change adaptation must be 

prioritized by academics, energy planners, and 

policymakers in order to develop successful climate 

change solutions [4], and to comprehend how to 

improve the preparedness of energy production and 

transmission infrastructure for high-demand 

situations in order to boost resilience and energy 

security in the context of climate change adaptation. 

Hou et al. [5] explored how rising ambient 
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temperatures influenced Shanghai's power usage [6], 

where they hypothesized that if present energy 

consumption patterns continue, the expected 

temperature increase will result in an increase in 

summer power demand and a decrease in winter 

demand [7]. 

Similarly, it was predicted by 2099 in California 

that rising air temperatures will demand up to 31% 

more transmission capacity and up to 38% more peak 

generating capacity [8]. A heat wave in California in 

August 2020 caused a power supply deficit owing to 

an increase in air conditioner consumption, resulting 

in rotating power outages for inhabitants. Following 

the heat wave disruptive event in California, policy 

makers highlighted the refinement of electricity 

demand forecasting by incorporating climate change, 

taking into account thrilling weather events and 

associated load effects, as the first recommended 

action in the response letter [9]. 

In addition to ambient climatic conditions, other 

circumstances, such as unanticipated public health 

crises, may influence the power demand of a 

metropolis. According to the research achievement in 

Brazil, the COVID-19 outbreak affected the power 

consumption patterns of Brazilians, resulting in a 7% 

to 20% decrease in energy demand, depending on the 

local economic structure, whereas the industrialized 

regions were less affected [10]. Similarly, a European 

study discovered that the strictness and intensity of 

lockdown measures has an effect on the energy 

consumption patterns of society. Power consumption 

profiles during the pandemic were comparable to pre-

pandemic weekend profiles for the same period in 

2019, but nations with less rigorous measures, such 

as Sweden, had a lower decline in electricity usage 

[11]. It is possible to track the real-time economic 

consequences of lockdowns through tracking the path 

of the power consumption. Switzerland's total 

electricity consumption decreased by 4.6%, including 

a 14.3% decrease in the canton of Ticino, where 

stricter curtailment limitations were enacted in 

addition to federal legislation [12]. 

The need for energy varies from season to season, 

every day, and every minute, as was previously 

described. The prediction of the necessary demand 

over the short-, medium-, and long-term prediction 

horizons is known as energy data forecasting. It is an 

educated forecast of how much energy will be 

required by homes, businesses, or other institutions. 

Data on energy the vast volumes of data about energy 

consumption are referred to as energy data. Direct 

measurements of energy use are included. (such as 

electricity load, PV generation, wind, gas, steam, 

heating load etc.). Energy is produced from various 

sources using various time scales and measurement 

units. The forecast that establishes the time series for 

a future time is obtained using this energy 

information, which is helpful and used as historical 

data to train the forecasting algorithms. The 

important thing to remember is that those accurate 

findings need information. The PV generation and 

electrical load datasets of residential usage have been 

considered in this research work to differentiate and 

assess the forecasting effectiveness over various 

energy data applications. Horizontal forecasting 

(time scale) The literature discusses various methods 

and models for forecasting energy data for both 

commercial and residential use. Although the types of 

forecasting horizons as shown in Table 1 used in the 

energy industries are not officially categorized, they 

can be grouped into four groups based on the length 

of the forecasting interval: very short-term 

forecasting (VSTF), short-term forecasting (STF), 

medium-term forecasting (MTF), and long-term 

forecasting (LTF) [13]. A new sort of forecasting 

known as VSTF primarily pertains to forecasting 

with a period of up to an hour in advance [14]. 

Demand sight's management system frequently uses 

STF, which takes a range of time into account up to a 

day in advance [15]. The daily operation and 

scheduling of the electricity and spot price 

calculation are the main applications for VSTF and 

STF, where the needed accuracy is much higher than 

a long-term forecast [16]. This type of forecasting is 

essential to ensure that the scarce electricity in 

developing nations is used more effectively [17]. 

MTF, which stands for "month ahead," is a term that 

has been used for years [18] to schedule maintenance 

and the development of the grid system. LTF, on the 

other hand, considers a time frame that ranges from 

months to years in the future when it comes to 

arranging power supply and resource planning. When 

it is important to predict power demand over a longer 

time, this form of forecasting is used to establish 

system design [16]. MTF and LTF are often only used 

to estimate peak loads since they frequently 

experience forecast mistakes over time 

[19] .historical load data, meteorological variables 

(humidity, temperature), the season/time of year, the 

day of the week/hour of the day, or even certain 

holidays or festivals, can all impact forecasting. 

