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Abstract: Intravascular ultrasound (IVUS) is suitable for evaluating plaque and lesion morphology features and helps 

to make clinical decisions during the treatment of coronary artery disease (CAD). IVUS remain a gold standard in 

accessing atherosclerosis plaques, coronary lesions, and stenosis. Even though plaque classification by IVUS is 

essential for risk stratification, frame-by-frame analysis of an entire vascular segment is labor intensive. In recent times, 

in the field of deep learning (DL), convolutional neural network (CNN) has been intended to adaptively and 

automatically determine the spatial hierarchy through backpropagation. The study develops an optimal deep transfer 

learning based on atherosclerotic plaque and calcification on intravascular ultrasound images (ODTL-APCIUI) 

technique. The presented ODTL-APCIUI technique aims to classify atherosclerotic plaque and calcification. To 

accomplish this, the presented ODTL-APCIUI technique preprocesses the IVUS images by Gaussian filtering (GF) 

technique. In addition, U2Net model is applied for the segmentation process with Adam optimizer based 

hyperparameter tuning. Moreover, the ODTL-APCIUI technique uses DenseNet-169 model for feature extraction 

purposes. Furthermore, the ODTL-APCIUI technique exploits stacked autoencoder (SAE) for classification process. 

Finally, Harris Hawks optimization (HHO) algorithm is exploited for the hyperparameter adjustment of the SAE 

approach. The performance assessment of ODTL-APCIUI algorithm is tested using medical images and the results are 

investigated under different metrics. The experimental outcomes demonstrated that the ODTL-APCIUI technique has 

gained better performance with maximum accuracy of 97.19%, precision of 94.09%, sensitivity of 97.17%, specificity 

of 97.19%, and F-score of 92.52%. 

Keywords: Intravascular ultrasound images, Atherosclerotic plaque detection, Convolution neural network, Deep 

learning, Harris hawks optimization. 

 

 

1. Introduction 

Diabetes, smoking, and hypertension are amongst 

the main risk factor for atherosclerosis which is the 

major reason for cardiovascular disease (CVD). 

Atherosclerosis is the progress of cholesterol, fats, 

and other forms and substances through a slower 

progression. After a while, this plaque narrows the 

luminal regions and thickens the walls of arteries [1]. 

Hence, intracoronary imaging of vessel wall 

architecture is critical to assess plaque regression or 

progression during prognosis, diagnosis, and 

treatment [2]. Intravascular ultrasound (IVUS) and 

coronary angiography are conventional imaging 

modalities for CVD diagnoses. Angiography is the 

more common approach for intracoronary imaging 

through catheterization and is implemented alongside 

X-ray analysis which provides data on the luminal 

size of arteries [3]. IVUS is a helpful assistant to 

angiography since it gives pathological and 

morphological real time data on plaque and artery 

wall [4]. Plaque burden is positioned between the 

luminal borders and media–adventitia in the vessel 

wall. Generally, the diagnosis of media–adventitia 

border is lesser challenging than luminal border since 

the media layer encompasses smooth cells 

demonstrated as a dark ring in IVUS image [5]. On 

the other hand, differentiating the intima layer is  
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Figure. 1 Sample IVUS image: (a) absence of 

calcification and (b) presence of calcification 

 

somewhat challenging due to great scattering from 

erythrocytes within the lumen. Thus, automated 

estimate of the luminal borders and media–adventitia 

is indispensable to evaluate the degree of stenosis and 

luminal region during IVUS-assisted diagnoses [6]. 

Whereas many automatic solutions have been 

introduced for assisting IVUS segmentation, not any 

technique has demonstrated its potential to precisely 

identify the external elastic membrane (EEM) and 

lumen border and process IVUS images in real-time 

[7]. Fig. 1 shows the samples IVUS image. 

Due to the popularization of imaging inspection 

and the ongoing progress of imaging technology, 

enormous image dataset has been produced [8]. In the 

meantime, big data is a major driver in the 

advancement of accuracy medicine researchers and 

clinicians alike have greater opportunity to engage in 

the evaluation and development of novel image 

analysis algorithm, with the final objective of 

generating new tools to enhance patient care [9]. 

Lately, artificial intelligence (AI) technology is 

considered a stimulating study topic in different areas, 

as considerable progress in AI has occurred. The 

application of AI enables the recognition of the data 

that enhances medical work efficacy. In addition, AI 

has been recently propelled towards the study of 

CVD imaging [10]. Deep learning (DL) methodology 

had already started to find medical applications in 

enabling the accurate and rapid processing of larger 

imaging datasets. They rely on learning from larger 

dataset of human annotation and utilize this data for 

training algorithmic model that can able to process 

images and replicate human performance within a 

second.  

This study develops an optimal deep transfer 

learning based on atherosclerotic plaque and 

calcification on intravascular ultrasound images 

(ODTL-APCIUI) technique. The presented ODTL-

APCIUI technique performs preprocessing using 

Gaussian filtering (GF) technique. Besides, U2Net 

model has applied for the segmentation process with 

Adam optimizer based hyperparameter tuning. In 

addition, the ODTL-APCIUI technique uses 

DenseNet-169 model for feature extraction purposes. 

Moreover, the ODTL-APCIUI technique exploits 

stacked autoencoder (SAE) for classification process. 

