
Received:  March 14, 2023.     Revised: May 10, 2023.                                                                                                    191 

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023           DOI: 10.22266/ijies2023.0831.16 

 

 
Examining Adversarial Examples Impact on Artificial Intelligence Based 

Blockage Prediction Systems for Ultra-Wideband Communication in Indoor 

Environments 

 

Asmaa Ftaimi1*          Tomader Mazri1 

 
1Laboratory of Electrical and Telecommunication Engineering Ibn Tofail Science University, Kenitra, Morocco 

* Corresponding author’s Email: a.ftaimi@gmail.com 

 

 
Abstract: Recently, much effort and interest have been devoted to developing accurate and reliable blockage 

prediction systems. The latest research tends to apply artificial intelligence to enhance blockage prediction systems' 

accuracy, especially when dealing with non-line-of-sight radio signal propagation. However, AI models can carry 

inherent vulnerabilities that might damage the relevant system. Therefore, this paper aims to examine the effect of 

adversarial examples on AI-based blockage prediction systems. By performing adversarial example attacks on the 

AI-based blockage prediction model, we have shown the drastic impact on root mean square error that has arisen 

from 0.26 to 0.82 after introducing adversarial examples with 0.08 magnitude. Additionally, we have proposed a 

defensive approach based on encryption techniques to proactively prevent further compromise of the targeted system. 

The proposed method not only enhances data privacy but also help to prevent adversarial attacks that exploit 

transmitted data.  
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1. Introduction 

In recent years, the need for full context 

awareness and perfect knowledge and understanding 

of the surrounding environment has become an 

important requirement in several crucial services. 

Several applications have to turn to the use of a 

variety of sensors to build efficient positioning 

systems with high reliability and accuracy. Unlike 

visual sensing technologies, such as cameras, which 

can be damaged by rain or lightning [1], Wireless 

radio communication systems tend to be most suited 

for this mission as they are hardly influenced by 

weather conditions. Many wireless radio 

technologies have been used for object positioning, 

namely WI-FI (wireless-fidelity), Bluetooth and 

RFID (radio-frequency-identification). Nevertheless, 

ultra-wideband (UWB) technology tends to offer 

better accuracy, a high data throughput, improved 

temporal resolution, and reduced power usage [2]. 

UWB represents a radio communication technology 

that uses short electromagnetic pulses to reliably 

transmit data. It provides a lot of information with 

high accuracy, making it the most widely used 

technology for obstacle detection and context 

awareness. UWB technologies show great promise 

for location and positioning systems [3]. They are 

currently being considered for intelligent 

transportation systems, robotics, 

telecommunications, and industrial applications, as 

shown in Fig. 1. 

However, radio signals can be susceptible to 

several issues, especially attenuation, reflection, and 

blockage caused by physical obstacles in the indoor 

environment [4]. Therefore, a key challenge 

encountered in positioning and context awareness 

systems lies in designing highly accurate blockage 

detection and prediction systems. Notably, several 

experiments have revealed that under non-line-of-

sight (NLOS), the received signal might be 

overwhelmed by the noise resulting from multipath 

components. Further studies have reported the 

potential of AI models to substantially improve the 
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accuracy of indoor obstacle identification by 

significantly improving blockage prediction and 

recognizing NLOS situations [5]. 

Indeed, deep learning models have recently been 

employed in UWB communication to harness the 

intriguing properties of UWB signals [6]. UWB 

technology uses electromagnetic waves which 

propagate over wireless channel carrying high-

resolution information about the environment, which 

considerably contributes to obstacle sensing and 

identification [7]. Nevertheless, the wireless 

transmission channel is eligible to be exploited 

abusively by adversarial attackers who introduce 

carefully crafted malicious perturbations on the 

receiver side by using illicit transmitters. This type 

of attack is particularly relevant for AI-driven 

blockage prediction systems [8]. 

Recent studies have clearly indicated that 

machine learning models carry inherent 

vulnerabilities that attackers can leverage to perform 

adversarial attacks on the targeted system [9]. 

Several adversarial attacks have been recognized by 

the research community as potentially damaging 

towards DNN models utilized in wireless 

communication systems [10]. Some of these 

adversarial attacks tend to be difficult to detect and 

are more focused on the signal classification 

functionality in wireless communication systems, 

trying to increase the error rates of signal 

classification. In such attacks, the adversary injects a 

small, carefully crafted perturbation which alters the 

original signal and generates a final signal that the 

receiver would most likely misclassify [11]. 