2. Related work  

Table 2 provides information on relevant work 

conducted in different countries and the prediction 

models used, which demonstrates that there are two 

sorts of energy demand forecast methods: physical 

simulation models and data-driven models. Data- 

driven models are more widely utilized since physical 
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Table 1. Forecasting horizons 

Forecasting horizons Time scale 

Very short-term 5min-1h 

Short-term 1h- 24h 

Medium-term 24h- weeks 

Long-term months-year 

 

 

 
Figure. 1 Average hourly electricity usage in three 

metropolitan areas 

 

 

simulation models need the consideration of several 

external parameters, which can be difficult to obtain. 

Some data-driven regression models, on the other 

hand, nevertheless need enormous data gathering of 

associated elements. Furthermore, the majority of 

data-driven models employ deep learning or machine 

learning techniques. Because single models have 

limitations, several researchers have adopted hybrid 

models for predictions in recent years. 

The literature review reveals that the focus of 

many scholars was solely on the accuracy of 

prediction models and not on their stability. Moreover, 

in electricity demand prediction studies, the impact of 

significant global events such as COVID-19 was 

overlooked, and the factors considered, such as 

weather, may not be pertinent in the current period; 

consequently, these models may not be relevant 

during such global events. The study's noteworthy 

contributions are as follows: 

 

(1) The recommendation to apply a hybrid model to 

forecast daily electricity consumption during the 

COVID-19 pandemic. 

(2) The suggested model is compared to reference 

models in terms of accuracy and stability of 

prediction. 

(3) Prediction is affected by the denoising process 

and optimizer. 

(4) The usefulness of COVID-19-related parameters 

as prediction model inputs is addressed. 

3. Materials and methods 

3.1 Materials  

The research paper [6] provided the dataset used 

in this study, which encompasses ambient 

temperature and city-level electricity usage data from 

three US metropolitan areas, namely New York (NY), 

Los Angeles (LA), and Sacramento (Sac), spanning 

from July 2015 to September 2020. The national 

oceanic and atmospheric administration (NOAA) 

provided data on ambient temperature, while the 

energy information administration (EIA) provided 

statistics on energy use at the municipal level. The 

raw electricity consumption in the three cities is 

plotted in Fig. 1. 

3.2 Methods  

Fig. 2 depicts the overall methodology employed 

to forecast city-scale daily electricity usage, 

comprising five phases as follows: 

Phase 1: Data preparation, phase 2: Prediction 

phase, phase 3: Hyper-parameter optimization, phase 

4: performance evaluation, Phase 5: Benchmark 

models and phase 6: predict energy consumption 

during the pandemic. Each phase is explained in the 

next subsections 

 

Phase 1: Data preparation 

The primary dataset was divided into power data 

including (date, time, electricity load, and day Type 

(working day / non-working day)) and weather data 

including (date, time, ambient temperature, and 

humidity), therefore, the power and weather data 

were merged dataset to appropriate for study phases.  

The merged dataset now includes a new feature, 

which comprises the summation of the daily 

electricity load, the daily demand peaks, and the 

average ambient temperature, calculated for each day 

in the dataset. The measurement with missing values 

were eliminated, and then the dataset of the 

remaining measurements was explored to check the 

variables scale. Eventually, the preparation and 

preprocessing of the dataset assures that 80% of the 

dataset was randomly picked for prediction model 

training, while the remaining 20% was used for 

model validation testing. 

 

Phase 2: Prediction phase 

Four models were created to anticipate the daily  
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Table 2. Studies on forecasting energy usage in various countries 
References  Forecasting target Forecasting Model 

[20] Iran's demand for energy 
A hybrid model combines Bayesian approach and 

scenario analysis 

[21] Demand for energy in Ireland 
Covariance matrix adaptation 

evolutionary strategy 

[22] Electricity demand in India Long Short-Term Memory network (LSTM) 

[23] 
Demand for electricity in New 

Singapore and South Wales 

▪ Variational mode decomposition 

▪ Support vector machine 

▪ Salp Swarm Algorithm  (SSA) 

