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Abstract: In existing matrix factorization (MF)-based recommender systems, the user-item interaction matrix is 

factorized linearly into two low-ranked feature matrices to generate predictions or provide the users with 

personalized rankings of items. However, when MF methods are directly applied to sparse rating matrices, they 

cannot cope with the inherent structure of real-world user and item latent features. The efficiency of MF-based 

systems crucially depends on their capability to address sparsity issues. To this end, we propose, in this paper, a 

novel preference-based data imputation approach for effective MF-based Top-K recommendation. We apply MF on 

an imputed and denser rating matrix with only interesting items to users. We obtain these items by inferring the prior 

preferences of users, considering some biases that may impact their choices for items they interact with, and 

leveraging a powerful latent and non-linear feature extraction using a deep generative model. Experimental results 

on two real-world sparse datasets reveal that the proposed model significantly enhances the performance of Top-K 

recommendations and outperforms baselines with an average improvement margin of 6.45% and 3.91% in hit rate 

(HR) and normalized discounted cumulative gain (NDCG) evaluation metrics, respectively, averaging on all 

employed datasets. 
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1. Introduction 

Collaborative filtering (CF) is woven into any 

recommendation system to mine personalized 

information, thus dealing with progressively 

expanding data and enhancing the user’s experience. 

Such personalization is fulfilled by assuring an 

accurate rating prediction or a reliable ranking-based 

recommendation approach [1-3]. The purpose of the 

rating prediction task is to effectively predict ratings 

close to those given by the user to ensure an optimal 

minimization of the prediction error for unobserved 

interactions in the user-item matrix. The ranking-

based system aims to provide users with Top-K 

personalized and sorted items according to their 

interests and preferences. Several state-of-the-art 

methods leverage matrix factorization (MF) 

techniques, including singular value decomposition 

(SVD), to learn efficient ranked lists of items for 

users [1, 4]. However, in real-world applications, the 

user-item interaction matrices are sparse, with only a 

few observed rating values given by users on items 

[2, 3]; hence using an MF technique to linearly 

model interaction data directly on a sparse rating 

matrix cannot deal with the non-linear and complex 

intrinsic structure of user and item latent features [2]. 

Imputation approaches are proposed to tackle 

sparsity issues by ensuring pre-processing for 

missing entries in the user-item matrix before 

generating ranked items for the target user [5-7]. 

Nevertheless, many data imputation-based models 

assume that unobserved rating information is 

missing at random (MAR) [8], considering that the 

probability of observing a rating does not rely on its 

value. Such an assumption is not met in a real-world 

application where users select items they want to 

interact with, especially those with higher pre-use 

preferences. Ignoring these missing interactions 



Received:  December 13, 2022.     Revised: March 14, 2023.                                                                                           543 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.43 

 

would bias the model towards higher available 

rating values, thereby inaccurately ranking tail items 

[9]. On the other hand, several state-of-the-art 

imputation approaches consider unobserved items 

with empty values in the rating matrix as negative 

examples [10, 11] since users are likelier to assign 

ratings for items they are interested in, which would 

inaccurately increase the ranking of popular items. 

This paper proposes PreFImp, a novel 

preference-based imputation approach for effective 

Top-K recommendation. We impute a denser rating 

matrix for the SVD model by exploring unrated 

positive items that may interest the users. We obtain 

these items by inferring prior preferences of users 

for items considering that some entries in the rating 

matrix can be missing not at random (MNAR) and 

leveraging a significant and powerful latent feature 

extraction using a deep generative model. The main 

contributions of this paper are: 

 

• While the current collaborative methods 

apply MF directly on a sparse user-item 

interaction matrix, we introduce an efficient 

Top-K recommendation using MF on a 

denser rating matrix with only interesting 

items to users. 

• We infer prior preferences of users for items 

by extracting reliable latent features of users 

and items using a deep generative model.  

We also take into account some biases that 

might impact the pre-use preferences of 

users. 

• We consider the different rating 

distributions by calculating a threshold 

preference score for each target user; 

interesting unrated items are selected 

according to personalized preference scores. 

• Experimental results on two real-world 

datasets demonstrate that the proposed 

PreFImp model outperforms the baseline 

methods with an average improvement 

margin of 6.45% and 3.91% in HR and 

NDCG, respectively.  
 

The remainder of this paper is structured into 

four sections as follows. We first provide in section 

2 a summary of the literature review. In section 3, 

the proposed preference-based imputation method is 

explained in detail. Section 4 reports experimental 

findings and compares the proposed model's 

performance with state-of-the-art approaches. 

Finally, section 5 presents the paper's conclusions 

and future directions. The notations used in this 

paper are briefly summarized and defined in Table 1. 

2. Related work 

The Top-K recommendation aims to determine a 

personalised sorted list of K items according to the 

user's preferences. The efficiency of such ranking-

based systems crucially depends on how they deal 

with sparse and missing entries in the user-item 

rating matrix [2]. Data imputation-based methods 

are proposed to overcome rating sparsity without 

employing auxiliary information [5-7]. Yuan et al. 

[12] proposed the imputation-based SVD (ISVD) 

approach to generate and then include imputed 

ratings into the SVD model by inferring reliable 

neighbors for users and items. The PDMF 

imputation method [5] produces preliminary data to 

constrain the learning in MF. Although only selected 

neighbors' ratings are employed for imputation in 

ISVD and the correlations between the learned 

original, preliminary, and concatenated preferences 

are examined in PDMF, such neighborhood-based 

techniques do not estimate uncertainty in rating 

matrix's empty cells to impute missing values only 

to relevant positions [1].  

Trust-based methods [6, 7] substitute 

unavailable evaluations with imputed entries by 

exploring the trust network information of users and 

items. Such trust-aware techniques can enhance the 

performance of Non-negative Matrix Factorization 

(NMF), especially for cold-start new users who need 

to assess more items [7, 13, 14]. For an efficient 

Top-K recommendation, some models consider the 

unobserved entries in the rating matrix as negative 

preferences [10, 11], while they are ignored in 

prediction-based approaches. By employing the one 

class collaborative filtering (OCCF) strategy [15], 

the zero-injection method [16] treats missing entries 

as negative evaluation examples with uniform 

weights and assigns single zero values to identified 

uninteresting items. However, such assumptions 

bias the experimentation model toward popular and 

positively favored items [8].  