At the final stage, Harris hawks optimization (HHO) 

algorithm is exploited for the hyperparameter 

adjustment of the SAE approach. The performance 

assessment of the ODTL-APCIUI approach is tested 

using medical images and the results are examined 

under different metrics. In short, the paper 

contributions are summarized as follows. 

 

• An intelligent ODTL-APCIUI technique 

comprising of pre-processing, Adam with U-

Net segmentation, DenseNet-169 based 

feature extraction, SAE classification, and 

HHO based parameter tuning is presented. To 

the best of our knowledge, the ODTL-APCIUI 

model has never presented in the literature.  

• A novel Adam optimizer with U-Net model is 

used for the segmentation of the pre-processed 

images. 

• Hyperparameter optimization of the SAE 

model using HHO algorithm using cross-

validation helps to boost the predictive 

outcome of the ODTL-APCIUI model for 

unseen data. 

 

The rest of the paper is organized as follows. Section 

2 provides the related works and section 3 offers the 

proposed model. Then, section 4 gives the result 

analysis and section 5 concludes the paper. 

2. Related works 

Bargsten et al. [11] scientifically examined 

distinct capsule network framework variants and 

enhanced the accuracy of the segmentation of IVUS 

images. Later, the capsule network is compared to 

convolutional neural network (CNN) under different 

quantities of network parameters and training images. 

Outcomes compared to prior studies, the capsule 

network implements better while doubling more than 

a few capsule types afterwards every downsampling 

phase, similar to typical increase rate of feature map 

in CNN. Bajaj et al. [12] validate and develop a DL 

method based on the IVUS image segmentation 

sequence in real-time. Validation of the presented 

method can be performed in twenty vessels through 

the approximation of two skilled experts as the 

reference standard. The proposed technique seems to 

be precise and can able to segment higher-resolution 

real-time IVUS datasets. 

The authors in [13], proposed an end-to-end DL-

CNN for automatically identifying luminal regions, 

calcified plaque and media–adventitia borders in 

IVUS images. A total of 713 grayscale images from 
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eighteen patients has been exploited as training 

dataset. In [14], developed an automatic system with 

the DL technique for detecting the calcification 

presence and absence in coronary artery IVUS 

images. An effective benefit of DL, compared to 

other techniques is, it applies features and 

representations directly from the raw information, 

bypassing the requirement to extract feature, a 

common that needed in the conventional machine 

learning (ML) architecture. The kind of DL 

framework utilized is twenty seven layers of CNN 

using direct acyclic graph. 

Liu et al. [15] validated and developed an 

architecture for precise automatic quantification and 

detection of calcified plaque in coronary artery 

disease (CAD) as witnessed by IVUS. Calcified 

lesion was identified by training support vector 

classifiers for each IVUS A-line on annotated IVUS 

image, and post-processing using regional data. Then 

employed the architecture to thirty five IVUS 

pullbacks from all three widely applied IVUS 

systems. Cho et al. [16] developed an IVUS-based 

algorithm for categorizing calcified and attenuation 

plaque. The IVUS-based DL technique implemented 

accurate and fast calculation of the range of 

attenuated and calcified plaques in entire vessels. The 

data driven technique might help clinician easily 

recognize higher risk coronary lesion and makes 

treatment decision. Sofian et al. [17] presented an 

automatic DL system to identify the absence and 

presence of calcification in IVUS image. The 

traditional practice is for clinicians and radiologists 

to identify calcification through visual examination. 

The presented technique applied CNN, termed 

AlexNet, with six kinds of classifiers. In [18], a fully 

automated technique through an eight-layer U-Net is 

proposed for segmenting the area bounded by EEM 

and the coronary artery lumen. The dataset 

encompasses single-frequency and single-vendor 

IVUS information. Especially, the presented data 

augmentation of MeshGrid integrated with rotation 

and flip operations are performed which improve the 

efficiency. 

Several CAD models are existed in the literature to 

perform atherosclerotic plaque and calcification 

process. Though several ML and DL models for 

atherosclerotic plaque and calcification are available 

in the literature, it is still needed to enhance the 

classification performance. Owing to continual 

deepening of the model, the number of parameters of 

DL models also increases quickly which results in 

model overfitting. At the same time, different 

hyperparameters have a significant impact on the 

efficiency of the CNN model. Particularly, the  

 

 
Figure. 2 Workflow of ODTL-APCIUI approach 

 

hyperparameters such as epoch count, batch size, and 

learning rate selection are essential to attain effectual 

outcome. Since the trial-and-error method for 

hyperparameter tuning is a tedious and erroneous 

process, metaheuristic algorithms can be applied. 

Therefore, in this work, we employ HHO algorithm 

for the parameter selection of the SAE model. 

3. The proposed model 

In this study, we have developed a new ODTL-

APCIUI technique for the classification of 

atherosclerotic plaque and calcification on the IVUS 

images. The presented ODTL-APCIUI technique 

encompasses GF based preprocessing, U-Net 

segmentation, DenseNet-169 feature extraction, SAE 

based classification, and HHO based hyperparameter 

tuning. The design of HHO algorithm helps in the 

proper election of the hyperparameters of the SAE 

classification model. Fig. 2 depicts the workflow of 

ODTL-APCIUI approach. 