The above-mentioned aspects highlight both the 

feasibility and the simplicity of executing 

adversarial attacks and creating potentially 

disruptive impacts on wireless systems. Although, 

despite the potential threats arising from AI-driven 

blockage prediction systems, few research studies 

were dedicated to examining the security aspect of 

such systems. Additionally, sensing systems are 

being widely used in highly critical and sensitive 

applications, although they are vulnerable to 

adversarial attacks. For instance, UWB 

communication is commonly employed in mobile 

and wireless communication services and is being 

considered in 6G (sixth Generation networks) 

networks [12]. 

Therefore, this work seeks to focus on 

adversarial example attacks that might potentially 

target AI-driven blockage prediction models in 

UWB communication systems. This paper will 

examine extensively the security aspect of these 

models and their robustness to adversarial examples 

attacks, its main contribution involves: 

 

- Highlighting the potential threat that 

adversarial attacks might represent to AI-driven 

blockage prediction systems. 

- Analysing the impact of adversarial attacks on 

the UWB blockage prediction systems in an 

indoor environment by designing and 

performing an FGSM attack and examining its 

impact on the targeted model. 

- Proposing a solution to prevent adversarial 

examples which mainly enfold encryption 

techniques that might be considered to protect 

the integrity of the targeted systems. 

 

In the following section of this paper, we will 

extensively review the relevant works in the 

literature and analyse the different approaches 

adopted regarding the issue of deep learning model 

security in AI and UWB-based blockage prediction 

systems. 

Afterwards, we will outline the suggested 

approach to investigate adversarial attacks' impact  

 

 

  
Figure. 1 Key application areas of ultra-wideband technology 
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on such systems. We will present both the 

theoretical system as well as the experimental setups 

used in this study. Moreover, the fourth section of 

this paper is dedicated to presenting the optimisation 

approach employed to create adversarial 

perturbations. 

The simulation outcomes will be explained in 

section five where we will highlight the impact of 

the FGSM attack on our AI-based blockage 

prediction system. In the sixth section, we will 

propose a solution that might be effective to protect 

the targeted systems from adversarial examples. 

2. Related works 

We will highlight below relevant work focused 

on security issues emerging from inherent 

vulnerabilities in AI models.  

Despite the significant work regarding the 

embedding of artificial intelligence in blockage 

prediction systems [13-18], few research studies 

have been conducted in the security context [19-20].  

Notably, a very limited number of research 

studies have been devoted to adversarial attacks 

originating from UWB communication systems 

[21]. Some research efforts have been devoted to 

studying jamming attacks that consist of flooding 

the UWB channel with interfering signals to disrupt 

legitimate data transmission [22]. Other work has 

instead focused on eavesdropping on UWB 

communications that involves capturing sensitive 

transmitted information [23]. While other research 

has instead studied spoofing attacks [24], where 

fraudulent UWB signals are being emitted to fool 

the receiver into accepting false information.  

Fewer papers yet have tackled the issue of 

security in blockage prediction systems using UWB 

technologies. Indeed, M. Singh et al. [25] have 

reviewed the issue of attacks in UWB localization 

systems, although their work rather concentrates on 

distance enlargement attacks where the attacker can 

inject a distorted signal to make it difficult for the 

receiver to identify the original one. 

We believe this research paper will be the first to 

examine adversarial examples effect on AI-based 

blockage prediction systems in UWB 

communication. Moreover, we suggest in this paper 

a novel approach to defending against these attacks, 

which differs from the conventional strategies 

described in the literature. 

One of the mitigation techniques that researchers 

in the area of adversarial learning have proposed to 

protect the targeted model from adversarial example 

attacks is adversarial training [26]. This technique 

consists in introducing adversarial examples into 

input data to deceive the deep neural network 

(DNN) model [27]. The existence of several 

approaches to generate adversarial perturbations 

renders defensive mechanisms more challenging 

using this technique. Indeed, the attacker can easily 

employ a method that hasn't been previously 

employed by the defender during adversarial 

training [28]. Additionally, the usage of several 

techniques to generate adversarial examples during 

adversarial training might significantly reduce the 

target model's accuracy [29]. 

Another defensive mechanism, known as 

defensive distillation [30], has been proposed by N. 