[24] 
Natural gas demand in 

Germany 

Functional autoregressive with convolutional neural 

network 

[25] Energy demand in China autoregressive distributed lag mixed data sample 

[26] Residential natural gas demand 

▪ Linear regression 

▪ Kernel machine with memory 

▪ Kernel machine 

▪ Two-reservoir model 

▪ Two-reservoir model with nonlinear memory 

▪ Two-reservoir model with linear memory 

[27] 
Need for energy in Basilicata 

and Italy 
Regression analysis 

[28] Load demand 
▪ Harris hawk’s optimization 

▪ Stationary wavelet packet transform 

▪ Feed-forward neural network 

[29] Energy demand 

▪ Autoregressive integrated moving average 

model 

▪ Artificial neural network 

▪ Support vector machine 

[30] Building energy demand Engineering simulation 

[31] Heating demand 
▪ Artificial neural network with an online learning 

method 

[32] Electricity demand 

▪ Artificial neural network 

▪ Autoregressive integrated moving average 

model 

▪ Multivariate adaptive regression spline 

[33] Energy load variational mode decomposition with LSTM 

[34] Natural gas demand 

▪ Autoregressive integrated moving average 

model 

▪ Artificial neural network 

▪ Extreme learning machine 

[35] Electricity demand 
▪ Adaptive Fourier decomposition 

▪ Support vector machine 

▪ Fast Fourier transform 

[36] HVAC system energy 

demand 

▪ Fuzzy with neural network 

[37] Fans Electricity demand ▪ Artificial neural network 

[38] Electricity demand ▪ Cyclic behavior 

▪ Piecewise aggregated approximation 

▪ Piecewise interpolation 

 

 

power usage in New York, Los Angeles, and 

Sacramento. The forecasting models belong to two 

different modeling techniques: Time series 

forecasting techniques including autoregressive 

integrated moving average (ARIMA) model, and 

supervised machine learning forecasting (SMLF) 

techniques including support vector machine (SVM), K-

nearest neighbors (KNN), and random forest (RF). The 

details of the six forecasting models are illustrated in 

the following sub-sections I and II.  

I. Time series forecasting techniques 

The ARIMA model is a well-known linear model  
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Figure. 2 Overall prediction methodology 

 

for predicting univariate time series forecast [39], 

whereas the strategy is predicated on the assumption 

that time series may be separated into current and 

prior values, as well as random errors. ARIMA 

consists of three components: AR⁡(𝑝) is an additive 

linear function of 𝑝  prior observations, MA⁡(𝑞)  is a 

moving average that compensates for 𝑞  random 

errors, and 𝑑 is an integer that helps turn a series into 

a stationary one. The ARIMA⁡(𝑝, 𝑞, 𝑑) model is 

represented by the following equation: 

 

Δ𝑑𝑦(𝑡) = 𝑐 + ∑  
𝑝
𝑗=1 𝛼𝑗 × 𝑦(𝑡 − 𝑗) + 𝜖(𝑡) +  

∑  
𝑞‾
𝑗=1 𝛽𝑗 × 𝜖(𝑡 − 𝑗)      (1) 

 

The symbol Δ , which represents the operator 

(1 − 𝐵) , where 𝐵  is referred to as the Backward 

operator, and 𝐵𝑦(𝑡)  stands for the observation data 

𝑦(𝑡 − 1)  at time 𝑡 , while 𝑦(𝑡)   characterizes the 

current observation. The model consists of a constant 

term c, auto-regressive parameters 𝛼1, … , 𝛼𝑝, moving 

average coefficients 𝛽1, … , 𝛽𝑞, and white noise 𝜖(𝑡) 

at time 𝑡. To fit an ARIMA model, the following four 

steps need to be taken: 

Step 1 involves identifying the ARIMA⁡(𝑝, 𝑑, 𝑞) 
structure, followed by parameter estimation in step 2, 

diagnostic checks on the estimated residuals in step 3, 

and finally, forecasting future values based on known 

data in step 4. 

Box and Jenkins (1976) use the data's partial 

auto-correlation function (PACF) and auto-

correlation function (ACF) to establish the 𝑞  and 𝑝 

parameters of the ARIMA model. 

II. Supervised machine learning forecasting 

techniques support vector machine (SVM)  

To achieve linear separability, SVM algorithms 

translate data points between low-dimensional to 

high-dimensional spaces. If n data points exist (n is 

the predicted size of the sample,) the SVM objective 

function is as follows [40-42]: 

 

arg⁡min
𝐰

  {
1

𝑛
∑  𝑛
𝑖=1  m ⁡ {0,1 − 𝑦𝑖𝑓(𝑥𝑖)} + 𝐶𝐰𝑇𝐰}  (2) 

 



Received:  April 20, 2023.     Revised: May 20, 2023.                                                                                                      244 

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023           DOI: 10.22266/ijies2023.0831.20 

 