3.1 Image preprocessing using GF technique 

In this study, the proposed technique uses GF to 

get rid of the noise exists in the IVUS images. The 

GF approach is used for image filtering process that 

removes the noise content and enhances the image 

quality [19]. A 2D GF technique is used to improve 

the quality of the dental system.  The convolutional 

operation can be resolved using Gaussian function, 

and the Gaussian smoothing was attained by using the 

convolutional function. The Gaussian function in 1D 

can be formulated by Eq. (1): 

 

𝐺1𝐷(𝑥) =
1

√2𝜋𝜎
𝑒
−(

𝑥2

2𝜎2
)
             (1) 

 

The optimal smoothening filter of the image 

performs localization in the frequency and spatial  
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Table 1. Notations used 

Notation Meaning 

𝐺1𝐷(𝑥) 1D Gaussian function  

𝐺2𝐷(𝑥, 𝑦) 2D Gaussian function 

(𝑥, 𝑦) Cartesian coordinates of image 

𝜎 Standard deviation 

𝑔𝑡 Gradient 

𝑡 Time step 

𝛽1, 𝛽2 Exponential decay rate 

𝛼 Step size 

𝐿 Loss function 

𝑊1 Weighted matrix of encoding function 

𝑓 Encoder function 

𝑏1, 𝑏2 Bias vector 

𝑔 Decoder function 

𝑊2 Weighted matrix of decoding function 

𝑋𝑚 Average location of Hawks 

𝐸0 Initial escaping energy 

𝑇 Maximum number of iterations 

△ 𝑋(𝑛) Position vector of rabbits 

𝑢, 𝑣 Random values 

𝐸0 First energy 

𝑋𝑟𝑎𝑏bit Rabbit location 

 

domain while the ambiguity connection is satisfied as 

follows: 

 

∆𝑥∆𝜔 ≥
1

2
                             (2) 

 

The Gaussian operator in 2D is determined by the 

following expression: 

 

𝐺2𝐷(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−(

𝑥2+𝑦2

2𝜎2
)
                        (3) 

 

Where 𝜎 shows the standard deviation (SD) of 

Gaussian operator and (𝑥, 𝑦) indicates the Cartesian 

coordinates of an image.  

3.2 U2-Net segmentation 

For image segmentation process, the U2-Net 

model is applied in this work. The U2-net is a two-

stage nested U-architecture [20]. The outer layer is a 

larger U-architecture comprising eleven stages. All 

the stages are populated using a residual U-block 

(RSU) (inner layer). In theory, the nested U-

architecture allows the extraction of multiscale and 

multilevel features more effectively. It comprises 

three parts: (1) map fusion module, (2) encoder, and 

(3) decoder given as follows: 

 

• There are six phases in the encoder. All the stages 

are made up of RSU. In the RSU of the first 4 

phases, the feature maps are decreased for 

increasing the receptive field and to attain more 

largescale data. In the following two phases, 

dilated convolution is applied for replacing the 

pooling function. This phase is essential for 

preventing contextual data loss. The receptive field 

is improved while the feature map is not decreased. 

• The decoder stage has structure same as the 

encoder stage. All the decoder stages concatenate 

the up-sampled feature map from its preceding 

phase and symmetrical encoder phase as an input. 

• Feature map fusion through a deep supervision 

approach is the final phase employed for 

generating the probability map. It generates six 

side outputs. Then, this output was up-sampled to 

the size of input images and combined with the 

concatenation function. 

 

In summary, the U2-net architecture has lower 

memory and computing costs and deep architecture 

with rich multiscale features. Furthermore, as the U2-

net structure is based on the RSU block and doesn’t 

utilize pretrained backbone, it is easy and flexible to 

be adapted to working environment with low 

performance penalty. 

Adam is the first order gradient based stochastic 

objective function optimization technique [21] which 

incorporates the benefit of RMSProp and AdaGrad 

techniques. To tune the optimal hyperparameter, the 

Adam optimizer is applied; the former is exploited for 

the sparse gradient problem, and the final one is 

applied for non-linear and unfixed optimization 

issues. Adam has the benefit of higher computing 

efficacy, low memory requirements, and easier 

implementation. It is gradient diagonal scaling is 

invariant, therefore it is applicable to resolve 

problems with largescale data or parameters. For 

dissimilar parameters, Adam upgrades the weight of 

NN and adaptively alters the learning rate based on 

training data. The computation procedure of Adam 

optimizer is demonstrated in Algorithm 1. 

3.3 Feature extraction using DenseNet model 

To generate a useful set of feature vectors, the 

DenseNet-169 model is exploited. DenseNet is the 

new expansion to neural network (NN) applied for 

detecting visual objects. The DenseNet169 is process 

of DenseNet group. The DenseNet group was 

proposed to implement image classification [22]. 

DenseNet169 is greater than other DenseNet groups. 

The DenseNet model is used for connecting all the 

layers in a feedforward manner. Generally, the 

standard convolutional network takes 𝐿  layer. 

Furthermore, 𝐿 connecting presents amongst 𝐿 layer. 