Even though the above-outlined imputation 

approaches outperform baseline collaborative 

techniques, they assume that missing values in the 

rating matrix are missing at random (MAR) or 

missing completely at random (MCAR) [8], which 

would still impede their performance in capturing 

complex correlations between users and items.  

Unlike baseline imputation approaches, we 

assume that some entries in the rating matrix can be 

missing not at random (MNAR) since users in real-

world applications choose items they want to 

interact with. Furthermore, we don’t ignore unrated 

positive items by not treating all items with missing 

entries as negative examples but instead considering  
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Table 1. Important notations 

Notation Definition 

𝑈 = {𝑢0 … 𝑢𝑛} and 𝐼 =
{𝑖0 … 𝑖𝑚} 

The set of 𝑛 users and the 

set of 𝑚 items 

𝑅 = 𝑈 × 𝐼  

and 𝑅𝑜𝑏  

The sparse rating matrix 

with 𝑟𝑢𝑖 entries and the 

observed rating matrix of 

user-item pairs 

𝑃 The observed prior 

preferences matrix with 𝑝𝑢𝑖  

entries 

𝐼𝑢
𝑜𝑏  and  𝐼𝑢

𝑢𝑛 The set of observed items 

by user 𝑢 and the set of 

unrated items by user 𝑢 

𝐼𝑢
+ and 𝐼𝑢

− The set of interesting items 

for user 𝑢 and the set of 

uninteresting items for user 

𝑢 

𝐼𝑢
𝑢𝑛+and  𝐼𝑢

𝑢𝑛− The set of unrated positive 

items for user 𝑢 and the set 

of unrated negative items 

for user 𝑢 

𝑅̂ The reconstructed denser 

rating matrix with 𝑟̂𝑢𝑖 

entries 

𝐿 The latent preference 

matrix with ℓ𝑢𝑖entries 

ℵ(𝑢) The set of most similar 

users to user 𝑢 

𝑃̂ The imputed preference 

matrix with 𝑝̂𝑢𝑖 entries 

𝐶𝑃̂ The categorical preference 

matrix with 𝑐𝑝̂𝑢𝑖entries 

𝑝𝑜𝑠(𝑖) The positivity of item 𝑖 
𝐷(𝑖) The density of item 𝑖 
𝑅𝑒(𝑖) The relevancy of item 𝑖 
𝜌(𝑢) The threshold preference 

score for user 𝑢 

𝜃 = {𝜃1 … 𝜃𝑘} The set of categorical 

preferences 

ℋ(𝑢) The maximum value of 

categorical preferences of 

user 𝑢 

ℱ(𝑢) The most frequent 

categorical preference of 

user 𝑢 

𝑅+ The imputed rating matrix 

with only interesting items 

 

 

that unrated items can be interesting or uninteresting 

to users. 

3. Proposed approach 

To overcome the challenges of traditional Top-K 

recommendation techniques, we propose PreFImp, a 

preference-based imputation approach with five 

main phases. First, we identify the observed prior 

preferences for users on items (Fig. 1(a)). Next, we 

aim for an accurate reconstruction of the sparse 

rating matrix using a deep generative model by 

learning efficient latent features of users and items 

(Fig. 1(b)). The reconstructed denser matrix is used 

to capture the latent preferences of users toward 

items by inferring a set of similar neighbors for each 

active user 𝑢 (Fig. 1(c)). Then, we impute missing 

preferences of users for unrated items, i.e.,  𝑟𝑢𝑖 =
𝑛𝑢𝑙𝑙  (Fig. 1(d)) by also taking into consideration 

some biases that might impact the prior preferences 

of users (i.e., item popularity and item overall 

relevancy). Finally, we identify the set of positive 

unrated items for the target user 𝑢 by comparing the 

imputed preference 𝑝̂𝑢𝑖 of the user 𝑢 for item 𝑖  with 

𝑢’s estimated threshold preference score (Fig. 1(e)). 

The sets of positive items for each user are 

leveraged to impute a rating matrix to solve the 

sparsity problem in the Top-K recommendation. 

3.1 Inference of observed prior preferences 

To infer the observed prior preferences, we 

convert the rating matrix 𝑅 = (𝑟𝑢𝑖)𝑛𝑥𝑚 to a binary 

prior preferences matrix 𝑃 = (𝑝𝑢𝑖)𝑛𝑥𝑚  (Fig. 1(a)), 

where  𝑝𝑢𝑖 = 1  indicates that the user 𝑢  has the 

highest pre-preference for the item 𝑖, since the rating 

of user 𝑢  on the item 𝑖  is not missing, i.e., 

𝑟𝑢𝑖𝜖 𝑅𝑜𝑏 ⊆ 𝑅 , where 𝑅𝑜𝑏 is a subset of user-item 

pairs with known ratings, i.e., 𝑅𝑜𝑏 = {𝑟𝑢𝑖𝜖 𝑅| 𝑟𝑢𝑖 ≠
𝑛𝑢𝑙𝑙}. An item 𝑖 that belongs to the set of observed 

items by user 𝑢, i.e., 𝑖 𝜖 𝐼𝑢
𝑜𝑏, must be interesting to 𝑢 

in the beginning, as he/she decided to experience. In 

other words, all rated items by the user 𝑢  are 

interesting items to user 𝑢 since they have led to a 

user-item interaction described by an available 

rating 𝑟𝑢𝑖 , i.e., 𝐼𝑢
𝑜𝑏 ⊆ 𝐼𝑢

+  . However, an item 𝑖  that 

has not been rated by user 𝑢, i.e., 𝑟𝑢𝑖 = 𝑛𝑢𝑙𝑙, can be 

interesting or uninteresting to user 𝑢 , i.e., 

𝑖𝜖 𝐼𝑢
𝑢𝑛+or 𝑖𝜖 𝐼𝑢

𝑢𝑛−. Therefore, the main challenge is 

accurately determining the prior preferences for 

items 𝐼𝑢
𝑢𝑛. 