Papernot et al. [31] to reduce the drastic effect of 

adversarial examples on DNN models. This 

approach relies on the distillation method suggested 

by Hinton et al. [32] to achieve a reduced DNN 

architecture and therefore optimize computing 

resources without degrading the model's accuracy. 

The main idea underlying this technique consists in 

extracting the class probability vector generated 

using an initial DNN architecture to proceed to the 

training of a second DNN with diminished 

dimensionality. It has been shown that this technique 

can reduce the robustness of adversarial examples 

from 95% to less than 0.5% while having a low 

impact on the architecture and the model accuracy 

[33]. However, this defensive mechanism remains 

not a universal approach [29], in the sense that it 

cannot be fully generalized to all types of attacks 

and different AI-driven systems. 

Our proposed solution is mainly driven by the 

data privacy approach, it relies on applying 

encryption algorithms to prevent the attacker from 

accessing the data used by the AI model and 

therefore, render the task of generating robust 

adversarial examples practically unachievable. 

Furthermore, our method is highly adaptable as it 

can be applied regardless of the strategy employed 

by the opponent to craft the adversarial 

perturbations introduced to target the DNN model. 

Moreover, it can be generalized as a defensive 

strategy against data poisoning and evasion attacks 

that consist in introducing carefully crafted 

perturbations to induce AI models into generating 

inaccurate results, since it applies an encryption 

algorithm on data before its transmitted to the AI 

model, which ensures that attackers cannot intercept 

and access the transmitted data. 

3. System model and experimental setup 

Adversaries may adopt different attack strategies 

according to their targets, their capabilities, and their 

knowledge of their attack's target system. But  
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Figure. 2 FGSM attack process carried out on AI-based 

blockage prediction system in UWB communication 

 

generally, executing an adversarial attack consists 

purely of resolving a challenging optimization 

problem [34]. Indeed, most often, the attacker aims 

to identify an imperceptible perturbation ɳ to append 

the input data x of the DNN model to generate 

completely different output from the one expected if 

no adversarial example is involved as illustrated in 

Fig. 2. Moreover, the most effective approach to 

identifying such a perturbation consists of 

maximizing the cost function, which serves to 

determine the disparity within the model's 

forecasted values and the expected output as 

illustrated in (1) and (2): 

 

𝑥′ = 𝑥 +  𝜂                                                      (1)  

 

Where  ɳ = 𝑎𝑟𝑔𝑚𝑖𝑛 {µ 𝜖 ℝ ∶ 𝐹ɵ(𝑥) ≠
𝐹ɵ(𝑥 +  µ)} 

 

ℒ(ɵ𝑖, 𝑥𝑖) = 𝑦𝑖 − 𝐹ɵ(𝑥𝑖), ɵ𝑖 𝜖 ɵ, 𝑥𝑖 𝜖𝑋, 𝑦𝑖  𝜖𝑌    (2) 

 

Where ɵ = {ɵ1, ɵ2, … , ɵ𝑛}, 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛}  and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}  are 

respectively the DNN model’s parameters, the input 

data and the output data vectors with n elements, 

while F  is a representative function of the DNN 

model that minimizes the cost function. 

In this work, we will consider a communications 

setup where an AI-based blockage prediction system 

uses data collected from UWB antennas placed in an 

indoor environment. The blockage prediction system 

provides a real-time perception of the ambient 

environment and identifies existing obstacles in the  
 

 
Figure. 3 Scenario of a direct path between the tag and 

the anchors (LOS) and blockage situation (NLOS) due to 

the existence of an obstacle between the tag and the 

anchor2 

 

surrounding area through the recognition of non-line 

of sight (NLOS) situations [35] as shown in Fig. 3.  

We designed our deep learning model, to 

thoroughly address this challenge of recognizing 

blocking situations arising from encountered 

obstacles. Once the deep learning model is well-

trained, it can be used to determine if the UWB tag 

is experiencing an NLOS situation.  

To simplify our setup, we will only consider a 

single anchor that will communicate with the UWB 

tag. The tag will be attached to the tracked mobile 

object while the Anchor is used to capture the UWB 

signal emitted by the Tag. Nevertheless, to 

determine the NLOS situations we will equip our 

UWB system with a Deep Learning model that will 

serve to recognize the blockage situations caused by 

the presence of obstacles [17]. 