That indicates one connection among all the layers  
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Algorithm 1: Pseudocode of Adam optimizer 

𝑔𝑡
2 represents the ce (𝑔𝑡⊙𝑔𝑡). Default settings for the tested ML problem are 𝛼 = 0.001, 𝛽1 =
0.9, 𝛽2 = 0.999, 𝑒 = 10

−8. All the operations on vector are element‐wise. Using 𝛽1
𝑡 and 𝛽2

𝑡 we 

describe 𝛽1 and 𝛽2 to the power 𝑡: 
Require: 𝛼: Step-size 

Require: 𝛽1, 𝛽2 ∈ [0,1): Exponential decay rate for the moment estimation 

Require: (𝜃): Stochastic objective function with 𝜃 variable  

Require: 𝜃0: Initial parameter vector 

𝑚0 ← 0 (Initialize first moment vector) 

𝑣0 ← 0 (Initialize second moment vector) 

𝑡 ← 0 (Initialize timestep) 

While 𝜃𝑡 not converged do 

𝑡 ← 𝑡 + 1 

𝑔𝑡 ← 𝛻𝜃𝑓𝑡(𝜃𝑡−1) (Get gradient wr.t. stochastic objective at 𝑡 timestep) 

𝑚𝑡 ← 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡 (Upgrade biased initial moment estimation) 

𝑣𝑡 ← 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2 (Upgrade biased second raw moment estimation) 

𝑚𝑏𝑡 ← 𝑚𝑡/(1 − 𝛽1
𝑡) (Evaluate bias‐corrected 1st-moment estimation) 

𝑣𝑏𝑡 ← 𝑣𝑡/(1 − 𝛽2
𝑡) (Evaluate bias‐corrected 2nd-moment estimation) 

𝜃𝑡 ← 𝜃𝑡−1 − 𝑎 ⋅ 𝑚𝑏𝑡/(√𝑣𝑏𝑡 + 𝜀) (Upgrade variable) 

End while 

Return 𝜃𝑡 (Resulting variable) 

 

 

and their succeeding layers. It attains L (L+1)/2 direct 

connection in the network. For all the layers as input, 

every presiding layer was exploited. For input of 

every succeeding layer, its feature maps are applied. 

It has several benefits in DenseNet. It decreases the 

gradient vanishing problems. The proposed 

framework has been assessed on competitive image 

recognition benchmark ImageNet and applied the 

load and store functions. The group of layers are 

defined if there is an entire similarity in the feature 

map dimensions at time of addition or concatenation. 

The batch normalization (BN) was performed by 

using downsampling with transition layer. The rate of 

development can be denoted as 𝐾.  

 

𝑘𝑙 = 𝑘0  +  𝑘 ×  (𝑙 −  1)                               (4) 

 

3.4 Image classification using SAE model 

In this work, the SAE model is exploited for 

classification process. Auto-encoder (AE) is a kind of 

unsupervised learning mechanism which 

encompasses hidden, output, and input layers [23]. 

The process of AE training encompasses decoding 

and encoding functions. The encoding function maps 

the input dataset for hidden representation, and 

decoder reconstructs input dataset in the hidden 

depiction. Given that the unlabelled input dataset 

{𝑥𝑛}𝑛=1
𝑁 , whereby 𝑥𝑛 ∈ 𝑅

𝑚×1, ℎ𝑛 shows the hidden 

encoder vector assessed from 𝑥𝑛 , and 𝑥 denotes the 

decoding vector of output. Thus, using the following 

equation, the encoder process can be performed: 

 

ℎ𝑛 = 𝑓(𝑊1𝑥𝑛 + 𝑏1)                                 (5) 

 

Now, 𝑓  denotes the encoder function, 𝑊1  indicates 

the weighted matrix of encoding function, and 𝑏1 

shows the bias vector. Using the given formula, the 

decoder method can be determined: 

 

𝑥𝑛 = 𝑔(𝑊2ℎ𝑛 + 𝑏2)                                   (6) 

 

Where 𝑔  shows the decoder function, 𝑊2  indicates 

the weight matrices of the decoding function, and 𝑏2 

represent the bias vector. 

The parameter set of the AE is improvised to 

reduce the reconstructed error: 

 

(𝜙(𝛩) = arg𝜃,𝜃′𝑚𝑖𝑛
1

𝑛
∑ 𝐿𝑛
𝑖=1 (𝑥𝑖, 𝑥𝑖)             (7) 

 

Here, 𝐿  indicates the loss function 𝐿(𝑥, 𝑥) = ‖𝑥 −
𝑥‖2.  The architecture of SAE is stacking 𝑛 

autoencoder into 𝑛  hidden layer through the 

unsupervised layer‐wise learning mechanism and 

fine‐tuned through a supervised manner. Fig. 3 

depicts the infrastructure of SAE. As a result, the 

SAE based method can be categorized by the 

following: 
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Figure. 3 Architecture of SAE 

 

1) The initial AE is trained through input 

dataset and accomplishes the learned feature 

vector; 

2) The feature vector of preceding layers is 

employed as the input for the subsequent 

layers, and the procedure is reiterated until 

the training ends. 

 

Then, backpropagation (BP) minimizes the cost 

function and updates the weight through labelled 

training subsets to accomplish fine-tuning. 