The error term penalty parameter is denoted as 𝐶, 

is a critical hyper-parameter in all SVM models, and 

𝐰 represents the normalization vector. Additionally, 

the choice of kernel function 𝑓(𝑥)  is an essential 

hyper-parameter that determines the likeness 

measurement among, 𝑥𝑖 and 𝑥𝑗 data points. There are 

several types of kernel functions available in SVM 

models, including radial basis function (RBF), 

sigmoid kernels, polynomial, and linear. The various 

kernel functions can be expressed as [43]: 

 

1 Linear kernel: 

 

𝑓(𝑥) = 𝑥𝑖
𝑇𝑥𝑗                              (3) 

 

2 Polynomial kernel: 

 

𝑓(𝑥) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
                (4) 

 

3 RBF kernel: 

 

𝑓(𝑥) = exp⁡(−𝛾∥𝑥 − 𝑥′∥2)           (5) 

 

4 Sigmoid kernel: 

 

𝑓(𝑥) = (tanh⁡(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟))         (6) 

 

After selecting a kernel type, various other 

hyperparameters must be adjusted, as demonstrated 

by the kernel function equations. When the kernel 

type is set to polynomial, RBF, or sigmoid, the 

coefficient 𝛾, referred to as 'gamma' in sklearn, is the 

conditional hyperparameter of the kernel type 

hyperparameter. Additionally, the polynomial and 

sigmoid kernels have a conditional hyperparameter 𝑟, 

which is specified by 'coef0' in sklearn.  

In addition, the polynomial kernel function 

contains an extra conditional hyperparameter, 𝑑 , 

which represents the polynomial kernel function's 

degree. Another hyperparameter in SVR models is 

'epsilon,' which specifies the distance error of the loss 

function [44]. 

 

Random forest (RF) 

To briefly explain the RF algorithm, 𝑇  decision 

trees are independently constructed from a training 

dataset with n variables and m samples (features). 

Each decision tree 𝑡𝑡ℎ model is built on the 𝑡𝑡ℎ 

bootstrap sample set from the original dataset, and at 

each inner node, a random selection of 𝑛′ variables 

(where 𝑛′  is much smaller than n) is used to 

determine the best partition. The trees are built 

without pruning and have the maximum depth. The 

prediction value y is obtained from each tree, and the 

last forecast value is determined by combining the 

results from all 𝑇 trees in the forest. This is how the 

RF prediction is obtained: 

 

𝑦̂ =
1

𝑇
∑  𝑇
𝑖=1 𝑓𝑖(𝑥)                   (7) 

 

When building a tree, an additional tuning 

parameter called mtry, mtry applied to specify the 

number of variables used for node splitting at each 

iteration during the creation of a tree, where it is 

preferred that 1 < mtry < 𝑛 in order to decrease the 

computational time. By choosing mtry < 𝑛 , the 

objective is to reduce the computational burden. 

 

K-nearest neighbors (KNN) 

By utilizing a similarity measure, specifically a 

distance function [45], this algorithm can make 

predictions for new data points. Essentially, the 

algorithm assigns a value to a new data sample based 

on its proximity to the training set points. To do this, 

the approach use a metric such as Euclidean, 

Manhattan, or Minkowski distance to calculate the 

distance between each sample in the test set and every 

sample in the training set. The K nearest samples of 

training data are then picked. The KNN prediction for 

regression is the mean of the outcomes from the K 

nearest neighbors. 

 

𝑦 =
1

𝐾
∑  𝑘
𝑖=1 𝑦𝑖                      (8) 

 

The 𝑖  th case in the example sample is 

represented by 𝑦𝑖 , while 𝑦  represents the prediction 

(outcome) for the query point. 

 

Phase 3: Hyper-parameter optimization 

During the model creation phase of machine 

learning, optimization techniques may be used to 

quickly search the space of hyper-parameters in order 

to identify the optimal hyper-parameters for the 

regressor models. The hyper-parameter optimization 

procedure typically comprises four essential 

components: an estimator with its objective function, 

a search space (also known as a configuration space), 

a search or optimization method to locate the optimal 

hyper-parameter combinations, and an evaluation 

function to compare the performance of various 

hyper-parameter configurations. According to 

references [46, 47], the objective of a hyper-

parameter optimization work is typically to generate 

the best practicable results. 

 

𝑥∗ = arg⁡min
𝑥∈𝑋

 𝑓(𝑥)               (9) 
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The objective function𝑓(𝑥), which can represent 

the root mean squared error (RMSE) or the error rate, 

is to be minimized. The hyper-parameter 

configuration 𝑥∗ that results in the optimal value of 

𝑓(𝑥)  can assume any search space value 𝑋 . Fig. 3 

illustrates the primary steps of the hyper-parameter 

optimization process. Two optimization algorithms 

(PSO and GA) were created to optimize the 

hyperparameters of each machine learning model. 

