
Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               677 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

Multiple Resource Attributes and Conditional Logic Assisted Task Scheduling in 

Cloud Computing  

 

Karnam Sreenu
1
*          Sreelatha Malempati

2 

 
1Department of Computer Science and Engineering, ANU College of Engineering,    

      Acharya Nagarjuna University, Guntur, Andhra Pradesh, India 
2Department of Computer Science and Engineering, RVR & JC College of Engineering,  

Guntur, Andhra Pradesh, India   

* Corresponding author’s Email: karnam.sreenu@gmail.com  

 

 
Abstract: From the past few decades, the cloud computing has been arisen as an extensively used platform to provide 

storage, compute and analytics services to organizations and end users on the basis of pay-as-you-use. This enabled 

the organizations as well as individuals to access the larger set of resources without establishing a costly and high 

performance computing platform. However, the major issue in cloud computing is the task scheduling which is 
declared as NP-hard problem and most of the researchers applied meta-heuristic algorithms to solve it. However, they 

experienced a slower convergence speed which has a direct impact on the efficiency of cloud computing environment. 

To achieve a faster convergence along with efficient quality of Service, this paper proposes a simple and effective task 

scheduling mechanism based on multiple resource attributes and conditional logic. This method considers totally four 

resource attributes such as Resource reaction time resource location, resource availability and resource reliability rate. 

Based on these four attributes, the proposed method constructs an index called as task scheduling index (TSI) and 

assigns tasks for resources based on their TSI value. The TSI is constructed through the proposed conditional logic 

and high priority is given for resources those have higher TSI. For experimental validation, we used two benchmark 

datasets such as GOCJ and synthetic dataset. Three performance metrics namely Makespan, Throughput and 

convergence speed are measured and compared with state-of-the-art methods like PSO, GA and GWO. On an average, 

the reduced Makespan of proposed method is 48.22% and 46.87% for GOCJ and Synthetic datasets respectively. 

Keywords: Cloud computing, Task scheduling, Convergence, Meta-heuristic, Conditional logic, Thought and 
makespan.  

 

 

1. Introduction 

Recently, the cloud computing has become a 

popular and attractive platform for different 
organizations those provides the resources for the 

execution of different large scale applications [1, 2]. 

Further, the cloud computing put one step forward 
and initiated to provide the services for users based 

on their requirements. Such kind of provision is 

called as on-demand resource sharing and it is an 
essential requirement for the Internet based 

applications. Depending on the service required, the 

cloud services are categorized into four categories; 

they are “Platform as a service (PaaS)” [3], 
“Infrastructure as a service (IaaS)” [4], “Expert as a 

service (EaaS)” [5], and “Software as a service 

(SaaS)” [6]. Cloud computing enables the parallel 
and distributed computing by proving both hardware 

and software resources on a shared basis like as “Pay-

as-you-go” [7]. To uses the resources, the users need 

an internet connection and they have to purchase any 
service or platform. Due to these many advantages 

and flexibilities, the cloud computing has become an 

emerging paradigm. 
Cloud can be deployed in three modes; they are 

private, public and hybrid cloud platforms [8, 9]. For 

the organizations those can maintain own private 
cloud, the cloud computing provides an opportunity 

to use the cloud resources in hours when user’s 

demand is at the peak. On the other hand, the public 



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               678 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

clouds are freely available and easily accessible [10]. 
Next, the community clouds are defined as the ones 

maintained by the organizations while the hybrid 

clouds use the resources of both private and public 

clouds. For any kind of mode, the cloud service 
provides needs to efficiently manage the cloud 

resources such that there would be an improvement 

in the performance in different applications. For any 
kind of applications, the performance improvisation 

is achieved with larger number of resources, however, 

it increases the resources usage cost.  
One of the important and tough task in cloud 

computing is task scheduling which has great impact 

on the cloud in terms of “Quality of service (QoS)” 

provision [11]. The task scheduling ensures a 
balanced execution between the user requirements 

and resources utilization. Every task needs different 

requirements of memory, computational time and 
response time as there exists different types of users. 

IaaS is one such kind of service through which the 

cloud service providers can provide server or cloud 
computer for storing and processing the data in the 

cloud. Users are eligible to access the free services of 

by running their applications over a rental server of a 

cloud computer. Since every user pay to use the cloud 
resources, they expect an excellent QoS. An 

improper task scheduling dissatisfies the users and 

May results in several serious constraints. Hence, the 
task scheduling becomes an important task in clod 

computing.  

As there exists different kinds of users those 

seeks the cloud resources, the task scheduling is 
considered as an NP-Hard problem. To solve this 

problem, recently many authors tried to deploy meta-

heuristic algorithms by formulating the task 
scheduling as a main objective function. However, 

the Meta-heuristic algorithms constitute several 

problems like 
1. Parameter tuning: In meta-heuristic algorithms, 

there exist several dependent and independent 

parameters through which the objective function is 

optimized. This is an iterative process and even for 
one optimal solution, it consumes larger time which 

indirectly results in convergence problem.   

2. Additional resources requirement: As there 
exists typical mathematical operations for each Meta-

heuristic algorithm, the CSPs need additional 

resources to compute them.  
To sort out these problems, this paper introduces 

a new and simple task scheduling mechanism based 

on multiple objectives and conditional logic. For 

every user request, our method calculate one index 
called as task scheduling index (TSI) based on the 

four resource attributes such as reliability rate, 

availability, reaction time and location. The major 
contributions of this paper are outlined as follows: 

1. Formulate mathematical modelling for the 

calculation of reliability rate, availability, reaction 

time and location. 
2. Propose a new task scheduling index (TSI) that 

considers the multiple resources attributes as 

reference parameters to decide the capability of 
resource to handle the task.   

3. Propose a simple conditional logic assisted rules to 

formulate the TSI for each resource provider.  
Remainder of the article is prepared as follows; 

2nd section explores the details of literate survey. 3rd 

Section explores the particulars of proposed 

methodology. 4th Section provides the details of 
experimental validation and section V provides the 

Conclusion details.   

2. Literature survey 

This section outlines different task scheduling 

methods and categorizes them into two broad 

categories. They are task scheduling through QoS 
parameters and task scheduling through Meta-

heuristics. Under second category, we again sub-

categorize them into various categories based on the 
algorithm deployed.   

2.1 Task scheduling based on QoS  

Under this category, the different QoS parameters 

are taken into picture to assign a task to a particular 

device [12]. Wu et al. [13] considered the QoS 
parameter called as “Most time to complete the task 

(MTCT)” and proposed a QoS based task scheduling 

algorithm in cloud computing. However, they didn’t 
guarantee about the reliability and location errors. 

Albodour et al. [14] considered the business cloud 

actions relative to QoS and rescheduling capabilities 
to schedule the tasks. They proposed a theory of 

“Business Gird QoS (BGQoS)” and analyzed the 

conduct of several components and actions within the 

BGQoS. The rescheduling capabilities increases 
delay thereby further users suffer with waiting time. 