3.5 HHO based hyperparameter optimization 

process 

Finally, the HHO technique is applied to 

optimally tune the hyperparameter related to the SAE 

model. HHO is a metaheuristic technique and is 

executed as different solution for difficult challenges 

[24]. HHO is dependent upon the performance of 

Harris hawks are intelligent birds. It takes a 

mechanism which allows them for tracing the target 

while it could escape. This procedure was 

demonstrated by mathematical equation that permits 

computation implementation. HHO suggests to 

stochastic system which is define complicated search 

spaces for exploring optimum feasible solutions. The 

basic stages of HHO can be attained with concern for 

various states of energy. At the time of exploration, 

the hawks get a halt for locating and tracking new 

candidate solutions hawked in the HHO technique, 

and a better solution in all the steps is prey. The hawk 

perches at various positions and waits for the prey 

employing 2 functions that are selected depending 

upon the probability 𝑞 as demonstrated under If 𝑞 <
0.5 identifies that the hawk arbitrarily perching at the 

location of another member of populations and prey 

(i.e., rabbit) and it can be expressed from the formula 

 

𝑋(𝑛 + 1) = 

{
 

 
𝑋𝑟𝑎𝑛𝑑(𝑛) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑛) − 2𝑟2𝑋(𝑛)|

𝑞 ≥ 0.5

(𝑋𝑟𝑎𝑏(𝑛) − 𝑋𝑚(𝑛)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))

𝑞 < 0.5 }
 

 

 

(8) 

 

The average location of Hawks 𝑋𝑚 was provided in 

the following: 

 

𝑋𝑚(𝑛) =
1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1 (𝑛)                                   (9) 

 

Assume 𝑋(𝑛) be the iteration place for all the Hawks 

𝑛 and 𝑁 signifies the entire Hawk count. The average 

place was obtained by different methods, but, it can 

be an easy principle. An optimal shift in exploration 

to exploitation is important, due to the escape energy 

factor 𝐸𝐹  which significantly decreases the escape 

method and it could be defined as: 

 

𝐸 = 2𝐸0 (1 −
𝑛

𝑁
)                                        (10) 

 

In Eq. (10), 𝐸0  and 𝑇  denotes the initial escaping 

energy and the higher count of iterations. The soft 

besiege is considerable step from HHO, in which 𝑟 ≥
0.5  and |𝐸𝐹| ≥ 0.5 . During these situations, the 

rabbit has suitable energy. The besiege stage was 

determined by: 

 

𝑋(𝑛 + 1) =△ 𝑋(𝑛) − 𝐸𝐹|𝐽𝑋𝑟𝑎𝑏(𝑛) − 𝑋(𝑛)|  (11) 

 

△𝑋(𝑛) = 𝑋𝑟𝑎𝑏(𝑛) − 𝑋(𝑛)                      (12) 

 

In the formula, △𝑋(𝑛) implies the position vector to 

all the rabbits and for current place in the iteration 𝑡, 
and 𝐽 = 2(1 − 𝑟_5)  represents the rabbit's 

spontaneous jump ability all around the escape step. 

The 𝐽 value arbitrarily varies from all the iterations to 

characterize the rabbit efficiency. If 𝑟 ≥ 0.5  and 

|𝐸𝐹| < 0.5, the prey has been exhausted and is no 

escape power. In these cases, the current place has 

been changed by the following equation: 

 

𝑋(𝑛 + 1) = 𝑋𝑟𝑎𝑏(𝑛) − 𝐸𝐹|△ 𝑋(𝑛)|           (13) 

 

Assuming the hawk’s performance in real-time, it can 

progressively select the finest dive to prey when it 

needs to catch the objective in good state: 

 

𝑌 = 𝑋𝑟𝑎𝑏(𝑛) − 𝐸𝐹|𝐽𝑋𝑟𝑎𝑏(𝑛) − 𝑋(𝑛)|         (14)  
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Algorithm 2: Pseudocode of HHO Algorithm 

Produce arbitrary hawks population 𝑋𝑖(𝑖 = 1,2… , 𝑛) 
Evaluate the fitness values of each Hawk 

𝑋𝑟𝑎𝑏bit is the rabbit location (better solution) 

𝑤hile (𝑡 <maximal iteration counts) 

for every hawk (𝑋𝑖) 
Upgrading the first energy 𝐸0 

Upgrading the prey energy 𝐸𝐹 

Upgrading the jump strength J 

if (|𝐸𝐹] ≥ 1) 
Upgrading the location of current solutions 

endif 

if (|𝐸𝐹| < 1) 
𝑖𝑓 (𝑟 ≥ 0.5𝑎𝑛𝑑|𝐸 | ≥ 0.5) 

Upgrading the location of present solution 

𝑒𝑙𝑠𝑒𝑖𝑓(𝑟 ≥ 0.5 𝑎𝑛𝑑 |𝐸| < 0.5 ) 
Upgrading the location of current solution  

𝑒𝑙𝑠𝑒𝑖𝑓 (𝑟 < 0.5 𝑎𝑛𝑑  |𝐸| ≥ 0.5) 
Upgrading the place of existing solution 

𝑒𝑙𝑠𝑒𝑖𝑓 (𝑟 < 0.5 𝑎𝑛𝑑 |𝐸| < 0.5) 
Upgrading the location of present solution 

endif 

endfor 

Validate when any solution develops above the search space and modify it 

Calculate the fitness of every Hawk 

When better solution exists, upgrading 𝑋𝑟𝑎𝑏 

n=n+1  

endwhile 

Return 𝑋𝑟𝑎𝑏 

 

The soft besiege predefining in the earlier Eq. (14) 

was executed from progressive rapid dive if |𝐸| ≥
0.5  then 𝑟 < 0.5 . In that case, the rabbit has 

sufficient energy to escape and is utilized to soft siege 

previously the assault comes as surprise. The HHO 

technique is varied escape patterns for prey 

movement and leap frogs. At this time, the Lévy 

flights (LF) can be established to follow the Hawk 

movement and rabbit dives as follows. 