The pseudo code of PSO and GA have shown in 

Algorithm 1 and Algorithm 2. Table 3 shows search 

space for the hyper-parameters of machine learning 

forecasting models. 

 

Algorithm 1 : Pseudo code of PSO 

/∗ Initialize all parameters for PSO ∗/ 

Computation maxtime: = 𝑇𝑝max, 𝑡: = 0 

Number of particle-patterns: = 𝑚, 2 ≤ 𝑚 ∈
𝑵1; 

Particle-patterns initial solution: = 𝑷𝑖
0 

Particle-patterns initial position: = 𝒙𝑖𝑗
0 ; 

Particles initial velocity:= 𝒗𝑖𝑗
0 ; 

PSO parameter: = 𝜔, 0 < 𝜔 ∈ 𝑹1; 

PSO parameter: = 𝐶1, 0 < 𝐶1 ∈ 𝑹1; 

PSO parameter: = 𝐶2, 0 < 𝐶2 ∈ 𝑹1; 

/∗ Start PSO ∗/ 

Evaluate (𝑮0, 𝑷0); 

while 𝑡 < 𝑇𝑝max do 

⁡/∗ Update velocities and positions ∗/ 

⁡𝒗𝑖𝑗
𝑡+1 = 𝜔 ⋅ 𝒗𝑖𝑗

𝑡  

⁡ + 𝐶1 ⋅ rand⁡() ⋅ ( best (𝑃𝑖𝑗
𝑡 ) − 𝑥𝑖𝑗

𝑡 ) 

⁡ + 𝐶2 ⋅ rand⁡() ⋅ ( best (𝐺𝑡) − 𝑥𝑖𝑗
𝑡 ); 

⁡𝒙𝑖𝑗
𝑡+1 = 𝒙𝑖𝑗

𝑡 + 𝒗𝑖𝑗
𝑡+1; 

/∗ if fitness value is increased, a new solution 

will be accepted. ∗/ 

⁡ Update_Solutions (𝑮𝑡, 𝑷𝑡); 

⁡𝑡 = 𝑡 + 1; 

end while 

Update_Solutions (𝑮𝑡, 𝑷𝑡); 

return Best found pattern of particles as 

solution; 

 

Algorithm 2 : Pseudo code of GA 

/∗ Initialize all parameters for DGA ∗
/ 

Computation maxtime: = 𝑇𝑔max, 𝑡: =
0; 

Number of islands: 𝑡𝑛, 1 ≤ 𝑛 ∈ 𝑵1; 

initial solution: = 𝑷𝑖
0; 

/∗ Start DGA // 

Evaluate (𝑮0, 𝑷0); 

while 𝑡 < 𝑇𝑔max do 

for all islands do 

⁡ Selection (); 

⁡ Crossover (); 

⁡ Mutation (); 

end for 

⁡𝑡 = 𝑡 + 1; 

end while 

Update_Solutions (𝑮𝑡, 𝑷𝑡); 

return Best found pattern of particles 

as solution; 

 

Phase 4: Performance evaluation  

The RMSE indicators are used to verify the 

effectiveness of the forecasting model established in 

this paper. 

 

RMSE ⁡= √
1

𝑛
∑  𝑛
𝑖=1   (𝑦𝑖 − 𝑥𝑖)

2
        (10) 

 

In the formula, 𝑦𝑖 is the genuine situation value, 

𝑥𝑖 is the predicted value, and n is the predicted size 

of the sample. 

 

Phase 5: Benchmark models 

To highlight the advantages of the proposed 

model, this paper defines five classifiers models 

reported in research [6] as the benchmark model for  
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Table 3. Search space for the hyper-parameters of 

regressor models 
MACHIN

E 
LEARNIN
G  Model 

Hyper-
paramet

er 
Search Space 

 

 

RF 

Regressor 

n 
estimator

s 
[10,100] 

max 
depth [5,50] 

min 
samples 

split 
[2,11] 

min 
samples 

leaf 
[1,11] 

criterion [’mse’, ’mae’] 
max 

features [1,13] 

 

SVM 

Regressor 

C [0.1,50] 

kernel [’linear’, ’poly’, ’rbf’, ’sigm
oid’] 

epsilon [0.001,1] 

KNN 
Regressor 

n 
neighbor

s 
[1,20] 

 
Table 4. Reasons for selecting benchmark models 

Model name Reason for being selected 

5-Parameter  which was initially proposed by 

ASHRAE in the 1990s. The major 

reason why model are widely used is 

their interoperability [48]. 