Ali et al. [15] divided each task into five categories 

based on task latency, task size, task type. Then they 
scheduled a grouped task scheduling based on QoS 

metric in cloud computing. Sabu M. Thampi et al. 

[16] developed a task scheduling algorithm based on 

the awareness of QoS cost. They considered the 
virtual resources related to QoS which are available 

from real time unified resource layer. They deployed 

a “virtual machine manager (VMM)” which updates 
about the state of art information about resources to 

take an appropriate decision. However, they have 

considered only limited factors to assess the capacity 



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               679 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

of could resources. Unlike these methods, the 
proposed approach totally considered four factors 

which have different broad contexts in determining 

the capability of resource.   

Belal Ali AL-Maytami et al. [17] proposed a task 
scheduling algorithm based on “Directed acyclic 

graph (DAG)”. They computed the “Prediction of 

tasks computation time algorithm (PTCT)” to 
identify the prominent cloud. Additionally, they 

proposed an algorithm to improve makespan and 

reduce the complexity through “Principal component 
analysis (PCA)” and diminished the “Expected time 

to compute (ETC)” matrix. Reliability rate is not used 

to assess the resource capacity due to which the task 

execution takes more time for complete. Hadeer 
Mahoumd et al. [18] performed task scheduling by 

considering three QoS attributes such as computation 

cost, earliest finish time and total length of task using 
decision tree algorithm. They executed their method 

in three phases; they are priority task, resource matrix, 

and resource allocation. The first phase assigns a rank 
for every task and second phase is employed for the 

collection of task features while the last phase 

allocates the virtual machine based on decision tree. 

Even though three different factors are used to assess 
the resource’s task handling capacity, the availability 

and location errors are not determined. Such process 

results in less throughput and less make span.   

2.2 Task scheduling 

Under this category, the task scheduling is done 

through meta- Meta-heuristic based heuristic 

algorithms. For all these methods, the entire 

methodology is executed in two phases; they are 
fitness function formulation and optimization in an 

iterative fashion. Several types of algorithms are used 

here to optimize the fitness function through different 
strategies.  

2.2.1. Ant Colony optimization (ACO)     

ACO utilizes the positive criticism and imitates 

the behavior of ant colonies for food scanning and 

interaction based on the pheromone laid on the 
voyage way. Qiang Guo [19] formulated the fitness 

function based on makespan and cost of the tasks. 

Next, they applied ACO to optimize the fitness 

function and to ensure a load balancing between 
different tasks. Wei X [20] formulated the fitness 

function called as task scheduling satisfaction 

function based on three attributes such as task 
completion cost, degree of resource load balance and 

shortest waiting time. Further, they improved the 

ACO by involving a new coefficient called as virtual 
machine load weight coefficient and used to update 

the process of local pheromone. Gang Li et al. [21] 
focused on the load imbalance problem in “System 

Wide Information Management (SWIM)” task 

scheduling. They referred load standard deviation 

function and hardware performance quality index 
resources to update the pheromone at ACO in task 

scheduling. Hongji Liu [22] focused on the 

improvisation of Convergence speed and proposed a 
“Polymorphic ACO (PACO)” for task scheduling in 

cloud computing. PACO optimizes the fitness 

function formulated based on balanced load rate, 
lower cost and shorter execution time. Elsayed 

Elsedimy et al. [23] also aimed at convergence speed 

and proposed an improved ACO called as multitask 

objective task scheduling ACO (MOTS-ACO). They 
promoted the diversity of the Pareto set and 

incorporated the adaptive distribution probability.  

Even though ACO is determined as a best 
solution in solving the discrete problems, it has 

several inevitable disadvantages; they are less 

convergence speed and less accuracy when dealing 
with data with huge dimensions. Since cloud 

computing is linked with huge data, the ACO 

introduces an excess delay in task execution due to 

slow convergence rate.    

2.2.2. Particle swarm optimization (PSO) 

PSO algorithm is one of mostly employed Meta-
heuristic algorithm and it works based on the 

behavior of birds. N. Dordaie [24] proposed the 

Hybrid PSO by incorporating Hill climbing 
algorithm for task scheduling in cloud environments. 

Xingwang Huang et al. [25] proposed a task 

scheduling model to minimize the make span. 

They designed task scheduling through 5 

discrete variants of PSO which have differences 

in their inertia weight updating strategies. 

Among the five one is linear and remaining four 

are discrete versions and used for the assignment 

of virtual machine for each task. Heba M. 

Eldesokey et al. [26] proposed a hybrid swarm 

optimization by combining PSO with “Salp swarm 
optimization (SSO)” to resolve the task scheduling 

problem in cloud environments. They formulated the 

fitness function based on two attributes such as 

computation cost and execution time. They also 
employed a “Multilayer regression (MLR)” to detect 

the overloaded CMs such that the task burden can be 

distributed in a uniform way.   
Zhou Wu et al. [27] modeled the fitness function 

based on Execution time and applied modified PSO 

[28] for task scheduling in cloud environments. A 
Copula function is defined to alleviate the 



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               680 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

interconnection of random number random 
parameters and introduced a local attractor to make 

the fitness function get escaped from trapping into the 

local minimum. Said Nabi et al. [29] contributed an 

Adaptive PSO assisted task scheduling by 
introducing an novel strategy for updating the inertia 

weights called as “Linearly descending and adaptive 

inertia weight (LDAIW)” for task scheduling in 
cloud environments. M. Sudheer et al. [30] combined 

PSO with cuckoo search to perform ask scheduling 

based on the priority of VM and Task in cloud 
environments.  

Even though PSO has gained great importance in 

different fields at solving the optimization problems, 

it makes the system to suffer from local optimum 
problem for high dimensional space.  Further, it also 

has low convergence rate in the iterative process.  

2.2.3. Other Methods   

Since there exists so many meta-heuristic 

algorithms, the researchers used different algorithms 
for implementing the task scheduling in cloud 

environments.  Some of the other algorithms include 

“Genetic algorithm (GA), artificial bee colony 
(ABC) and grey wolf optimizer (GWO)” etc. 