 

𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(𝐷)                                    (15) 

 

In Eq. (15), 𝑆 stands for the arbitrary vector for size 

1x𝐷 and 𝐿𝐹 implies the LF function: 

 

𝐿𝐹(𝑥) = 0.01 ×
𝑢×𝜎

|𝜈|
1
𝛽

, 𝜎 = (
𝛤(1+𝛽)×sin(

𝜋𝛽

2
)

𝛤(
1+𝛽

2
)×𝛽×2(

𝛽−1

2
)
)

1

β

 (16) 

 

At this point, 𝑢, 𝑣  signifies the arbitrary values 

betwixt zero and one, 𝛽 implies the constant set as 

1.5.  The final stage is to upgrade the hawk’s position: 

 

𝑋(𝑛 + 1) = {
𝑦 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑛))

𝑍 𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑛))
          (17) 

 

Now, 𝑦  and 𝑍  are obtained utilizing Eqs. (13) and 

(14). The rabbit's energy to escape could not be 

suitable and hard siege has suggested previously the 

surprise attack was aimed to catch and kill the goal. 

At this point, the Hawks reduce the distance betwixt 

the average place and its prey: 

 

𝑋(𝑛 + 1) = {
𝑌 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝑛))

𝑍 𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝑛))
         (18) 

 

𝑦 and 𝑍 values utilize new procedures in Eqs. (19) 

and (20), thus 𝑋𝑚 (t) was obtained using Eq. (19). 

 

𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑛) − 𝐸|𝐽𝑥𝑟𝑎𝑏(𝑛) − 𝑋𝑚(𝑛)|      (19) 

 

𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(𝐷)                       (20) 

 

Fitness selection is a key factor in the HHO technique. 

Solution encoding is applied to assess the aptitude 

(goodness) of candidate solution. At present, the  
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Figure. 4 Sample images 

 

 
Figure. 5 Sample segmentation results 
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Table 2. Overall segmentation outcome of ODTL-APCIUI approach 

Measures DSC Precision Sensitivity Specificity 
Avg. 

Precision 

Focal Loss 

Media-

Adventitia 
98.17±0.8 89.53±2.3 97.71±1.6 95.19±0.9 88.97±0.5 

Lumen 97.05±1.4 88.97±0.2 97.58±0.5 94.81±2.7 86.06±0.9 

Calcification 97.88±1.1 90.91±0.9 98.04±0.5 96.06±2.7 87.75±0.9 

Dice Loss 

Media-

Adventitia 
93.72±1.5 97.57±1.5 93.06±1.1 98.67±1 92.48±2 

Lumen 91.98±1.1 97.14±2.8 92.52±1.6 98.5±2.2 92.04±2.4 

Calcification 94.16±1.6 98.48±2.1 94.2±2.3 99.08±1.1 93.49±1.6 

Tversky Loss 

Media-

Adventitia 
96.82±1.1 97.25±0.2 97±0.8 96.55±2.7 96.74±0.1 

Lumen 96.23±2.3 95.75±2.8 96.48±0.1 95.9±0.6 94.45±0.8 

Calcification 97.97±2.4 98.22±2.5 98.28±0.9 98.31±1.8 95.31±0.3 

 

 
Figure. 6 Precision-recall analysis of ODTL-APCIUI method under media-adventitia 

 

accuracy value is the main condition exploited to 

design the fitness function.  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = max(𝑃)                       (21) 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (22) 

 

From the expression, TP represents the true positive 

and FP denotes the false positive value 

4. Results and discussion 

In this section, the experimental validation of 

ODTL-APCIUI technique takes place using dataset B 

from MICCAI challenge-2011 [25]. The dataset 

holds 2175 images from 10 persons, 1645 with  
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Figure. 7 Precision-recall analysis of ODTL-APCIUI technique under lumen 

 

 
Figure. 8 Precision-recall analysis of ODTL-APCIUI technique under calcification 

 

calcification absent or plaque composites and 530 

images with present calcification. Fig. 4 depicts the 

sample images. 

Fig. 5 shows the sample segmentation results of the 

proposed model on the IVUS image. The figure 

indicated that the proposed model has properly  
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Figure. 9 Confusion matrices of ODTL-APCIUI methodology TRS and TSS of 60:40 and TRS and TSS of 70:30 

 
Table 3. Details of dataset 

Class No. of Samples 

Plaque Composites (PC) 1645 

Calcification Composites 

(CC) 
530 

Total No. of Samples 2175 

 

segmented the regions closer to the ground truth 

regions.  

Table 2 represents the overall segmentation 

results of the ODTL-APCIUI technique. The result 

indicates that the ODTL-APCIUI technique has 

reached effectual outcomes under focal loss, dice loss, 

and Tversky loss. 