Degree Hour  is one of the most well-known methods 

used in the heating, ventilating, and air 

conditioning (HVAC) industry to 

estimate heating and cooling energy 

requirements. Because of its 

significance in this field, the heating 

and cooling degree day was used to 

determine the U.S. climate zone and has 

been widely used as a proxy variable to 

quantify the influence of climate change 

on electricity demand. 

Decomposed 

model  

the decomposed model can decouple 

the effects of different factors (weather-

related temperature-dependent load and 

seasonal time-dependent periodical 

load), providing us a unique 

opportunity to observe the impact of an 

unexpected public health event on city-

level demand. 

lightGBM  Combining multiple trees usually 

outperforms a single tree in terms of 

model accuracy and robustness [49]. 

NN It can be used to solve many different 

tasks [50] 

 

 

comparison. The reasons for choosing these models 

are shown in Table 4. 

Select the objective functio

Choose the hyper-parameters that 

require tuning.

Find the optimal optimization 

method

Use The default hyperparameter to 
train the machine learning model.

Use a vast search space to start the 
process of optimization.

Reduce the search area depending 

on the regions that are now visible.

Test 

the hyperparameter

 values performing 

Explore search spaces 

Select the ideal configuration of 

hyper-parameters as the final 

response.

OK

No

 
Figure. 3 The flow chart for the main process of Hyper-

parameter optimization 

 

Phase 6: Predict energy consumption during the 

pandemic 

To address two practical issues, the most efficient 

models were selected. 1) how a city's daily power 

consumption would be affected by the ambient air 

temperature, particularly during a heat wave; and 2) 

how a city's daily power consumption would be 

affected by unforeseen public health concerns, in this 

case the COVID-19 pandemic. In this study, we 

anticipate the daily power consumption of a city, 

including the energy consumed by buildings, 

transportation (e.g., public electric buses/trains, 

electric automobiles), industries, and other public 

services inside the city and the surrounding rural  
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Table 5. The initial hyperparameters values for PSO  

PSO  Parameter Parameter values 

Number of particles 10 

Number of generations 5 

Maximum velocity of each 

particle 

None 

Coefficient of Local 

acceleration (c1) 

1.5 

Coefficient of global 

acceleration (c2) 

1.5 

 
Table 6. The initial hyperparameters values for GA 

GA Parameter Parameter values 

population_size 10 

gene_mutation  0.10 

gene_crossover 0.5 

generations_number 1.5 

 
Table 7. Hyperparameter values after GA tuning 

Machine 
learning  
model 

Hyper-
parameter 

Los 
Angeles 

Sacramento New 
York 

 

 

RF 

Regressor 

n 
estimators 

24 32 80 

min 
samples 

split 
2 

max depth 50 
min 

samples 
leaf 

5 2 1 

criterion ’mse’ ’mae’ ’mse’ 
max 

features 10 

 

SVM 

Regressor 

C 30 
kernel ’poly’ 

epsilon 0.001 0.01 

KNN 
Regressor 

n 
neighbors 

6 15 10 

 

 
Table 8. Hyperparameter values after PSO tuning 

Machine 
learning  
model 

Hyper-
parameter 

Los 
Angeles 

Sacramento New 
York 

 

 

RF 

Regressor 

n 
estimators 

22 36 82 

min 
samples 
split  

6 

max depth 40 
min 
samples 
leaf 

1 2 1 

criterion ’mse’ 
max 
features 

8 

 

SVM 

Regressor 

C 50 
kernel rbf 
epsilon 0.001 0.01 

KNN 
Regressor 

n 
neighbors 

6 5 7 

regions. 

4. Implementation  

The experiments were implemented using Python 

3.8 on an HP system with an i5 Intel Core processor 

working at 1.60 GHz and Windows10 operating 

system. Several Python open-source modules are 

used to analyze the machine learning models and 

optimization strategies involved (sklearn, optunity, 

hyperband, DEAP ) [51-53] 

5. Results  

Four studies were conducted to predict the daily 

power use in Los Angeles, New York and Sacramento. 

The initial experiment evaluated the performance of 

supervised machine learning forecasting techniques 

(SVM, RF, and KNN) using default hyperparameter 

values. The second experiment involved utilizing 

optimization algorithms (PSO and GA) to optimize 

the hyperparameters of each machine learning model, 

followed by an evaluation of their performance. The 

best performing model from experiments 1 and 2 was 

compared to the time series forecasting technique 

(ARIMA model). Lastly, the influence of the 

COVID-19 pandemic on the city's daily electricity 

consumption was analyzed. 