Deafallah Alsadie [31] employed GWO for the 

optimization of tack scheduling in cloud 

environments. They formulated the objective 
function based on cloud throughout, utilization of 

resources and imbalance Degree. S. Pang et al. [32] 

developed a method called as “Estimation of 
distribution algorithm (EDA)” and used GA for 

scheduling tasks in cloud technology. Initially, they 

generated the probability model and sampling 
mechanism of EDA to create the feasible solutions’ 

scalability. Next, they applied crossover operation 

followed by mutation to expand the range of 

solutions.  Boonhatai Kruekaew [33] used ABC and 
Q-learning algorithms for task scheduling based on 

multiple objectives. The Q-leaning is a reinforcement 

algorithm and employed to fasten the ABC algorithm. 
They considered maximizing the throughput of VMs, 

optimizing the resource utilization, and balancing the 

load between VMs. Priya and Babu [34] proposed a 

“Moving average fuzzy resource scheduling 
(MAFRS)” for cloud virtual centers which are 

located in virtual fashion. They designed a fuzzy 

control theory for system accessibility between cloud 
user’s resources and cloud requirements. Karanam 

Sreenu and M. Sreelatha [35-37] employed three 

Meta-Heuristic algorithms namely “Whale 
Optimization algorithm (WOA)”, “Fractional GWO 

(FGWO)” and “Modified fractional GWO 

(MFGWO)” for efficient task scheduling. FGWO 

and MFGWO used resource utilization, energy, 
communication cost, Execution cost and 

communication time as reference parameters for task 

scheduling. WOA used makespan and budget cost for 

fitness function formulation.  
In summary, the Meta-heuristic-based task 

scheduling solves the convergence problem 

effectively. But they have induced huge 
computational burden at the scheduler. The 

complexity reaches to worst in the case of more 

number of requests from multiple users. In such case, 
the simple task scheduling is required which 

inevitable allocates the resources for all users without 

any delay.    

3. Proposed approach 

3.1 Overview  

Here, we develop a new task Scheduling scheme 

for the cloud environments. The proposed model 
mainly considers four parameters at the task 

scheduling process for resource selection; they are 

resource reaction time, resource location, resource 

availability and resource reliability rate. Based on 
these four parameters, the CSP assigns the tasks to 

resources. Initially, all the parameters are calculated 

individually and then one index called as task 
scheduling index (TSI) is measured. Based on the TSI 

values, optimal resources are selected and the tasks 

are assigned. Here the main intention behind the 

consideration of four parameters is to make the cloud 
computing effective and resilient from several 

resource constraints. Since the resources 

participating in cloud are of constrained to several 
issues, we referred to view each resource in multiple 

orientations and then selected those have optimal 

performance. Among the proposed four parameters, 
three shows the effectiveness at the Quality-of-

service provision and one is purely for reliability 

assessment. Since both are important for cloud 

environments, we have referred four parameters to 

assess the resource efficiency. 

3.2 Methodology  

In this section, we explain the details of proposed 

task scheduling system that employs an adaptive 
resource aware task scheduling in cloud 

environments. Fig. 1 shows the simple schematic of 

proposed scheme which illustrates the interaction 

between different cloud components from cloud 
User’s task submission to task completion. Majorly, 

the proposed method composed of four components; 

they are cloud user (CU), cloud task scheduler (CTS),  



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               681 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

 

Figure. 1 working flow of proposed task scheduling mechanism  

 

cloud resource information server (RIS) and 

Reliability Handler (RH). The details of individual 

components are illustrated in the following sub-
sections; 

3.2.1. Cloud user    

In the initial phase, the cloud users put request to 

cloud scheduler mentioning that the user wants to 

accomplish its task through the cloud resources. 

Tasks sent by the cloud user are received by Cloud 
Task scheduler. Once the tasks are received at cloud 

scheduler, it contacts the RIS which has the entire 

information about the cloud resources. RIS provides 
the information about the resource to CTS. Then the 

CTS measure the optimality of resources through TSI 

and the resource those have an optimal TSI are only 
selected for tasks execution. Once the resources are 

selected, the tasks at CTS are dispatched to them. 

After the completion of task, the results are returned 

to the respective cloud user. RH is responsible for the 
detection of faults of resources and predicting the 

resource’s reliability rate.  

3.2.2. Resource reaction time  

Reaction Time is the most important parameter 

through which the resource’s timely execution can be 
predicted. The reaction time can be estimated from 

the time taken by resources and CTS to complete the 

task. For a given resource, if it was busy with some 
others task, then it can’t complete the task quickly. 

Hence, we have considered the reaction time as one 

of the parameters for the selection of resources. 

Generally, the reaction time considers the limits of 

time at which the cloud user had submitted the task 
and the time at which the cloud user had received the 

results.  Along with these two-time instances, it also 

considers the time take by resource to execute the 

task. Hence the reaction time of a resource is 
calculated as the sum of three individual times; they 

are (1) The time taken to transmit the task from CTS 

to resource, (2) The time taken by resource to execute 
the task and (3) The time taken to get the results back 

from resource to CTS. Mathematically, the reaction 

time of resource a for a task b is expressed as 

 

𝑅𝑇𝑎
𝑏 = ∑ 𝑇𝑝𝑏𝑝∈𝑠,𝑒,𝑟                             (1) 

 

Where, 𝑅𝑇𝑎
𝑏  is the reaction time of resource a for a 

task b, 𝑇𝑠𝑏 is the time taken by scheduler to transmit 

the task b to resource, 𝑇𝑒𝑏  is the time taken by 

resource a to execute the task b and 𝑇𝑟𝑏   is the time 
taken to receive the results from resource a to CTS. 

𝑇𝑠𝑏 is defined as 

 

𝑇𝑠𝑏 =
𝐿𝑠𝑏

𝜔𝑎
                                    (2) 

 

Where, 𝐿𝑠𝑏  is the size of task b and 𝜔𝑎  is the 

bandwidth assigned for the channel between resource 

a and CTS. Next, 𝑇𝑒𝑏 is defined as, 
 

𝑇𝑒𝑏 =
𝐸𝑏

𝜐𝑎
                                    (3) 



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               682 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

Where, 𝐸𝑏 is the time taken by resource a to execute 

the task b and 𝜐𝑎 is the speed of resource a. Next 𝑇𝑟𝑏  

is defined as 

 

𝑇𝑟𝑏 =
𝐿𝑟𝑏

𝜔𝑎
                              (4) 

 

Where, 𝐿𝑟𝑏  is the size of results to be transmitted by 

resource to CTS. In the reaction time, the 𝑇𝑠𝑏 and 𝑇𝑟𝑏  

are purely depends on the size and bandwidths 
assigned to resources. As the Bandwidth between 

CTS and resource increases, the reaction time 

decreases and vice versa. Further, with an increase in 
the size of task, the reaction time also increases. 

Hence we have modeled the reaction time with 

respect to size of task and bandwidth of resources. 

3.2.3. Resource location  

In cloud computing, the resources are much 
important to execute the task with less failure rate. 

The failure rate is related to the location of resources. 

For a static resource (resource available for long time 

in a single location), the probable failure rate is less 
and for a dynamic resource (resource dynamically 

changing the locations and not available for longer 

durations in a single location), the probable failure 
rate is high. Hence the resource location is important 

and we consider it as one of resource selection 

parameter. Depends on the location of resources, we 
have divided them into two categories; they are 

neighbor resources and distant resources. The 

neighbor resources are the ones which work under the 

cloud maintainer and are located close to the cloud 
maintainer. On the other hand, the distant resources 

are the ones which work temporarily and are located 

far from the cloud maintainer. Distant resources are 
connected through communication links, and they are 

bound to certain policies and configurations of which 

they are the part. A change in the configuration or 

policy of the network of distant resources may raise 
the question about the accessibility and availability of 

resources. The distant resources are chosen only if 

they have unique property. Otherwise, if it looks like 
a common resource, then the location has to consider 

during the selection of resources. Moreover, the 

situation becomes worse if the communication link 
breaks down due to several factors which are not 

under the control of cloud maintainer. Hence the 

locally available resources are always showing an 

efficient performance when compared with the 
distant resources.  