The Deep learning model used in this simulation 

is composed of 6 layers as illustrated in Fig. 4. To 

achieve maximum accuracy, we have performed 

hyperparameters tuning to determine both the layers 

and the neurons that would be used in the DNN 

model. We have also opted for RELU and 

SOFTMAX as activation functions to transform the 

data representation as it flows through the DNN 

models’ layers. The sigmoid function has been 

rather applied in the last layer to assign the 

appropriate classification to each input data. Indeed, 

this study focuses on a binary classification 

problem. Hence, class “1” is assigned to the NLOS 

situations while “0” represents the class associated 

with the LOS situations. 

The dataset used in this setup is developed by K. 

Bregar et al. [8] and has been generated using an 

SNPN-UWB board within a DecaWave DWM1000 

UWB radio module. All the observations have been  
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Figure. 4 The deep learning model architecture employed 

for LOS/NLOS classification problem 
 

performed at seven different indoor locations (two 

different offices, a small apartment, a workshop, a 

common room equipped with both kitchen and a 

small living room, a sleeping room, and a boiler-

room) [1] [36]. From each indoor location, 3000 

data samples for LOS situations and 3000 data 

samples for NLOS situations have been collected.  

Overall, 42,000 samples have been obtained that 

included 21,000 data samples for LOS channel 

conditions and 21,000 data samples for NLOS 

conditions distributed. 

4. Adversarial examples attack  

Our research addresses the issue of security of 

AI-driven intelligent environment perception 

systems. Therefore, we will review an adversarial 

attack scenario where the attacker intends to 

remotely corrupt our intelligent blockage prediction 

system by compromising the integrity of the deep 

learning model input data and hence leading to 

serious performance degradation within our 

intelligent obstacle sensing system. Effectively, the 

attacker may introduce perturbations into our input 

data that depict the signal obtained from the UWB 

tag. These perturbations have been carefully crafted 

to be imperceptible while misleading the model to 

produce incorrect classifications. 

In this study we have employed fast-gradient-

sign method known as FGSM attack. The latter has 

been utilized in the building process of perturbations 

specifically tailored to target our AI-based blockage 

prediction system.  

This intuitive attack developed by Goodfellow 

et. al. [19] has been conceived to attack DNN 

models by employing gradients. The premise behind 

this attack relies on the tuning of the input data to 

maximize the loss function based on the gradients 

used in the backpropagations as follows in (3): 

 

𝑥∗ = 𝑥 + 𝜀𝑠𝑖𝑔𝑛(∆𝑥ℒɵ(𝑥; 𝑦))                         (3) 

Where ℒɵ represent the utilized loss function at 

the DNN model’s training and ɵ represents the DNN 

model’s parameters. The 𝑠𝑖𝑔𝑛() indicates the sign 

function and 𝜀 indicates the perturbation magnitude. 

In our simulation, we have considered a data 

split of 80:20, therefore 33600 data samples were 

used for the model training while 8400 data samples 

were exploited in the validation phase. We have 

carried out a pre-processing of our data. In this 

stage, we have performed feature engineering, 

which consists in retrieving features from raw data 

to identify the best representation for the data 

samples that approaches the task being addressed by 

the DNN model.  

During the feature selection step, we have 

implemented the Univariate Selection methods that 

involve applying statistical measures such as the 

correlation between the input and output variables 

calculated using Chi-Squared to determine the 

features to be selected [37]. The choice of this 

technique was driven by its reduced computational 

time and lower memory requirements when 

compared to other feature selection methods. Thus, 

we have identified the features to be used following 

the percentile that provides the highest score. Once 

this process was accomplished, we retained 4% of 

the features from raw data, i.e., 41 selected features. 

Given that our intelligent blockage prediction 

system deals with a binary classification problem 

(LOS or NLOS situation), the most suitable loss 

function to apply in our case would be binary cross 

entropy. To obtain the best accuracy, we have used a 

batch sized 450 and we have set up epochs at 600. 

5. Simulation results 

The obtained result after embedding DNN model 

are extensively described in the third section. 

Indeed, using the previous hyperparameters, we 

achieve a test accuracy of 0.91 while the obtained 

test loss is 0.207 as mentioned in Figs. 5 and 6. We 

have also evaluated the reliability of our deep 

learning model by applying the root mean square 

error method and we have found a RMSE of 0.26. 