The initial hyperparameters values for PSO and 

GA algorithms used in adopted experiments are 

shown in Tables 5 and 6, which utilized the supplied 

default settings based on the Python scikit-learn 

library package [54]. 

Tables 7 and 8 show the best hyperparameters 

obtained with different optimization techniques (GA 

and PSO) for machine learning models. Our 

experiment employed 5-fold cross-validation to 

establish the optimal model parameters for 

Sacramento, Los Angeles, and New York City. 

Convergence was reached long before 100 iterations, 

and we stopped when the variance between iterations 

was less than 0.5%. 

In contrast, Figs. 8 and 9 illustrate the 

effectiveness of each optimization approach applied 

to KNN, SVM, and RF regressors evaluated on the 

MNIST dataset after a thorough optimization phase. 

The four-year period covered by the study's data was 

from July 2015 to June 2019. We utilized the first 

three years to train our model, reserving the fourth 

year for validation. To avoid biased electricity usage 

behavior caused by the COVID-19 curtailment 

situation, the data from the year 2020 was not 

included. 

Tables 9, 10, and 11 demonstrate that optimizing 

hyperparameters with optimization techniques like 

GA and PSO can significantly improve the regression  
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Table 9. Performance results of applying regression 

models with default hyperparameter values 

 RMSE (GWh) 
 

RF SVM KNN 

Los Angeles 8.383 8.850 7.4786 

Sacramento 5.343 6.4569 4.9525 

New York 25.221 31.476 24.565 

 

 

Table 10. Performance results of applying GA 

optimization algorithm to the regression models 

 RMSE (GWh) 
 

RF-GA SVM-GA KNN-GA 

Los Angeles 7.7128 8.1427 6.8804 

Sacramento 4.9158 5.940 4.5563 

New York 23.204 28.958 22.600 

 

 

Table 11. Evaluation of the performance of the PSO 

method when applied to regressor models 

 RMSE (GWh) 
 

RF-PSO SVM-PSO KNN-PSO 

Los Angeles 6.7067 7.0806 5.9829 

Sacramento 4.2746 5.1655 3.9620 

New York 20.17 25.181 19.652 

 

 
Table 12. Optimal hyperparameter values for ARIMA 

model after optimization process 

City 𝐀𝐑𝐈𝐌𝐀(𝒑, 𝒒, 𝒅)  

Los Angeles (1,1,5) 

Sacramento (5,3,5) 

New York (1,3,5) 

 

 

performance of machine learning models, which is 

generally observable. 

In terms of performance while tuning 

hyperparameters of machine learning models, PSO 

outperformed GA, with the RMSE value for all 

regression machine learning models lowered by over 

20% when tweaking hyperparameters values using 

PSO. While utilizing GA, it is lowered by over 8%. 

The KNN model beat the RF and SVM models 

among the three regression models that were tweaked 

using PSO in all three metropolitan regions. KNN 

performs the best in Sacramento (RMSE=3.96). but 

performs the worst in New York (RMSE=19.65). 

Additionally, the KNN regressor is easier to 

implement because it has lowest number of Hyper-

parameter (one hyper-parameter) compared with 

three hyper-parameters for SVM regressor and six  
 

 
(a) 

 
(b) 

 
(c) 

Figure. 4 Prediction results for KNN-PSO model and 

ARIMA model on the test dataset (Jan.2019–June 2019): 

(a) Los Angeles, (b) New York, and (c) Sacramento city 

 

hyper-parameters for RF regressor. and therefore, the 

computational time of optimization step for KNN 

regression model is often much lower than another 

model. 
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When the number of hyper-parameters increases, 

the size and complexity of the search space and the 

overall objective function evaluation time increase 

exponentially [55-57]. As a result, it is required to 

improve existing hyper-parameter optimization 

algorithms in order to lessen the impact of huge 

search spaces on execution time. 

Based on the previous experiment, the best-

performing forecasting model achieved by using 

KNN with the PSO method will compare with the 

ARIMA model that belongs to Time series 

forecasting techniques. The comparison results have 

recorded in Table 1. 

The auto.arima() function [58, 59] was applied to 

determine the best hyper-parameters values 

ARIMA(𝑝, 𝑞, 𝑑) for the ARIMA model. The optimal 

parameters results and RMSE value for all the three 

areas are shown in Table 12. 

Similar to the previous experiment, the two 

models have trained with the first three years (from 

2015 to 2018) and kept the last year (2019) for 

forecasting. The results for daily electricity 

consumption forecast in 2019 are shown in Fig. 4.  