Here the categorization of resources is done 
based on the calculation of Euclidean distance 

between cloud maintainer and resources. For a given 

cloud maintainer, this paper allocates a fixed 

communication range. After the computation of 
Euclidean distances between cloud maintainer and 

resources, the categorization is done through the 

following expression.  
 

  𝑅𝑖 = {
𝐿𝑅𝑖

,    𝑖𝑓 
|𝑑(𝐶𝑀,𝑅𝑖)|

max (𝑑)
≤ 𝛿 

𝐷𝑅𝑖
,       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (5) 

 

Where, 𝐿𝑅𝑖
 is the neighbor resource which is 

available locally and 𝐷𝑅𝑖
 is the distant resource 

through which a communication link exists with 

cloud maintainer. 𝛿 is the communication range of 

Cloud maintainer. For a given locations of cloud 

maintainer and the ith resource, the Euclidean 

distance is measured as 
 

𝑑(𝐶𝑀, 𝑅𝑖) = 

√(𝐶𝑀(𝑥) − 𝑅𝑖(𝑥))2 + (𝐶𝑀(𝑦) − 𝑅𝑖 (𝑦))2      (6) 

 

Where, (𝐶𝑀(𝑥, 𝑦))  and 𝑅𝑖(𝑥, 𝑦)  are the location 

coordinates of Cloud maintainer and ith resource 
respectively.  Here we have considered the 

normalized Euclidean distance and the 

communication range is considered to be in the range 

of 0 to 1. From the expression shown in Eq. (5), we 
can say that the resources those have Euclidean 

distance less than or equal to the communication 

range of cloud maintainer are called as neighbor 
resources and otherwise they are called as distant 

resources. Based on this analysis, we can say the 

neighbor resource have more weightage than the 

distant resources. At worst conditions means there is 
no availability of even a single neighbor resource, the 

distant resources are selected. At this phase, again 

employ the same Euclidean distance-based selection 
for distant resources selection. The distant resources 

are selected those are close to cloud maintainer, 

according to the following expression. 
 

𝑆𝑅𝑖 = min
𝑖

[𝑑(𝐶𝑀, 𝐷𝑅𝑖
)]                     (7) 

 

Where, 𝑆𝑅𝑖 is the selected distant resource that has 

minimum Euclidean distance with cloud maintainer.  

 

 
 



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               683 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

 

Figure. 2 Resource availability and unavailability    
 

3.2.4. Resource availability 

In cloud computing, the resources at various 

geographical locations can participate to execute the 

tasks assigned by CTS. Due to different geographical 
locations, the resources cannot stay fixed for longer 

time and they have tendency to leave or join the cloud 

[38]. If any resource has left without any prior 
information, then it causes a serious issue. Hence it 

need to be consider the tendency of joining and 

leaving times of resources to and from respectively. 
This is formulated with respect to the component 

called as resource availability. The resource 

availability is defined as the time from which it was 

joined to the cloud. Similarly, the unavailability of a 
resource is defined with respect to the time from 

which the resource is not available.  

For a given resource, both the availability and 
unavailability have multiple instances. For example, 

consider a resource is joined at time instance 𝑡1 and 

left at time instance 𝑡2. Again, the same resource is 

joined to the cloud network and let it be time instance 

𝑡3 and again left at time instance 𝑡4. In this example, 

we can observe that there are two available instances 

and two unavailable instances. The time difference 

between 𝑡2  and 𝑡1  can be defined as the available 

time and the time difference between 𝑡3  and 𝑡2  can 

be considered as unavailable time. Similarly, the time 

difference between 𝑡4  and 𝑡3  gives the second 
available time. Hence we consider the multiple 

instances and derived the mean times based on them. 

Consider a resource joined the network for five times 

such as 𝑡𝑗1
, 𝑡𝑗2

, 𝑡𝑗3
, 𝑡𝑗4

 and 𝑡𝑗5
 and also there are five 

unavailable times, such as 𝑡𝑙1
, 𝑡𝑙2

, 𝑡𝑙3
, 𝑡𝑙4

 and 𝑡𝑙5
. For 

both times, we compute the mean time and they are 

mathematically expressed as  

 

𝐴𝑇 = ∑
(𝑡𝑙𝑖

−𝑡𝑗𝑖
)

𝑁

𝑁
𝑖=1                          (8) 

  

and  
 

�̂�𝑇 = ∑
(𝑡𝑗𝑖+1

−𝑡𝑙𝑖
)

𝑁

𝑁
𝑖=1                         (9) 

 

Where, 𝐴𝑇  and �̂�𝑇  are Mean Available Time and 
Mean unavailable time respectively. In the Eq. (8), 

the term (𝑡𝑙𝑖
− 𝑡𝑗𝑖

) calculates the available time of a 

resource and in the Eq. (9), the term (𝑡𝑗𝑖+1
− 𝑡𝑙𝑖

) 

calculates the unavailable time of resources. Further 

the terms 𝑡𝑗𝑖
, 𝑡𝑙𝑖

 and 𝑡𝑗𝑖+1
 denotes the ith instant of 

joining time, ith instant of leaving time and i+1th 

joining times respectively. Here to compute the 

available time, we have simply subtracted the ith 

joining time form ith leaving time. Next for 
unavailability computation, the ith leaving time is 

subtracted from i+1th joining time. Based on these 

two 𝐴𝑇  and �̂�𝑇 , we compute two factors called as 

Availability factor ( 𝐴𝑖 ) and unavailability factor 

(𝑈𝐴𝑖), as  

 

𝐴𝑖 =
𝐴𝑇

𝐴𝑇+𝐴𝑇
                                     (10) 

 

and  

 

𝑈𝐴𝑖 =
𝐴𝑇

𝐴𝑇+𝐴𝑇
                                     (11)  

 

Based on these two factors, the resource 

availability is measured. 𝐴𝑖  is preferred to be high 

which denotes a longer availability time and 𝑈𝐴𝑖 is 

preferred to be low which denotes a shorter 

unavailability time. For the execution of assigned 
tasks, the longer time availability gives more 

efficiency because the tasks are of different sizes, 

means some tasks are smaller is size and some tasks 
are larger in size. To execute the former type of tasks, 

the less time availability is enough while for second 

type of tasks, the longer time availability is required. 
Furthermore, as the availability of resource increases, 

the CTS assign the tasks for multiple times which in 

turn can provide a rich income for the resource 

provider.  Fig. 2 explores the concept of resource 
availability. 