Fig. 6 shows the precision-recall study of the 

ODTL-APCIUI technique under media-adventitia. 

The results indicated that the ODTL-APCIUI 

technique has reached increasing values of precision-

recall under all aspects. Fig. 7 shows the precision-

recall investigation of the ODTL-APCIUI approach 

under lumen. The outcomes show that the ODTL-

APCIUI method has attained maximum values of 

precision-recall under all aspects. Next, Fig. 8 

illustrates the precision-recall examination of the 

ODTL-APCIUI system under calcification. The 

outcome indicates that the ODTL-APCIUI technique 

has attained increasing values of precision-recall 

under all aspects. 

The classification performance of the ODTL-

APCIUI system can be examined using the dataset 

comprising 1645 PC and 530 CC samples as depicted 

in Table 3.  
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Table 4. Overall outcome of ODTL-APCIUI approach on 60:40 of TRS/TSS 

Class Accuracybal Precision Sensitivity Specificity F-Score NPV 

Training Phase (60%) 

PC 96.28 99.15 96.28 97.62 97.70 90.11 

CC 97.62 90.11 97.62 96.28 93.71 99.15 

Average 96.95 94.63 96.95 96.95 95.71 94.63 

Testing Phase (40%) 

PC 96.45 99.39 96.45 97.94 97.90 88.79 

CC 97.94 88.79 97.94 96.45 93.14 99.39 

Average 97.19 94.09 97.19 97.19 95.52 94.09 

 

 
Figure. 10 Average outcome of ODTL-APCIUI approach on 60:40 of TRS/TSS 

 

The confusion matrices of the ODTL-APCIUI 

technique are demonstrated in Fig. 9. The results 

pointed out that the ODTL-APCIUI method has 

detected PC and CC samples accurately. For instance, 

with 60% of TRS data, the ODTL-APCIUI technique 

has detected 933 samples under PC class and 328 

samples under CC class. Meanwhile, with 40% of TS 

data, the ODTL-APCIUI system has detected 652 

samples under PC class and 190 samples under CC 

class. Eventually, with 40% of TSS data, the ODTL-

APCIUI system has detected 1109 samples under PC 

class and 356 samples under CC class. 

Table 4 and Fig. 10 report the overall results of the 

ODTL-APCIUI technique on 60:40 of TRS/TSS. The 

results indicated that the ODTL-APCIUI technique 

has effectually identified PC and CC classes. For 

instance, on 60% of TRS, the ODTL-  
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Table 5. Overall outcome of ODTL-APCIUI approach on 70:30 of TRS/TSS 

Class Accuracybal Precision Sensitivity Specificity F-Score NPV 

Training Phase (70%) 

PC 97.03 97.97 97.03 93.93 97.49 91.28 

CC 93.93 91.28 93.93 97.03 92.59 97.97 

Average 95.48 94.63 95.48 95.48 95.04 94.63 

Testing Phase (30%) 

PC 97.21 96.44 97.21 88.08 96.83 90.48 

CC 88.08 90.48 88.08 97.21 89.26 96.44 

Average 92.65 93.46 92.65 92.65 93.04 93.46 

 

 
Figure. 11 Average outcome of ODTL-APCIUI approach on 70:30 of TRS/TSS 

 

APCIUI technique has obtained average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 
of 96.95%, 𝑝𝑟𝑒𝑐𝑛  of 94.63%, 𝑠𝑒𝑛𝑠𝑦  of 96.95%, 

𝑠𝑝𝑒𝑐𝑦  of 96.95%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 95.71%, and NPV of 

94.63%. At the same time, on 40% of TSS, the 

ODTL-APCIUI method has attained average 

𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 97.19%, 𝑝𝑟𝑒𝑐𝑛  of 94.09%, 𝑠𝑒𝑛𝑠𝑦  of 

97.19%, 𝑠𝑝𝑒𝑐𝑦  of 97.19%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 95.52%, and 

NPV of 94.09%. 

Table 5 and Fig. 11 show the overall outcomes of 

the ODTL-APCIUI system on 60:40 of TRS/TSS. 

The result indicates that the ODTL-APCIUI 

technique effectively recognizes PC and CC classes. 

For example, on 70% of TRS, the ODTL-APCIUI 

technique has obtained average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 96.95%, 

𝑝𝑟𝑒𝑐𝑛  of 94.63%, 𝑠𝑒𝑛𝑠𝑦  of 96.95%, 𝑠𝑝𝑒𝑐𝑦  of 

96.95%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 95.71%, and NPV of 94.63%. 

Simultaneously, on 30% of TSS, the ODTL-APCIUI 

method has gained average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 92.65%, 

𝑝𝑟𝑒𝑐𝑛  of 93.46%, 𝑠𝑒𝑛𝑠𝑦  of 92.65%, 𝑠𝑝𝑒𝑐𝑦  of 

92.65%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 93.04%, and NPV of 93.46%. 