3.2 Extraction of user and item features 

In this stage, we aim to accurately reconstruct 

the sparse rating matrix 𝑅 = (𝑟𝑢𝑖)𝑛𝑥𝑚using the deep 

belief network (DBN) [17] (Fig. 1(b)). We employ 

the deep generative model for missing rating 

prediction by learning relevant hidden features of 

user 𝑢 and item 𝑖. The DBN is formed by stacking 

multiple probabilistic building blocks called 

restricted boltzmann machines (RBMs) [18, 19] 

used to apprehend one layer of latent features at a  
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Figure. 1 Overview of the proposed PreFImp approach 

 

time. An RBM is a bipartite graph-based model 

composed of two layers, a visible layer 
{𝑣1 … 𝑣𝑎 … 𝑣𝐴} with 𝐴  visible units and a hidden 

layer {ℎ1 … ℎ𝑏 … ℎ𝐵} with 𝐵 hidden nodes. Since no 

unit has a connection with another unit of the same 

layer, the values of units in the visible or hidden 

layer are independent concerning the units of the 

same layer. Therefore, the joint probability 𝑃Θ(𝑣, ℎ) 

of each visible and hidden unit can be computed as 

follows:  

 

𝑃Θ(𝑣, ℎ) =
𝑒−𝐸(𝑣,ℎ; Θ)

℘(Θ)
                  (1) 

 

Where ℘(Θ) = ∑ 𝑒−𝐸(𝑣,ℎ; Θ)
𝑣,ℎ  defines the 

normalization factor and 𝐸(𝑣, ℎ;  Θ)  is the overall 

energy of the joint configuration {𝑣, ℎ}, which can 

be described by the following equation:  

 

𝐸(𝑣, ℎ;  Θ) = − ∑ ∑ 𝑊𝑎𝑏
𝐵
𝑏=1 𝑣𝑎ℎ𝑏

𝐴
𝑎=1 − ∑ 𝑐𝑣𝑎 𝑣𝑎  

− ∑ 𝑐ℎ𝑏 ℎ𝑏          (2) 

 

Where 𝑊𝑎𝑏  is the weight between 𝑣𝑎  and  ℎ𝑏 ; 

𝑐𝑣  and 𝑐ℎ  are, respectively, the bias vectors for 

visible and hidden units that form the parameter set 

Θ = {W, 𝑐𝑣 , 𝑐ℎ} of the RBM. The probability of a 

visible sample is calculated over all the conditional 

probabilities of hidden vectors using Eq. (3): 

 

𝑃Θ(𝑣) =  ∑ 𝑃Θ(𝑣, ℎ) =  
∑ 𝑒−𝐸(𝑣,ℎ; Θ)

ℎ

∑ 𝑒−𝐸(𝑣,ℎ; Θ)
𝑣,ℎ

ℎ       (3) 

 

The main goal of the RBM is maximizing the 

log-likelihood 𝑙𝑜𝑔𝑃Θ(𝑣) to learn the weight matrix 

𝑊 = {𝑊𝑎𝑏} that ensures an effective reconstruction 

of the sparse rating matrix 𝑅:  

 
Figure. 2 Gibbs sampling 

 
𝜕𝑙𝑜𝑔𝑃Θ(𝑣)

𝜕𝑊𝑎𝑏
=< 𝑣𝑎ℎ𝑏 >𝑑𝑎𝑡𝑎−< 𝑣𝑎ℎ𝑏 >𝑟𝑒𝑐𝑜𝑛𝑠𝑡   (4) 

 

∆𝑊𝑎𝑏 =  𝜂 < 𝑣𝑎ℎ𝑏 >𝑑𝑎𝑡𝑎−< 𝑣𝑎ℎ𝑏 >𝑟𝑒𝑐𝑜𝑛𝑠𝑡   (5) 

 

Where <. >𝑑𝑎𝑡𝑎 stands for the expectation under 

training data distribution, <. >𝑟𝑒𝑐𝑜𝑛𝑠𝑡  defines the 

expectation under reconstructed-data distribution 

obtained by the RBM model, and 𝜂 is the learning 

rate. Since there are no hidden–hidden connections, 

the states of hidden units are conditionally 

independent. Given a visible vector 𝑣 , the hidden 

unit value  ℎ𝑏 can thereby be determined as follows:  

 

𝑃(ℎ𝑏 = 1|𝑣) =  𝜎(∑ 𝑊𝑎𝑏𝑣𝑎 + 𝑐ℎ
𝐴
𝑎=1 )       (6) 

 

Where 𝜎(𝑥) = 1 1 + 𝑒−𝑥⁄  is the logistic 

sigmoid function, hence, <. >𝑑𝑎𝑡𝑎  can be easily 

obtained. On the other hand, <. >𝑟𝑒𝑐𝑜𝑛𝑠𝑡  can be 

computed by applying the contrastive divergence 

(CD) [17] to ensure the initialization of 𝑣  using 

training data and then performing 𝑡 steps of Gibbs 

sampling, as indicated in Fig 2, which speeds up the 

learning process. 

Once the stacked RBMs of the DBN model are 

pre-trained, where each RBM's hidden layer 𝐻 =
{ℎ𝑏} performs as the visible layer 𝑉={𝑣𝑎 } for the 
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following RBM, the bottom-up weights of the 

unsupervised DBN are leveraged to initialize a 

multi-layer neural network, thus accomplishing a 

discriminative fine-tuning based on the back-

propagation of error derivatives. At the end of this 

phase, the fine-tuned DBN model discovers optimal 

parameters that yield a denser reconstructed rating 

matrix 𝑅̂ = (𝑟̂𝑢𝑖)𝑛𝑥𝑚.  