As shown in the above Fig. 2, the resource 𝑅𝑖  has 

joined totally for four times and also left for four 

times. In this context, the 𝐴𝑇  is calculated as 𝐴𝑇 =



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               684 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

(𝑡𝑙1
− 𝑡𝑗1

) + (𝑡𝑙2
− 𝑡𝑗2

) +  (𝑡𝑙3
− 𝑡𝑗3

) + (𝑡𝑙4
− 𝑡𝑗4

) 4⁄

. Similarly, the �̂�𝑇  is calculated as �̂�𝑇  =
(𝑡𝑗2

− 𝑡𝑙1
) + (𝑡𝑗3

− 𝑡𝑙2
) + (𝑡𝑗4

− 𝑡𝑙3
) 3⁄ . Based on 

these two instances, the availability and 

unavailability of a resource 𝑅𝑖  is measured and its 

probability of selection is estimated. If it found that 

the resource has high availability, then its probability 
to get selected is high otherwise, it can’t be selected.  

3.2.5. Resource reliability rate  

Reliability rate is the key component in cloud 

computing, because lower reliability rates of any 

resource will consequences to so many problems. The 
reliability rate is defined here with respect to fault 

rate. If any resource failed at the mid of task 

execution, then there may be a huge information loss 
and also there is a chance of information misuse. 

Hence the fault rate is needed to be considered during 

the selection of resources in computational clouds. 
According to the fault rate, a resource is selected 

which has less fault rate which is considered as highly 

reliable resource.  

In general, most of the earlier approaches 
employed fault index [39-42] for the selection of a 

reliable resource. The fault index is done according 

to the history information of fault tolerance. The fault 
index is increased every time when the resource 

doesnot complete the task successfully within the 

given time deadline. Similarly, the fault index is 

decremented every time when the resource complete 
the task successfully within the given time deadline. 

So the optimal resource selection is done whenever 

the fault index reaches to zero which is not practically 
possible. Since the resource in cloud computing has 

so many constraints, no resource can achieve the fault 

index as zero. Network failure, hardware failures and 
prediction failures are some of the examples of 

failures those occur frequently in computational 

cloud networks. Hence we have derived a new 

component called as reliability rate which is 
measured based on the history of successes occurred 

during the execution of tasks. The resources those 

have higher reliability rate are only selected to 
execute the tasks and the resources those have higher 

fault rate are not selected. Mathematically, the 

reliability rate is measured as 

 

𝑅𝑟 =
𝑆𝑁

𝑆𝑁+𝐹𝑁
  or 𝐹𝑟 =

𝐹𝑁

𝑆𝑁+𝐹𝑁
                (12) 

 

Here 𝑅𝑟  is reliability rate and 𝐹𝑟  is fault rate 

which are related with inverse proportion. 𝐹𝑁  is 

defined as the overall failed instances and 𝑆𝑁  is 

defined as the overall succeeded instances. As the 

𝐹𝑁value increases, the 𝐹𝑟  also increases and as the 𝑆𝑁 

increases, the  𝑅𝑟  increases. For an optimal resource, 

the fault rate must be low and reliability rate must be 

high. The values of 𝐹𝑁 and 𝑆𝑁 are maintained by the 
cloud information server and they are fed to cloud 

scheduler whenever it required. For every instance of 

success, the 𝑆𝑁  value is increased and for every 

instance of failure, the 𝐹𝑁  value increases and they 

are updated to RIS.  

3.2.6. Resource selection matrix  

Finally to get the optimal resources, we have 

constructed a resource selection matrix based on the 

above specified four parameters.  
In the above Table. 1, we assign less weightage 

for the resources those have no reliability, means if 

the reliability is ‘0’, the values of location, reaction 
time and availability are ignored to that resource and 

it was disqualified from the list of available resources 

at CTS. For that combination, the TSI is assigned as 
0. Next, the weightage is given for the resources those 

have any three combinations produce ‘1’. For such 

kind of resource the TSI is calculated as the ratio of 

sum of current total ones to the maximum possible 
sum of ones (i.e., ¾ = 0.75).  Next, the weightage is 

given for the resources those have any two 

combinations produce ‘1’. For such kind of resource 
the TSI is calculated as the ratio of sum of current 

total ones to the maximum possible sum of ones (i.e., 

2/4 = 0.50).  Next, the weightage is given for the 

resources those have any one combinations produce 
‘1’. For such kind of resource, the TSI is calculated 

as the ratio of sum of current total ones to the 

maximum possible sum of ones (i.e., 1/4 = 0.25). 
Finally the least weightage is given for the resources 

those have all ‘0’’s and higher weightage (i.e., 1) for 

the resources those have all ‘1’s.   

4. Experimental results 

In this section, we explore the details of 

simulation experiments conducted over the 
developed task scheduling model. We have 

conducted a vast set of experiments to validate the 

developed model with varying parameters like 
number of tasks submitted. By varying these 

parameters, we compute the performance through 

several performance metrics such as throughput 

(tasks/sec), Makespan (sec) and convergence time 
(Sec). At every phase of simulation, the obtained 

performance values of developed method are 

compared with several existing methods such as GA 
[32], PSO [25], and GWO [31]. Initially, we explore  



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               685 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

Table. 1 resource selection matrix 

Combination  Reaction Time Location  Availability  Reliability Rate TSI 

X1 0 0 0 0 0 

X2 0 0 0 1 0.25 

X3 0 0 1 0 0 

X4 0 0 1 1 0.5 

X5 0 1 0 0 0 

X6 0 1 0 1 0.5 

X7 0 1 1 0 0 

X8 0 1 1 1 0.75 

X9 1 0 0 0 0 

X10 1 0 0 1 0.5 

X11 1 0 1 0 0 

X12 1 0 1 1 0.75 

X13 1 1 0 0 0 

X14 1 1 0 1 0.75 

X15 1 1 1 0 0 

X16 1 1 1 1 1 

 

the details of datasets used, next the simulation 
results. 

4.1 Datasets 

For experimental validation, we totally used two 

standard datasets namely, “Google cloud jobs (GoCJ) 
dataset” [43], and 3) “Synthetic workload dataset” 

[44], which are described as:  

4.1.1. GOCJ dataset 

This is treated like Realistic Google dataset and 

was made from the workload behaviors happened in 
the traces of Google Cluster. A well-known 

simulation method called as Monte Carlo simulation 

is employed for this dataset creation. The size of tasks 

in GOCJ dataset ranges from 15k to 900k Million 
Instructions (MIs). Totally the tasks in this dataset are 

classified into four categories; they are small sized 

tasks, medium sized tasks, larger sized tasks, extra 
larger sized tasks and huge larger sized tasks ranging 

from 15k-55k MIs, 59k-99k MIs, 101k-135k MIs, 

150k-337.5k MIs and 525k-900k MIs respectively. 
This dataset is provided for the evaluation purposes 

in the form of different text files in the Mendeley 

repository. The data is organized in different rows 

and columns which consist of numeric values. Each 
numerical value signifies the cloud task size through 

MIs.   