It can be observed from Fig. 4, the forecasting 

curve for KNN-PSO model more fitted with actual 

daily electricity consumption curve, while there are 

gap between the forecasting curve for ARIMA model 

and actual daily electricity consumption curve. 

Because the KNN-PSO model is more resilient in 

coping with missing data, this may be understood. 

Time-series modeling, on the other hand, employs the 

consecutive ordering of incoming data to describe 

temporal information. If any data is missing, data 

imputation is required, which augments another 

degree of complication to the data pretreatment 

process. Tabular data models, on the other hand, 

encapsulate temporal data using supplementary 

characteristics (such as holiday day and day type) and 

hence do not suffer if any data is absent. 

In Table 13, the RMSE is used to assess the 

performance of the KNN-PSO and ARIMA models. 

The KNN-PSO surpasses the ARIMA because it has 

the lowest RMSE across all metropolitan regions. 

Among the examined models, the suggested model 

(KNN-PSO) has the greatest prediction accuracy. 

The prediction accuracy for the proposed model 

(KNN- PSO) with benchmark models is shown in Fig.  

 
Table 13. Performance evaluation of KNN-PSO and 

ARIMA models  

City ARIMA   KNN-PSO 

Los Angeles 25.142 5.982958 

Sacramento 16.472 3.962065 

New York 40.232 19.65249 

 

 
(a) 

 
(b) 

 
(c) 

Figure. 5 Prediction results for the KNN-PSO model and 

benchmark models: (a) Los Angeles, (b)New York, and 

(c) Sacramento City 

 

5. The KNN- PSO model outperforms the 5-

parameter, degree hour, decomposed, and other 

baseline machine learning models (lightGBM and 

NN) in all three metropolitan areas. It can be  
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(a) 

 
(b) 

 
(c) 

Figure. 6 KNN-PSO model predictions results before and 

after the COVID-19 lockdown: (a) Los Angeles, (b)New 

York, and (c) Sacramento city 

 

concluded that the proposed model has the highest 

prediction accuracy among the evaluated models. 

The third question was how government and 

individual measures (e.g., stay-at-home, corporate 

closure, reduced operation, and shelter-in-place) to 

mitigate the COVID-19 outbreak in U.S. cities 

impacted city-level power usage. City-scale 

electricity use can indicate shutdown severity in real 

time. 

The KNN-PSO model was chosen to assess the 

effect of COVID-19 on city-scale consumption of 

power because of its superior accuracy when 

compared to other models investigated. It uses the 

period of the pre-pandemic from July 2015 to March 

2020 to train the KNN-PSO model, and then employs 

the learned model to forecast power consumption 

after the pandemic. Our hypothesis is that if energy 

consumption patterns altered as a result of the 

COVID-19 pandemic, the model trained with data 

acquired before the pandemic would be incapable of 

reliably forecasting energy consumption after the 

pandemic. Fig. 6 displays the anticipated results. 

Fig. 6 illustrates that the forecasted electricity 

consumption used after the lockdown period was 

over than the real electricity usage. In contrast, 

previous to the lockdown period, power demand 

predictions were correct (dotted orange line). This 

disparity between expected and actual electricity use 

after mid-March 2020 demonstrates that the COVID-

19 epidemic altered electricity demand patterns. 

During the COVID-19 pandemic, daily power usage 

in the urban zones of New York, Los Angeles, and 

Sacramento declined by 10 to 20 percent compared 

to the month prior to the outbreak. 

6. Conclusion  

This study utilizes three distinct machine learning 

models (RF, SVM, and KNN) to forecast the power 

consumption of three metropolitan regions in the 

United States: New York, Los Angeles, and 

Sacramento. To improve the accuracy of the 

predictions, hyperparameter tuning was utilized to 

optimize the performance of each machine learning 

model. The proposed study found that the supervised 

machine learning forecasting techniques (SVM, RF, 

and KNN) performed better than two metaheuristics 

optimization approaches, PSO and GA. The 

performance of each technique using both default and 

tuned hyperparameters values was evaluated. 

Additionally, the obtained results in this paper were 

compared to a Time series forecasting technique, 

specifically the ARIMA model. Before and after 

hyperparameter tuning, the KNN regressor model 

had the highest degree of accuracy, with PSO 

optimization delivering the lowest RMSE score. 

Lastly, the achieved data in the proposed work found 

that during the COVID-19 pandemic lockdown 

period in 2020, power consumption in the three 

metropolitan regions declined from 2% to 12% 

compared to the same month in 2019. 
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