3.3 Inference of latent preferences  

To learn the latent preferences matrix 𝐿 =
(ℓ𝑢𝑖)𝑛𝑥𝑚  (Fig. 1(c)), we first infer a set of similar 

neighbors for each target user 𝑢 . The degree to 

which two users, 𝑢 and 𝑢′, are similar is determined 

by considering the denser ratings learned by the 

DBN model 𝑟̂𝜖𝑅̂ on the common observed items by 

users 𝑢 and 𝑢′, i.e., 𝐼𝑢,𝑢′
𝑜𝑏 . The user-based similarity 

is computed as follows: 

 

𝑠𝑖𝑚(𝑢, 𝑢′) =

∑ (𝑟̂𝑢𝑖−𝑟̂𝑢
̅̅ ̅)(𝑟̂

𝑢′𝑖
−𝑟̂𝑢′̅̅ ̅̅ ̅)

𝑖 𝜖𝐼
𝑢,𝑢′
𝑜𝑏

√∑ (𝑟̂𝑢𝑖−𝑟̂𝑢
̅̅ ̅)

2

𝑖 𝜖𝐼
𝑢,𝑢′
𝑜𝑏 √∑ (𝑟̂𝑢′𝑖−𝑟̂𝑢′̅̅ ̅̅ ̅)

2

𝑖 𝜖𝐼
𝑢,𝑢′
𝑜𝑏

 (7) 

 

Where 𝑟̂𝑢̅ and 𝑟̂𝑢′
̅̅ ̅, are respectively the average of 

predicted ratings of users 𝑢 and 𝑢′. We predict the 

latent preference ℓ𝑢𝑖 of the target user 𝑢 for the item 

𝑖  by leveraging denser ratings 𝑟̂𝜖𝑅̂  assessed to the 

item 𝑖, by the most similar users to the active user 𝑢, 

i.e., ℵ𝒊(𝑢):  

 

ℓ𝑢𝑖 =
∑ 𝑠𝑖𝑚(𝑢,𝑢′)𝑢′𝜖 ℵ𝒊(𝑢) 𝑟̂

𝑢′𝑖

∑ |𝑠𝑖𝑚(𝑢,𝑢′)|𝑢′𝜖 ℵ𝒊(𝑢)
                 (8) 

 

Since similar users may vary in their use of 

rating scales (two users have the same degree of 

appreciation for item 𝑖, but the first rates it at 5 and 

the second at 4), the average of the reconstructed 

ratings of the target user 𝑢 , i.e., 𝑟̂𝑢̅  as well as the 

average of denser evaluation scores of similar users 

are incorporated. The latent preference prediction 

ℓ𝑢𝑖, is, therefore, computed as follows:  

 

ℓ𝑢𝑖 =  𝑟̂𝑢̅ +
∑ 𝑠𝑖𝑚(𝑢,𝑢′)𝑢′ 𝜖 ℵ (𝑟̂

𝑢′𝑖
−𝑟̂𝑢′̅̅ ̅̅ ̅)

∑ |𝑠𝑖𝑚(𝑢,𝑢′)|𝑢′𝜖 ℵ𝒊(𝑢)
       (9) 

3.4 Imputation of the preference matrix 

To impute the preference 𝑝̂𝑢𝑖  (Fig. 1(d)) of a 

user 𝑢  for an item 𝑖  with a missing rating, i.e., 

𝑖 𝜖 𝐼𝑢
𝑢𝑛 , instead of considering that user 𝑢  is more 

likely to have a low preference for the unrated item 𝑖, 
i.e., 𝑖 𝜖 𝐼𝑢

𝑢𝑛− [10, 11, 15, 16], and treat all the 

unobserved items as negative examples for user 𝑢, 

i.e., 𝐼𝑢
𝑢𝑛 ⊆ 𝐼𝑢

− , we leverage the predicted latent 

preference of the user 𝑢  toward the item 𝑖 , i.e., 

ℓ𝑢𝑖 learned from the denser rating matrix. We also 

take into consideration that the preferences 𝑃̂ =
(𝑝̂𝑢𝑖)𝑛𝑥𝑚 are biased to item positivity 𝑝𝑜𝑠(𝑖). The 

latter encompasses two major points that may 

impact the pre-preference of a user 𝑢 toward an item 

𝑖: (1) The popularity or the density of an item 𝐷(𝑖) 

may influence users' choice of items. By referring to 

the long-tail distribution of evaluated items in many 

real-world applications, one may see that a great 

number of feedback ratings are compressed into a 

small fraction of popular items [8, 9]. (2) A user's 

prior preference towards an item can also be 

associated with the average relevancy 𝑅𝑒(𝑖) of that 

item (a user is more likely to watch a movie that the 

majority of users have positively rated). The overall 

positivity of item 𝑖 is calculated as follows: 

 

𝑝𝑜𝑠(𝑖) =
𝐷(𝑖)+𝑅𝑒(𝑖)

2
                       (10) 

 

Here 𝐷(𝑖) is obtained by computing the ratio of 

observed ratings on item 𝑖  to the total number of 

users (i.e., 𝐷(𝑖) = 𝑁𝑅 𝑁𝑢𝑠𝑒𝑟𝑠⁄ ), and 𝑅𝑒(𝑖) refers to 

one of the three relevancy classes for the item 𝑖, i.e., 

{0, 0.5, 1} based on 𝑖's average rating. Therefore, the 

imputed preference of the user 𝑢 for item 𝑖 can be 

estimated as follows:  

 

𝑝̂𝑢𝑖 =  (𝑤 𝑝𝑜𝑠(𝑖) + ℓ𝑢𝑖) 1.5⁄              (11) 

 

Where 𝑤 is a weight parameter set as 0.5. 