4.1.2. Synthetic workload dataset 

This dataset is generated using the two methods, 

they are Monte carlo simulation and a random 
number generator mechanism. The size of tasks in 

this dataset ranges from 1 to 45k million instructions 

(MIs). Totally the tasks in this dataset are classified 

into five categories; they are tiny sized tasks (1-250 
Mis), small sized tasks (800-1200 Mis), medium 

sized tasks (1800-2500 Mis), larger sized tasks (7k-

10l Mis), and extra larger sized tasks (30k-45k Mis).  

4.2 Results  

Under the results evaluation, we referred three 

performance metric assesses the performance of 
proposed approach. The three metrics are namely 

Makespan, Throughput and Convergence in terms of 

iterations. These metrics are measured with varying 

number of tasks submitted to the cloud. Further, at 
every validation, the performance of proposed 

method is compared with several existing methods 

such as GA [32], PSO [25] and GWO [31].  The 
detailed interpretation about the performance metrics 

is given below. 

4.2.1. Makespan  

Makespan is one of the mostly used performance 

measure used in the cloud computing for the 
assessment of performance in terms of task 

completion time. The method is said to be better if it 

achieves less Makespan and vice versa. In our 

experiments, the Makespan is measured for two times 
one time for GOCJ dataset and another time for 

Synthetic dataset. 

Fig.3 and Fig. 4 shows the performance of 
proposed approach in terms of Makespan for varying 

number of tasks submitted for GOCJ dataset and 

Synthetic dataset respectively. As it can be seen, the 
Makespan increases for an increasing nature of Tasks 

submitted. For a contrast set of resources in cloud, 

with an increase in the number of tasks submitted to 

cloud, the resources put the tasks in Queue and hence  
 



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               686 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

 

Figure. 3 Makespan for varying number of tasks for 

GOCJ dataset  

 

 

Figure. 4 Makespan for varying number of tasks for 

synthetic workload dataset  

 

the Makespan increase. However, the proposed 

method is observed to have less Makespan as it 

follows a simple iterative mechanism for task 
scheduling.  Our method works based on the 

conditional logic which takes very less time to assign 

a task for resources. In the case of earlier Meta-
heuristic algorithms, they formulate an objective 

function and optimize it iteratively.   

This process takes huge time even for small 

number of tasks. From Fig. 3, we can see that the 
range of Makespan is observed as 0 – 4700 seconds. 

Next, from Fig.4, we can see that the range of 

Makespan is observed as 0 – 480 Seconds. As the text 
files of GOCJ dataset are composed of huge number 

of Instructions, they need more time for task 

scheduling as well as for execution. Compared to 
GOCJ, the text files of synthetic dataset has only 5% 

instruction, they consumed very less time for 

execution. Hence the range of Makespan is very less  

 

 

Figure. 5 Throughput for varying number of tasks for 

GOCJ dataset 

 
for synthetic dataset compared to GOCJ dataset. On 

an average, the Makespan of proposed method for 

GOCJ dataset is observed as 1558 seconds while for 
PSO, GA and GWO, it is observed as 2020 Seconds, 

2340 seconds and 2568 seconds respectively. 

Similarly, the average Makespan of proposed method 
for Synthetic workload dataset it is observed as 160 

seconds while for PSO, GA and GWO, it is observed 

as 205 Seconds, 232 seconds and 268 seconds 

respectively. 

4.2.2. Throughput  

Throughput is one more popular measure used to 
verify the effectiveness of task scheduling methods. 

Throughput is measured as the total number of tasks 

completed per second. The method is said to be better 
if it achieves larger Throughput and vice versa.  In 

our experiments, the Throughput is measured for two 

times one time for GOCJ dataset and another time for 
synthetic dataset.  

Fig. 5 and Fig. 6 shows the performance of 

proposed approach in terms of Throughput for 

varying number of tasks submitted for GOCJ dataset 
and synthetic dataset respectively. Throughput has a 

indirect relation with makespan, as the makespan is 

less then the throughput is high and vice versa. For a 
cloud service provider, if the overall count of 

completed tasks within the less timespan are more, 

then the throughout will be better. So, for less 
Makespan the throughout is high. From the figures, 

we can see that the the througput increases with an 

increase in the number of tasks submitted to the cloud. 

Since the proposed method consumes very less time 
in the selection of resources for task scheduling, it 

can complete more number of tasks and hence the 

propsoed method has higher throughput. 
 

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Tasks Submitted

M
a

k
e

s
p

a
n

(S
e

c
)

 

 

PSO

GA

GWO

Proposed

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

400

450

500

Number of Tasks Submitted

M
a

k
e

s
p

a
n

(S
e

c
)

 

 

PSO

GA

GWO

Proposed

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Tasks Submitted

T
h
ro

u
g
h
p
u

t(
T

a
s
k
s
/S

e
c
)

 

 

PSO

GA

GWO

Proposed



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               687 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

 

Figure. 6 Throughput for varying number of tasks for 

synthetic workload dataset  

 

Compared to the iteratve optimization, the 
conditional logic based optimiation  lessens the 

computational time much effectively and makes the 

system to execute more number of tasks even in the 

less timespan. As the earlier meta-heuristic 
algorithms commonly follows an iterative 

optimization, they had experienced more Makespan 

consequently less throughput. On an average, the 
Throughput of proposed method for GOCJ dataset is 

observed as 0.3562 tasks/sec while for PSO, GA and 

GWO, it is observed as 0.2325 tasks/sec, 0.2540 
tasks/sec and 0.2785 tasks/sec respectively. Similarly, 

the average Throughput of proposed method for 

Synthetic workload dataset it is observed as 3.5210 

tasks/sec while for PSO, GA and GWO, it is observed 
as 2.2520 tasks/sec, 2.4650 tasks/sec and 2.6330 

tasks/sec respectively. 

4.2.3. Convergence speed 

Convergence speed measures the total number of 

iterations in which the task scheduling mechanism 
has find out an optimal resources for task assigning. 

As the numbers of iterations taken to get optimal 

resources set are more, the convergence is said to be 
slow and vice versa. If the task scheduling time is 

reduced, then the CSP can provide more number of 

services for more user requests. With this aim, we 

proposed a simple task scheduling mechanism based 
on multiple resource attributes and conditional logic. 