The TACC and VACC of the ODTL-APCIUI 

approach are investigated on IVUS performance in  
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Figure. 12 TACC and VACC analysis of ODTL-APCIUI approach 

 

 
Figure. 13 TLS and VLS analysis of ODTL-APCIUI approach 

 

Fig. 12. The figure shows that the ODTL-APCIUI 

system has shown improved performance with 

increased values of TACC and VACC. It is noted that 

the ODTL-APCIUI model has attained maximum 

TACC outcomes. The TLS and VLS of the ODTL-

APCIUI technique are tested on IVUS performance 

in Fig. 13. The figure inferred that the ODTL-

APCIUI method has revealed better performance  
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Figure. 14 ROC analysis of ODTL-APCIUI approach 

 
Table 6. Comparative analysis of ODTL-APCIUI with existing techniques 

Methods Accuracybal Precision Sensitivity Specificity F-Score 

ODTL-APCIUI 97.19 94.09 97.19 97.19 95.52 

DL Model [13] 94.02 93.43 94.70 91.49 93.29 

ADF-AS [26] 91.94 90.51 94.08 91.94 93.02 

ASCP-VB [27] 91.93 93.79 94.57 94.22 93.66 

KNN Classifier [17] 92.57 90.71 92.70 93.08 93.94 

DT Classifier [17] 92.10 93.43 92.78 93.31 91.00 

NB Classifier [17] 91.27 93.52 92.45 94.50 93.20 

 

with least values of TLS and VLS. It is noted that the 

ODTL-APCIUI approach has resulted in minimum 

VLS outcomes. 

A brief ROC examination of the ODTL-APCIUI 

approach under test database is depicted in Fig. 14. 

The outcome shows the ODTL-APCIUI method has 

shown its capability in classifying different classes 

under test database.  

To validate the performance of the ODTL-

APCIUI model with recent models, a comparison 

study is given in Table 6 [13, 17, 26, 27]. Fig. 15 

represents the comparative study of the ODTL-

APCIUI with existing models in terms of 𝑎𝑐𝑐𝑢𝑏𝑎𝑙, 
𝑝𝑟𝑒𝑐𝑛, and 𝐹𝑠𝑐𝑜𝑟𝑒. The results show that the ADF-AS, 

ASCP-VB, and NB models have reported lower 

performance with closer 𝑎𝑐𝑐𝑢𝑏𝑎𝑙, 𝑝𝑟𝑒𝑐𝑛, and 𝐹𝑠𝑐𝑜𝑟𝑒. 

In addition, the KNN and DT classification models 

have revealed the certainly somewhat improved 

values of 𝑎𝑐𝑐𝑢𝑏𝑎𝑙, 𝑝𝑟𝑒𝑐𝑛, and 𝐹𝑠𝑐𝑜𝑟𝑒 . Next, the DL 

model has accomplished reasonable outcomes with 

𝑎𝑐𝑐𝑢𝑏𝑎𝑙, 𝑝𝑟𝑒𝑐𝑛, and 𝐹𝑠𝑐𝑜𝑟𝑒of 94.02%, 93.43%, and 

93.29% respectively. But the ODTL-APCIUI 

technique has accomplished maximum 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 , 

𝑝𝑟𝑒𝑐𝑛, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.19%, 94.09%, and 95.52%. 

Fig. 16 characterizes the comparison analysis of 

the ODTL-APCIUI with current techniques in terms 

of, 𝑠𝑒𝑛𝑠𝑦 , and 𝑠𝑝𝑒𝑐𝑦 . The result demonstrates that 

the ADF-AS, ASCP-VB, and NB approaches have 

reported lower performance with closer 𝑠𝑒𝑛𝑠𝑦, and 

𝑠𝑝𝑒𝑐𝑦. Furthermore, the KNN and DT classification 
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Figure. 15 Comparative analysis of ODTL-APCIUI approach with existing methodologies 

 

 
Figure. 16 𝑆𝑒𝑛𝑠𝑦 and 𝑆𝑝𝑒𝑐𝑦  analysis of ODTL-APCIUI approach with existing methodologies 

 

 

techniques have revealed the certainly somewhat 

improved values of 𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 Next, the DL 

approach has accomplished reasonable outcomes 

with, 𝑠𝑒𝑛𝑠𝑦 , and 𝑠𝑝𝑒𝑐𝑦 of 94.70% and 91.49% 

correspondingly.  

But the ODTL-APCIUI technique has 

accomplished maximal 𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 of 97.19% 

and 97.19%. These results highlighted that the 

ODTL-APCIUI technique has accomplished 

maximum performance on Atherosclerotic Plaque 

and Calcification. 

5. Conclusion 

In this study, we have developed a new ODTL-

APCIUI approach for the classification of 

calcification and atherosclerotic plaque on the IVUS 

images. The presented ODTL-APCIUI technique 

encompasses HHO based hyperparameter tuning, GF 

based preprocessing, U-Net segmentation, 
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DenseNet-169 feature extraction, and SAE based 

classification. The performance assessment of the 

ODTL-APCIUI approach is tested under medical 

images and the results are investigated under 

different metrics. The experimental outcomes 

showed that the ODTL-APCIUI technique has 

attained better performance than other techniques 

with maximum accuracy of 97.19%, precision of 

94.09%, sensitivity of 97.17%, specificity of 97.19%, 

and F-score of 92.52%. Thus, the presented ODTL-

APCIUI technique can be applied for automated 

classification of IVUS images. In the future, the 

performance of ODTL-APCIUI algorithm can be 

improved by the use of ensemble learning process. 
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