3.5 Imputation of rating matrix for Top-K 

recommendation 

Now, we discuss how the imputed preferences 

𝑃̂ = (𝑝̂𝑢𝑖)𝑛𝑥𝑚 can be used to achieve efficient Top-

K recommendation results of any CF model. When 

applying matrix factorization techniques directly on 

a sparse rating matrix to generate a Top-K 

recommendation list for the user 𝑢, the linear dot-

product is inadequate to learn the complex hidden 

structure of 𝑢 's interaction data. Furthermore, 

unobserved ratings are considered zero entries, 

which leads to ineffective learning of latent factors 

of users and items [2]. Taking into account these 

constraints, we apply SVD on the imputed rating 

matrix 𝑅+  to generate accurate Top-K 

recommendation lists for users, with only positive 

items 𝐼+ for each user. To identify the set of positive 

unrated items for the user 𝑢 , i.e., 𝐼𝑢
𝑢𝑛+ , we first 

convert the imputed preference matrix 𝑃̂ =
(𝑝̂𝑢𝑖)𝑛𝑥𝑚  to a categorical preference matrix 𝐶𝑃̂ =



Received:  December 13, 2022.     Revised: March 14, 2023.                                                                                           547 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.43 

 

(𝑐𝑝̂𝑢𝑖)𝑛𝑥𝑚 , so that we can calculate the threshold 

preference score for the user 𝑢 as follows: 

 

𝜌(𝑢) = (𝛼 ∑
ℋ(𝑢)>𝑑𝑖𝑠𝑡(𝜃)

|𝜃|𝜃′∈{𝜃1….𝜃𝑘} +  

𝛽 ℱ(𝑢) +  𝛿 ℋ(𝑢))/2.5      (12) 

 

Given 𝜃 = {𝜃1 … 𝜃𝑘} , the set of categorical 

preferences, i.e., 𝑐𝑝̂𝑢𝑖 𝜖 𝜃 , ℋ(𝑢) , the maximum 

value of categorical preferences 𝑐𝑝̂  of user 𝑢  for 

unrated items 𝐼𝑢
𝑢𝑛 , i.e., ℋ(𝑢) = max (𝜃, 𝑐𝑝̂ ≠ 1)𝑢 , 

ℋ(𝑢) > 𝑑𝑖𝑠𝑡(𝜃) is the number of distinct 

categorical preferences that are ranked lower than 

ℋ(𝑢) , i.e., 𝜃′ <  𝜃 . ℱ(𝑢)  is the most frequent 

categorical preference of user 𝑢, and |𝜃| is used for 

normalization. Parameters 𝛼, 𝛽, and 𝛿 are set as 0.5, 

0.5, and 1.5, respectively.  

We conclude that an item 𝑖 with missing rating is 

an item that may interest the user 𝑢 , i.e., 

𝑖 𝜖 𝐼𝑢
𝑢𝑛+ (Fig. 1(e)) by comparing the imputed 

preference 𝑝̂𝑢𝑖  of the user 𝑢  for item 𝑖   with the 

threshold score of user 𝑢, i.e., 𝜌(𝑢). Therefore, the 

set of unrated positive items of the user 𝑢  is 

determined as follows: 

 

𝐼𝑢
𝑢𝑛+(𝜌(𝑢)) =  

{𝑖|𝜌(𝑢) ≤ 𝑟𝑎𝑛𝑘(𝑝̂𝑢𝑖) < 1,  𝑟𝑢𝑖 = 𝑛𝑢𝑙𝑙 }      (13) 

 

Fig. 3 depicts the imputed preference matrix 𝑃̂ =
(𝑝̂𝑢𝑖)𝑛𝑥𝑚  for users {𝑢0 … 𝑢4 }, where the colored 

cells are positive unrated items 𝐼𝑢𝑛+  for users 

according to their threshold scores 𝜌. Note that if we 

set a unique threshold value 𝜌  for all users, the 

positive items 𝐼+  for each user will change. The 

proposed preference-based model considers the 

different rating distributions to infer accurate user 

preferences. For example, two users, 𝑢 and 𝑢′ might 

give the same rating of 3 to item 𝑖. Nevertheless, the 

significance of the evaluation value can be 

interpreted in various ways. On a scale of 1 to 5, the 

rating value of 3  may indicate the satisfaction of 

user 𝑢 toward item 𝑖 (in case of user 𝑢 rarely gives a 

rating of 5 ). On the other hand, user  𝑢′  could 

choose the rating value of 3  for a less interesting 

item. Furthermore, by employing the personalized 

preference score 𝜌 for each user, we deal with the 

problem of grey sheep users who have unique and 

unusual interests [20], by tackling the challenge of 

creating precise profiles for such users. 

Given 𝑅+ =  (𝑟𝑢𝑖
+ )𝑛𝑥𝑚 the imputed rating matrix 

with only positive items, i.e., 𝑖 𝜖 𝐼𝑢
+, SVD factorizes 

𝑅+ into two low-rank matrices, a 𝑧 -dimensional 

matrix 𝑆  that contains user factors,  i.e., 𝑠𝑢 ∈  ℝ𝑧 

and a 𝑧-dimensional matrix 𝑄  of item factors, i.e.,  
 

 
Figure. 3 Positive unrated items according to imputed 

preferences and threshold scores of users 

 
Table 2. Statistics of experimental datasets 

Datasets MovieLens 

100K 

MovieLens  

1M 

#Users 943 6 040 

#Items 1 682 3 706 

#Ratings 100 000 1 000 209 

Sparsity 93.7% 95.53% 

 

 

𝑞𝑖 ∈  ℝ𝑧. Prediction of the rating 𝑟𝑢𝑖
∗  is calculated as 

the inner product of user and item related feature 

vectors: 

 

𝑟𝑢𝑖
∗ =  𝑠𝑢𝑞𝑖

𝑇                           (14) 

 

By applying SVD directly on the imputed 

ratings 𝑟𝑢𝑖
+  of the matrix 𝑅+, we can learn efficient 

latent correlations between users and items, which 

enhances the final Top-K recommendation results. 