To verify the convergence of proposed method 

applied to task scheduling in cloud computing, we 
compared to it with the earlier Meta-heuristic 

algorithms such as GA, PSO and GWO. Fig. 7 shows 

the convergence achieved with varying number of 
tasks submitted to cloud. As we can see from this 

Figure, compared to other methods, the proposed  

 

 

Figure. 7 Convergence for varying number of tasks  

 

method required very less number of iterations to 

complete the convergence. Since the proposed 
method selects optimal resources based on a simple 

conditional logic, it has experienced faster 

convergence speed. Among the earlier methods, the 
faster convergence is achieved for GWO and slower 

convergence is achieved for PSO. As PSO needs to 

perform local as well as global optimization, it needs 

more number of iterations to get converged. 
Additionally, with the rise in the tasks to get executed, 

the convergence becomes slow and the system will 

consume more time to complete the bulk data. On an 
average, the convergence of proposed method is 

observed as 194 iterations while for PSO, GA and 

GWO, it is observed as 270, 254 and 230 respectively.  

5. Conclusion 

Cloud computing is a large scale parallel and 

distributed computing system which composed of 
huge number of cloud resources and communication 

links. However, the proper and balanced task 

execution by obtaining an optimal virtual machine is 

a key challenge in cloud computing. Aiming at the 
lower reliability and imbalanced task scheduling, this 

paper proposed a simple and effective task 

scheduling mechanism based on the multiple 
resources attributes and conditional logic. This 

method considered totally four resource attributes 

such as reaction time, availability, location, and 
reliability to formulate the conditional logic. Based 

on the resource attributes, a task scheduling index is 

calculated to find the optimal resources of task 

scheduling with three objectives of minimum 
Makespan, maximum Throughput and faster 

convergence. Simulation experiments are conducted 

and the performance of proposed method is 
compared with several state-of-the-art Meta-heuristic 

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.5

1

1.5

2

2.5

3

3.5

Number of Tasks Submitted

T
h
ro

u
g
h
p
u

t(
T

a
s
k
s
/S

e
c
)

 

 

PSO

GA

GWO

Proposed

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

Number of Tasks Submitted

C
o
n
v
e
rg

e
n
c
e
 (

It
e
ra

ti
o
n
s
)

 

 

PSO

GA

GWO

Proposed



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               688 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

algorithms such as GA, PSO and GWO.  This 
strategy showed an outstanding performance in 

reducing the Makespan, maximizing throughput and 

fastening the convergence speed. On an average, the 

improved throughput of proposed method is 28.40% 
and 19.90% for GOCJ and Synthetic datasets 

respectively. 

Conflicts of interest 

The authors declare no conflict of interest. 

Author contributions 

Conceptualization, Design, Development, and 

implementation of proposed task scheduling by K. 

Sreenu and Validation and proofread by M. Sreelatha. 

References  

[1] J. Lee, “A view of cloud computing”, Int. J. 

Netw. Distrib. Comput., Vol. 1, No. 1, pp. 2-8, 
2013. 

[2] M. Ibrahim, “SIM-cumulus: A large-scale 

network-simulation-as-aservice”, Ph.D. 
dissertation, Dept. Comput. Sci., Capital Univ. 

Sci. Technol., Islamabad, Pakistan, 2019. 

[3] N. J. Navimipour, A. M. Rahmani, A. H. Navin, 

and M. Hosseinzadeh, “Expert cloud: a cloud-
based framework to share the knowledge and 

skills of human resources”, Comput. Hum. 

Behav. Vol. 46, pp. 57–74, 2015. 
[4] M. Malawski, G. Juve, E. Deelman, and J. 

Nabrzyski, “Algorithms for cost-and deadline-

constrained provisioning for scientific workflow 
ensembles in IaaS clouds”, Future Gener. 

Comput. Syst., Vol. 48, pp. 1–18, 2015. 

[5] N. J. Navimipour, “A formal approach for the 

specification and verification of a trustworthy 
human resource discovery mechanism in the 

expert cloud”, Expert Syst. Appl., Vol. 42, No. 

15, pp. 6112–6131, 2015.  
[6] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, 

“Cost-aware challenges for workflow 

scheduling approaches in cloud computing 

environments: taxonomy and opportunities”, 
Future Gener. Comput. Syst., Vol. 50, pp. 3–21, 

2015. 

[7] S. Yang, L. Pan, Q. Wang, S. Liu, and S. Zhang, 
“Subscription or pay-as-you-go: Optimally 

purchasing IaaS instances in public clouds”, In: 

Proc. of IEEE Int. Conf. Web Services (ICWS), 
San Francisco, pp. 219-226, 2018. 

[8] A. Sajjad, A. A. Khan, and M. Aleem, “Energy-

aware cloud computing simulators: A state of 

the art survey”, Int. J. Appl. Math., Electron. 
Comput., Vol. 6, No. 2, pp. 15-20, 2018. 

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. 

D. Rose, and R. Buyya, “CloudSim: A toolkit for 

modeling and simulation of cloud computing 
environments and evaluation of resource 

provisioning algorithms”, Softw., Pract. Exper., 

Vol. 41, No. 1, pp. 23-50, 2011. 
[10] M. Masdari, S. V. Kardan, Z. Shahi, and S. I. 

Azar, “Towards workflow scheduling in cloud 

computing: A comprehensive analysis”, J. Netw. 
Comput. Appl., Vol. 66, pp. 64–82, 2016. 

[11] A. R. Arunarani, D. Manjula, and V. Sugumaran, 

“Task scheduling techniques in cloud 

computing: A literature survey”, Future 
Generation Computer Systems, Vol. 91, pp. 

407–415, 2019. 

[12] V. Hayyolalam and A. A. Kazem, “A systematic 
literature review on QoS-aware service 

composition and selection in cloud 

environment”, J. Netw. Comput. Appl., Vol. 110, 
pp. 52–74, 2018. 

[13] X. Wu, M. Deng, R. Zhang, B. Zeng, and S. 

Zhou, “A task scheduling algorithm based on 

QoS -driven in cloud computing”, Comput. Sci., 
Vol. 17, pp. 1162–1169, 2013. 

[14] R. Albodour, A. James, and N. Yaacob, “QoS 

within business cloud quality of service 
(BGQoS)”, Future Gener. Comput., Syst., Vol. 

50, pp. 22–37, 2015.  

[15] H. E. D. Ali, I. A. Saroit, and A. M. Kotb, 

“Grouped tasks scheduling algorithm based on 
QoS in cloud computing network”, Egyptian 

Inform. J., Vol. 18, No. 1, pp. 11–19, 2017.  

[16] M. S. Thampi, E. Sayed M. E. AIfy and L. 
Trajkovic, “Cost-enabled QoS aware task 

scheduling in the cloud management system”, 

Journal of Intelligent and Fuzzy Systems, Vol. 
41, No. 5, pp. 5607-5615, 2021.  

[17] B. A. A. Maytami, “A Task Scheduling 

Algorithm With Improved Makespan Based on 

Prediction of Tasks Computation Time 
algorithm for Cloud Computing”, IEEE Access, 

Vol. 7, pp. 160916-160926, 2019. 