Our approach consists primarily of exploring the 

scenario where the opponent possesses a full 

knowledge of the targeted DNN model. Such attack 

is commonly defined as "white-box" attack. The 

FGSM attack suggested by Goodfellow et al [19] is 

performed by introducing carefully crafted small 

perturbations that maximize the loss function mainly 

used to train the model to achieve maximum 

accuracy. 

To assess the accuracy of the predicted values 

produced by the DNN model, we have applied error  
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Figure. 5 DNN model’s accuracy at the training and the 

validation steps where the blue line illustrates the training 

accuracy while the orange one corresponds to the 

validation accuracy 

 

 
Figure. 6 Graph of the training and the validation loss 

where the blue line characterises the training loss while 

the orange one corresponds to the validation loss 

 
Table 1. RMSE measured for a range of perturbation 

magnitude after carrying out FGSM attack 

Perturbation Magnitude 

(Epsilon) 

RMSE 

0.01 0.42 

0.02 0.58 

0.03 0.68 

0.04 0.75 

0.05 0.78 

0.06 0.80 

0.07 0.81 

0.08 0.82 

0.09 0.82 

0.1 0.82 

 

 

functions. 

We have implemented the root mean square 

error (RMSE) method [38] to carry out an 

estimation of average disparity of predicted values 

from their corresponding observations. The 

computed outcomes are reported in Table 1.  

6. Proposed solution 

Data privacy can be an important approach to 

consider in preventing adversarial attacks. Data 

privacy might be effective to prevent adversarial 

examples by restricting amount of information that 

an attacker could access to potentially craft 

malicious perturbations capable of deceiving the 

model. Our proposed approach involves performing 

backhaul data encryption before its transmitted from 

the anchors to the final AI model. In this way, 

encryption can help to ensure that the data used by 

AI model remains private, even when multiple 

anchors are involved in the blockage prediction 

system.  

Our method consists of encrypting data using 

asymmetric algorithms using a public key before 

being transmitted to the server where the AI model 

is executed. The received data is thereafter 

decrypted by the server using the private key. 

Afterwards, decrypted data is processed by AI 

model to predict the classification of the blockage 

situation: either LOS or NLOS situation as 

illustrated in Fig. 7. 

To comprehensively assess the proposed 

approach, we need to examine in detail the impact of 

encryption on the performance of the blockage 

prediction system. While encryption can be an 

efficient approach to protecting data in AI-based 

blockage prediction systems, it can also introduce 

additional challenges that must be diligently 

addressed. Indeed, encryption algorithms can be 

computationally expensive, which may potentially  

 

 
Figure. 7 Blockage prediction process using encryption 

techniques or UWB communication systems 
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Figure. 8 Blockage prediction process for both scenarios 

using encryption and without encryption 

 

slow down the processing time of the model.  

Therefore, we will explore a setup using TDoA 

(time difference of arrival) algorithm. The blockage 

prediction process is initiated from the tag 

throughout a flash signal emitted to all anchors. 

Each anchor transmits encrypted backhaul data to 

the blockage prediction Engine. The latter decrypts 

the received encrypted data then processes it and 

computes the LOS situation and finally responds to 

the anchor with the predicted blockage situation. 

Fig. 8. Illustrates the process of blockage 

prediction considering both scenarios: with and 

without encryption. 

The estimated time normally taken by the 

blockage prediction engine to reply to the blink 

signal when plain data is transmitted from the 

anchor to the AI model is determined by the Eq. (4): 

 

𝑇𝑟𝑒𝑝𝑙𝑦 = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑝𝑟𝑜𝑐                                  (4) 

 

Where 𝑇𝑟𝑒𝑝𝑙𝑦, 𝑇𝑡𝑟𝑎𝑛𝑠 and 𝑇𝑝𝑟𝑜𝑐  are respectively 

the time to reply, the time spent in data transmission 

and the time required for data processing to predict 

the Los situation. 

As explained above, the proposed process 

requires the encryption of data using the asymmetric 

key before it is transmitted to the server. In this case, 

the expected time period needed by the blocking 

prediction model to respond to the blink signal is 

assessed by Eq. (5):  

 

𝑇𝑟𝑒𝑝𝑙𝑦 = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝐸𝑛𝑐 + 𝑇𝐷𝑒𝑐 + 𝑇𝑝𝑟𝑜𝑐          (5) 

 

Where 𝑇𝑟𝑒𝑝𝑙𝑦, 𝑇𝑡𝑟𝑎𝑛𝑠, 𝑇𝐸𝑛𝑐 , 𝑇𝐷𝑒𝑐 , and 𝑇𝑝𝑟𝑜𝑐  are 

respectively the time to reply, the time spent in data 

transmission, the delay due to data encryption using 

the public key, the delay needed for data decryption 

using the private key and the time required for data 

processing to predict the Los situation.  