This is achieved by minimizing the following 

objective function: 

 

min ∑ (𝑟𝑢𝑖
+ − 𝑠𝑢𝑞𝑖

𝑇)2
(𝑢,𝑖) +  𝜆(‖𝑠𝑢‖2 + ‖𝑞𝑖‖2)   (15) 

 

Where 𝜆 is used as a regularization parameter to 

prevent overfitting. 

4. Experimental results 

4.1 Dataset description 

Experimental evaluations are conducted on two 

real-world benchmark datasets: MovieLens 100K 

and MovieLens 1M. Statistics and Sparsity levels of 

both datasets are shown in Table 2. The following 

equation is used to calculate the sparsity level: 

 

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
𝑁#𝑅𝑎𝑡𝑖𝑛𝑔𝑠

𝑁#𝑈𝑠𝑒𝑟𝑠× 𝑁#𝐼𝑡𝑒𝑚𝑠
         (16) 

4.2 Metrics 

The hit rate (𝐻𝑅) and the normalized discounted  
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Table 3. Performance of the proposed model compared with baseline approaches 
 MovieLens 100K MovieLens 1M 

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 

ItemPop 0.2831 0.1892 0.4060 0.2264 0.3101 0.2126 0.44584 0.2562 

BPR [10] 0.4550 0.3172 0.5801 0.3312 0.4810 0.3315 0.6577 0.3910 

NeuMF [11] 0.4645 0.3183 0.6257 0.3704 0.5089 0.3562 0.6833 0.4124 

NGCF [21] 0.4274 0.2889 0.5864 0.3402 0.5017 0.3437 0.6688 0.3977 

DeepCF [22] 0.5009 0.3502 0.6819 0.3981 0.5508 0.3941 0.7253 0.4416 

DAVE [23] 0.4995 0.3415 0.6723 0.3971 0.5417 0.3761 0.7185 0.4334 

CFFNN [24] 0.5113 0.3345 0.7012 0.4077 0.5730 0.4102 0.7511 0.4582 

TBRS [25] 0.4710 0.313 0.6452 0.3696 0.5941 0.4074 0.7306 0.4565 

PreFImp 0.5853 0.3993 0.7586 0.4348 0.6538 0.4448 0.8182 0.5039 

Improvement 7.4% 4.91% 5.74% 2.71% 5.97% 3.46% 6.71% 4.57% 

 

 

cumulative gain (𝑁𝐷𝐶𝐺) are employed as ranking 

quality measures for the Top-K recommendation 

with 𝐾  selected from {5,10}.  𝐻𝑅@𝐾  evaluates the 

number of correctly predicted items in the Top-K list 

in the test set, while 𝑁𝐷𝐶𝐺@𝐾  considers the hits' 

position. 

4.3 Performance comparison and results 

discussion  

We compare the performance of the proposed 

model against the following eight benchmark 

approaches:  

 

• ItemPop is a non-personalized standard method 

that provides ranking recommendations solely 

based on items' popularity.  

• Bayesian personalized ranking (BPR) [10] is an 

MF model that leverages pairwise learning for a 

personalized ranking-based recommendation. 

• Neural matrix factorization (NeuMF) [11] 

combines the linear modelling of generalized 

matrix factorization with non-linear kernel-

based multi-layer perceptron for extracting 

feature interaction. 

• Neural graph collaborative filtering (NGCF) 

[21] proposes a propagation layer to incorporate 

the collaborative bipartite graph into embedding 

users and items. 

• Deep collaborative filtering (DeepCF) [22] is a 

Deep Neural Network-based ranking approach 

that incorporates matching function learning 

with deep representation learning of users and 

items. 

• Dual adversarial variational embedding (DAVE) 

[23] merges adversarial training with variational 

auto-encoder to learn multi-modality 

preferences from the user-item matrix. 

• Cross feature fusion neural network (CFFNN) 

[24] apprehends users' preferences toward items 

based on a fusion mechanism of user and item 

features. 

• Tensor based recommender system (TBRS) [25] 

combines collaborative filtering with sequential 

recommendation to model users as rectangles 

that capture their interests. 

 

To determine the hyper-parameters' viability and 

choose their optimal values, several experiments are 

conducted. We train the DBN model using a 

momentum of 0.1, a batch size of 32 for all datasets. 

We set the learning rate as 0.0005 for MovieLens 

100K and MovieLens 1M. For the Top-K 

recommendations, 𝐾 is selected from {5,10}.   

Table 3 shows the performance results of the 

proposed PreFImp model and baseline approaches in 

terms of HR and NDCG with respect to the ranking 

position K. Each column's highest score is bold, and 

the underlined value represents the second-best 

score. The experimental results demonstrate that the 

proposed model attains the best performance on 

both datasets, significantly outperforming all the 

state-of-the-art approaches in terms of all employed 

evaluation metrics. 

Unlike the proposed PreFImp baselines, ItemPop 

merely considers the popularity of items and does 

not take into account users’ personalized 

preferences; consequently, ItemPop results in the 

lowest ranking accuracy. 

On MovieLens 100K, PreFImp demonstrates an 

average improvement margin of 6.57% against the 

best competitor (i.e., CFFNN) in HR results. 

Regarding NDCG, when setting K as 5, PreFImp 

surpasses the best approach among baselines (i.e., 

DeepCF) with 4.91% and achieves 2.71% relative 

improvement compared with the best competitor 

(i.e., CFFNN) when K=10. CFFNN is exploring 

several multilayer perceptrons (MLPs) for enhanced 

extraction and integration of non-linear features of 

users and items. DeepCF also applied MLP for 
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complex matching function learning and capturing 

low-rank correlations between user-item pairs.  

However, despite their effectiveness, CFFNN 

and DeepCF show inferior results compared with 

the PreFImp approach because they rely on simple 

MLP for feature extraction in contrast to the 

proposed PreFImp, which leverages a more 

powerful deep generative model to capture higher-

level hidden feature interaction of users and items in 

the sparse rating matrix; thus effectively generating 

a reconstructed denser matrix to infer similar 

neighbors for the target user. 