[18] H. Mahoumd, “Multi-objective Task Scheduling 
in Cloud Environment Using Decision Tree 

Algorithm”, IEEE Access, Vol. 10, pp. 36140-

36151, 2022.  
[19] Q. Guo, “Task Scheduling Based on Ant Colony 

Optimization in Cloud Environment”, In: Proc., 

of AIP Conference, Poland, pp. 0400391-11, 

2017. 
[20] X. Wei, “Task scheduling optimization strategy 

using improved ant colony optimization 

algorithm in cloud computing”, Journal of 



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               689 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

Ambient Intelligence and Humanized 
Computing, Vol. x, pp. 1-13, 2020.  

[21] G. Li and Z. Wu, “Ant Colony Optimization 

Task Scheduling Algorithm for SWIM Based on 

Load Balancing”, Future Internet, Vol. 11, p. 90, 
2019. 

[22] H. Liu, “Research on cloud computing adaptive 

task scheduling based on ant colony algorithm”, 
Optik, Vol. 258, p. 168677, 2022.  

[23] E. Elsedimy, and F. Algarni, “MOTS‐ACO: An 

improved ant colony optimizer for multi‐
objective task scheduling optimization problem 
in cloud data centers”, IET Networks, Vol. 11, 

No. 2, pp. 43-57, 2021  

[24] N. Dordaie, N. J. Navimipour, “A hybrid particle 
swarm optimization and hill climbing algorithm 

for task scheduling in the cloud environments”, 

J. ICT Exp., Vol. 4, No. 4, pp. 199-202, 2017.  
[25] X. Huang, C. Li, H. Chen, and A. Dong, “Task 

scheduling in cloud computing using particle 

swarm optimization with time varying inertia 

weight strategies”, Cluster Computing, Vol. 23, 
pp. 1137–1147, 2020. 

[26] H. M. Eldesokey, S. M. A. E. Atty, W. E. Shafai, 

M. Amoon, and F. E. A. E. Samie “Hybrid 
swarm optimization algorithm based on task 

scheduling in a cloud environment”, 

International Journal of Communication 
Systems, Vol. 34, No. 13, pp. 37-47, 2021.  

[27] Z. Wu and J. Xiong, “A Novel Task Scheduling 

algorithm of cloud computing based on Particle 

Swarm Optimization”, International Journal of 
Gaming and Computer-Mediated Simulations, 

Vol. 13, No. 2, pp. 1-15, 2021.  

[28] Sharma, S. Kumar, and Kumar, Nagresh, “A 
Modified Particle Swarm Optimization for Task 

Scheduling in Cloud Computing”, In: Proc. of 

2nd International Conference on Advanced 

Computing and Software Engineering 
(ICACSE), Tirunelveli, Tamilnadu, pp. 176-181, 

2019. 

[29] S. Nabi, M. Ahmad, M. Ibrahim, and H Hamam, 
“AdPSO: Adaptive PSO-Based Task 

Scheduling Approach for Cloud Computing”, 

Sensors, Vol. 22, No. 3, p. 920, 2022.  
[30] M. Sudheer, and M. V. Krishna, “Multi 

Objective Task Scheduling Algorithm in Cloud 

Computing Using the Hybridization of Particle 

Swarm Optimization and Cuckoo Search”, 
Journal of Computational and Theoretical 

Nanoscience, Vol. 17, No. 12, pp. 5346-5357, 

2020.  
[31] D. Alsadie, “TSMGWO: Optimizing Task 

Schedule Using Multi-Objectives Grey Wolf 

Optimizer for Cloud Data Centers”, IEEE 
Access, Vol. 9, pp. 37707-37725, 2021.  

[32] S. Pang, W. Li, H. He, Z. Shan, and X. Wang, 

“An EDA-GA Hybrid Algorithm for Multi-

Objective Task Scheduling in Cloud 
Computing”, IEEE Access, Vol. 7, pp. 146379-

146389, 2019.  

[33] B. Kruekaew, and W. Kimpan “Multi-Objective 
Task Scheduling Optimization for Load 

Balancing in Cloud Computing Environment 

Using Hybrid Artificial Bee Colony Algorithm 
with Reinforcement Learning”, IEEE Access, 

Vol. 10, pp. 1783-17818, 2022.  

[34] V. Priya and C. N. K. Babu, “Moving average 

fuzzy resource scheduling for virtualized cloud 
data services”, J. Comput. Standards Interfaces, 

Vol. 50, pp. 251–257, 2018. 

[35] K. Sreenu and M. Sreelatha, “W-Scheduler: 
whale optimization for task scheduling in cloud 

computing”, Cluster Comput., Vol. 22, pp. 

1087-1098, 2017. 
[36] K. Sreenu and M. Sreelatha, “FGMTS: 

Fractional grey wolf optimizer for multi-

objective task scheduling strategy in cloud 

computing”, Journal of Intelligent & Fuzzy 
Systems, Vol. 35 pp. 831–844, 2018. 

[37] K. Sreenu and M. Sreelatha, “MFGMTS: 

Epsilon Constraint-Based Modified Fractional 
Grey Wolf Optimizer for Multi-Objective Task 

Scheduling in Cloud Computing”, IETE Journal 

of Research, Vol. 65, No. 2, pp. 201-215, 2018.  

[38] P. Latchoumy and P. S. A. Khader, “A combined 
approach: Proactive and reactive failure 

handling for efficient job execution in 

computational grid”, In: Proc. of Int. Comput. 
Netw. Inf., India, pp. 713-725, 2014. 

[39] K. Srinivasa, G. Siddesh, and S. Cherian, “Fault-

tolerant middleware for grid computing”, In: 
Proc. of 12th IEEE International Conference on 

High Performance Computing and 

Communications, Melbourne, Australia, pp. 

635–40, 2010. 
[40] R. S. Chang, J. S. Chang, and P. S. Lin, “An ant 

algorithm for balanced job scheduling in grids”, 

J. Future Gen. Comput. Syst., Vol. 25, pp. 20-27, 
2009. 

[41] L. Chunlin, Z. J. Xiu, and L. Layuan, “Resource 

scheduling with conflicting objectives in grid 
environments: model and evaluation”, J Netw 

Comput Appl., Vol. 32, No. 3, pp. 760–769, 

2009. 

[42] P. Huang, H. Peng, P. Lin, and X. Li, “Static 
strategy and dynamic adjustment: an effective 

method for grid task scheduling”, J Future Gen 

Comput Syst,, Vol. 25, No. 8, pp. 884–92, 2009. 



Received:  February 19, 2023.     Revised: April 23, 2023.                                                                                               690 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.54 

 

[43] A. Hussain and M. Aleem, “GoCJ: Google cloud 
jobs dataset for distributed and cloud computing 

infrastructures”, Data, Vol. 3, No. 4, p. 38, 2018. 

[44] A. Hussain, M. Aleem, A. Khan, M. A. Iqbal, 

and M. A. Islam, “RALBA: A computation-
aware load balancing scheduler for cloud 

computing”, Cluster Comput., Vol. 21, No. 3, pp. 

1667-1680, 2018. 
 