Therefore, data encryption will add a delay to 

the computation time consumed by the blockage 

prediction system estimated by 𝑇𝐸𝑛𝑐 + 𝑇𝐷𝑒𝑐 . As a 

result, it is crucial to select the appropriate 

encryption algorithm which not only guarantees a 

high level of data privacy but also reduces 

encryption and decryption delays. 

In this way, our method leads to the optimization 

problem defined in Eq. (6). That consists in 

determining the algorithm that minimizes the time 

delay obtained in the previous paragraph. 

 

ℒ𝑚𝑖𝑛 = argmin
ℒ ∈ 𝒟

(𝑇𝐸𝑛𝑐 + 𝑇𝐷𝑒𝑐)                  (6)     

 

Where ℒ𝑚𝑖𝑛 , ℒ , 𝒟 , 𝑇𝐸𝑛𝑐  and 𝑇𝐷𝑒𝑐  are 

respectively the optimal algorithm, encryption 

algorithm, the distribution of encryption algorithms, 

the delay due to data encryption using the public 

key, the delay needed for data decryption using the 

private key. 

7. Discussion 

This work has addressed the security issue of AI-

based blockage prediction systems for UWB 

communication in indoor environments. The 

approach we have considered is designed to cover 

several aspects, notably the study of the impact of 

adversarial attacks on AI-driven blockage prediction 

systems and the proposition of a defensive strategy 

to reduce adversarial examples' robustness. 

Indeed, we have designed a deep learning model 

to efficiently predict non-line-of-sight situations. 

Later, we performed the FGSM attack to generate 

carefully crafted malicious perturbations. With the 

hypothesis of white-box attack [39] that holds 

significant importance since as long as the adversary 

has a comprehensive understanding of the targeted 

system, he can effectively build quasi-imperceptible 

perturbations [40]. Furthermore, we have shown that 

even attacks with small noise magnitudes have 

significantly impacted the predictions of the targeted 

model with a large error rate. For example, we 
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noticed a rise of RMSE up to 0,42 for a noise 

magnitude of epsilon 0.001. With higher 

perturbation magnitudes, the error rate exponentially 

increased making the model unable to produce 

correct classifications. According to the result 

obtained in the previous simulation, the RMSE has 

reached 0,8 with an epsilon of 0,06. 

Furthermore, we have considered data privacy as 

a key element in our defensive strategy to protect 

the AI model from adversarial examples. We have 

proposed a method based on data encryption to 

protect it from unauthorized access. Indeed, 

encryption techniques help to prevent attackers from 

manipulating input data without being detected. 

Hence, the proposed method is designed to meet the 

privacy, integrity and availability requirements of 

the blockage prediction system [41]. 

However, as mentioned in the section above, 

encryption can generate delays that might slow 

down the processing time of the AI model and thus 

impact its performance. This observation has been 

taken into consideration when selecting the 

encryption algorithm that would minimise the delays 

resulting from data encryption and decryption. 

In this paper, we have developed the conceptual 

and theoretical basis by defining the optimization 

problem which is the main key in our proposed 

method. We are on the way to validating these 

results by simulation in our future work. We intend 

to run an extensive comparative study of encryption 

algorithms to select the most suitable to our 

experimental setup and asses both the security and 

the performance impact after the implementation of 

encryption algorithms in the AI-based blockage 

prediction system. 

8. Conclusion 

The study conducted in this paper has 

demonstrated the potential threat posed by 

adversarial examples against deep neural networks 

employed in blockage prediction systems. In this 

work, we have suggested a comprehensive study in 

which we have highlighted the drastic effect of 

adversarial attacks on DNN models employed to 

predict NLOS situations for UWB communication 

systems. Throughout the study conducted in paper, 

we have established the theoretical basis of our 

proposed method and have extensively explained the 

importance of addressing this trade-off between 

model robustness to adversarial attacks and the 

subsequent impact on AI model performance in 

future research projects to enable secure and reliable 

use of AI technology, promoting its many 

advantages while mitigating its risks. 
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