On MovieLens 1M, TBRS shows the best 

HR@5 ranking result but fails to surpass PreFImp. 

In fact, using rectangles to model users' preferences 

in TBRS makes up for typical single-sided user 

vector representations by allowing tensor-based 

modeling of numerous aspects of the user's interests. 

PreFImp also provides the higher HR@10 

performance (i.e., 0.8182) and shows an average 

relative improvement of 4.01% than CFFNN, which 

has led to the best NDCG ranking results among 

benchmark approaches. We can also note that when 

the parameter K is set as 5 and 10, all the models 

have led performance results that can be placed in 

the following sequence (PreFImp > CFFNN > 

TBRS > DeepCF > DAVE > NeuMF > NGCF > 

BPR > ItemPop) DAVE exhibits the closest ranking 

results to DeepCF and performs almost better than 

other MF-based approaches but shows limited 

outcomes compared with PreFImp. This proves that 

building the new PreFImp with a pre-training phase 

for a reliable weight initialization and then a 

supervised fine-tuning step for further optimization 

provides an enhanced generalization performance 

which is more efficient than simply adding 

adversarial noise to improve the model's 

regularization. On the other hand, although NeuMF 

combines generalized matrix factorization (GMF) 

linearity with MLP non-linearity to model different 

structures of the rating matrix, it shows inferior 

results than other competitive deep learning-based 

techniques. By applying MF on the denser generated 

matrix, PreFImp does not ignore significant 

correlations of user-item interactions that the dot 

product can learn of hidden features. Moreover, 

PreFImp leverages a powerful architecture rather 

than dual embedding spaces that lead to overfitting, 

which might be a reason that hinders the NeuMF’s 

performance. 

Besides, PreFImp vastly outperforms graph-

based approaches (i.e., NGCF) that can leverage the 

bipartite graph structure of irrelevant user-item 

interactions. This may lead to a poor collaborative 

signal encoded in the embedding process, which 

conveys bias and disturbing user interest inference. 

Instead of relying primarily on the traditional 

uniform negative sampler used in BPR to assume 

unseen items as negative instances, PreFImp 

considers that unrated items can be interesting or 

uninteresting to the user and estimates the latter's 

latent preferences towards these items, which is 

more effective for real-world sparse datasets that 

have a large number of unobserved items. 

Unlike the baseline approaches, PreFImp aims 

for an accurate, personalized ranking-based 

recommendation for users by imputing their prior 

preferences for items. PreFImp also considers the 

different rating distributions and tackles the problem 

of unique and unusual interests of grey sheep users 

by calculating a personalized threshold preference 

score 𝜌(𝑢)  for each target user, clearly 

demonstrating highly encouraging ranking accuracy 

results and confirming the efficiency of the 

proposed preference-based model in Top-K 

recommendation. 

5. Conclusions and future work 

In this paper, we introduced a novel preference-

based imputation approach to overcome sparsity 

issues in item ranking-based models and enhance 

the Top-K recommendation performance. The 

proposed PreFImp method tackles traditional matrix 

factorization limitations by inferring reliable prior 

preferences of users for unrated items and 

leveraging a powerful and deep latent feature 

extraction to incorporate the imputed denser rating 

matrix with only interesting items for users in the 

Top-K recommendation. Moreover, the proposed 

technique not only considers the biases that might 

impact users' pre-use preferences but also considers 

the different rating distributions by calculating a 

threshold preference score for each target user, thus 

selecting effectively interesting unrated items based 

on personalized preference scores. Experimental 

evaluations with different sparsity levels prove that 

the proposed PreFImp model significantly enhances 

the Top 5 Recommendation and outperforms recent 

state-of-the-art approaches with 6.68% and 4.18% in 

HR and NDCG, respectively. For the Top 10 

Recommendation, PreFImp achieves the higher 

accuracy results with an average improvement of 

6.22% and 3.64% in HR and NDCG, respectively. 

Future directions include the hybridization of 

PreFImp with other feature-learning techniques to 

explore further latent representations of users and 

items under cold-start conditions. 



Received:  December 13, 2022.     Revised: March 14, 2023.                                                                                           550 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.43 

 

Conflicts of interest 

The authors declare no conflict of interest. 

Author contributions 

Conceptualization, Nouhaila Idrissi and Ahmed 

Zellou; methodology, Nouhaila Idrissi and Ahmed 

Zellou; software, Nouhaila Idrissi; validation, 

Nouhaila Idrissi, Ahmed Zellou, and Zohra 

Bakkoury; formal analysis, Nouhaila Idrissi and 

Ahmed Zellou; investigation, Nouhaila Idrissi; data 

curation, Nouhaila Idrissi; writing—original draft 

preparation, Nouhaila Idrissi; writing—review and 

editing, Nouhaila Idrissi, Ahmed Zellou, and Zohra 

Bakkoury; visualization, Nouhaila Idrissi; 

supervision, Ahmed Zellou and Zohra Bakkoury. 

References 

[1] S. Hwang and D. K. Chae, “An Uncertainty-

Aware Imputation Framework for Alleviating 

the Sparsity Problem in Collaborative Filtering”, 

In: Proc. of International ACM Conf. On 

Information & Knowledge Management, 

Atlanta, GA, USA, pp. 802-811, 2022. 

[2] N. Idrissi and A. Zellou, “A systematic 

literature review of sparsity issues in 

recommender systems”, Social Network 

Analysis and Mining, Vol. 10, No. 1, pp. 1-23, 

2020. 

[3] Hanafi, E. Pujastuti, A. Laksito, R. Hardi, R. 

Perwira, A. Arfriandi, and Asroni, “Handling 

Sparse Rating Matrix for E-commerce 

Recommender System Using Hybrid Deep 

Learning Based on LSTM, SDAE and Latent 

Factor”, International Journal of Intelligent 

Engineering and Systems, Vol. 15, No. 2, pp. 

379-393, 2022, doi: 

10.22266/ijies2022.0430.35. 

[4] K. Muruganantham and S. Shanmugasundaram, 

“Recommender System using Distributed 

Improved Predictive Framework with Matrix 

Factorization and Random Forest”, 

International Journal of Intelligent Engineering 

and Systems, Vol. 15, No. 4, pp. 447-457, 2022, 

doi: 10.22266/ijies2022.0831.40. 

[5] X. Yuan, L. Han, S. Qian, L. Zhu, J. Zhu, and 

H. Yan, “Preliminary data-based matrix 

factorization approach for recommendation”, 

Information Processing & Management, Vol. 

58, No. 1, p. 102384, 2021. 

[6] W. S. Hwang, S. Li, S. W. Kim, and K. Lee, 

“Data imputation using a trust network for 

recommendation via matrix factorization”, 

Computer Science and Information Systems, 

Vol. 15, No. 2, pp. 347-368, 2018. 

[7] F. Alghamedy, X. Wang, and J. Zhang, 

“Imputing trust network information in NMF-

based collaborative filtering”, In: Proc. of the 

ACMSE Conf, pp. 1-8, 2018. 

[8] B. Pradel, N. Usunier, and P. Gallinari, 

“Ranking with non-random missing ratings: 

influence of popularity and positivity on 

evaluation metrics”, In: Proc. of the Sixth ACM 

Conf. On Recommender Systems, Dublin, 

Ireland, pp. 147-154, 2012. 

[9] A. Yuliawati, H. Tohari, R. Mahendra, and I. 

Budi, “On the Long Tail Products 

Recommendation using Tripartite Graph”, 

International Journal of Advanced Computer 

Science and Applications, Vol. 13, No. 1, 2022. 

[10] S. Rendle, C. Freudenthaler, Z. Gantner, L. S. 

Thieme, “BPR: Bayesian personalized ranking 

from implicit feedback”, In: Proc. of 

International Conf. on Uncertainty in Artificial 

Intelligence, Quebec, Canada pp. 452-461, 

2009. 

[11] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. 

S. Chua, “Neural collaborative filtering”, In: 

Proc. of International Conf. on World Wide 

Web, pp. 173-182, 2017. 

[12] X. Yuan, L. Han, S. Qian, G. Xu, and H. Yan, 

“Singular value decomposition based 

recommendation using imputed data”, 

Knowledge-Based Systems, Vol. 163, pp. 485-

494, 2019. 

[13]N. Idrissi, A. Zellou, O. Hourrane, Z. Bakkoury, 

and E. H. Benlahmar, “Addressing cold start 

challenges in recommender systems: towards a 

new hybrid approach”, In: Proc. of 

International Conf. on Smart Applications, 

Communications and Networking (SmartNets), 

Sharm El Sheik, Egypt, pp. 1-6, 2019. 

[14]N. Idrissi, A. Zellou, O. Hourrane, Z. Bakkoury, 

and E. H. Benlahmar, “A New Hybrid-

Enhanced Recommender System for Mitigating 

Cold Start Issues”, In: Proc. of International 

Conf. on Information Management and 

Engineering, London, United Kingdom, pp. 10-

14, 2019. 

[15] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, 

M. Scholz, and Q. Yang, “One-Class 

Collaborative Filtering”, In: Proc. of 

International Conf. on Data Mining, pp. 502-

511, 2008.  

[16]W. S. Hwang, J. Parc, S. W. Kim, J. Lee, and D. 

Lee, “Told you i didn't like it”: Exploiting 

uninteresting items for effective collaborative 

filtering”, In: Proc. of International Conf. on 

Data Engineering (ICDE), pp. 349-360, 2016. 



Received:  December 13, 2022.     Revised: March 14, 2023.                                                                                           551 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.43 

 

[17] G. E. Hinton, S. Osindero, and Y. W. Teh, “A 

fast learning algorithm for deep belief nets”, 

Neural Computation, Vol. 18, No. 7, pp. 1527-

1554, 2006. 

[18] G. E. Hinton, “A practical guide to training 

restricted Boltzmann machines”, Neural 

Networks: Tricks of the Trade, pp. 599-619, 

2012. 

[19] N. Idrissi, O. Hourrane, A. Zellou, and E. H. 

Benlahmar, “A Restricted Boltzmann Machine-

based Recommender System For Alleviating 

Sparsity Issues”, In: Proc. of International Conf. 

on Smart Systems and Data Science (ICSSD), 

Rabat, Morocco, pp. 1-5, 2019. 

[20] J. M. Radecka and B. Indurkhya, “A bias 

detection tree approach for detecting disparities 

in a recommendation model’s errors”, User 

Modeling and User-Adapted Interaction, pp. 1-

37, 2022. 

[21] X. Wang, X. He, M. Wang, F. Feng, and T. S. 

Chua, “Neural graph collaborative filtering”, 

In: Proc. of International ACM SIGIR Conf. on 

Research and Development in Information 

Retrieval, pp. 165-174, 2019. 

[22] Z. H. Deng, L. Huang, C. D. Wang, J. H. Lai, 

and S. Y. Philip, “Deepcf: A unified framework 

of representation learning and matching 

function learning in recommender system”, In: 

Proc. of AAAI International Conf. on Artificial 

Intelligence, pp. 61-68, 2019. 

[23] Q. Yi, N. Yang, and P. Yu, “Dual adversarial 

variational embedding for robust 

recommendation”, IEEE Transactions on 

Knowledge and Data Engineering, 2021. 

[24] R. Yu, D. Ye, Z. Wang, B. Zhang, A. M. Oguti, 

J. Li, B. Jin, and F. Kurdahi, “CFFNN: Cross 

feature fusion neural network for collaborative 

filtering”, IEEE Transactions on Knowledge 

and Data Engineering, 2021. 

[25] B. Ma, B. Hao, F. Zhang, L. Gao, and X. Ren, 

“Research on recommendation method based 

on tensor similarity”, In: Proc. of International 

Symposium on Computer Technology and 

Information Science, pp. 317-325, 2022.  

 

 

 


