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Abstract: A new metaheuristic can be developed by constructing from scratch, modifying the existing metaheuristics, 

or hybridizing some metaheuristics. This work presents a new metaheuristic: extended stochastic coati optimizer 

(ESCO). ESCO is developed by expanding the shortcoming coati optimization algorithm (COA). ESCO expands the 

number of searches and references used in COA. ESCO also implements a stochastic process for each unit to choose 

the searches that will perform. It differs from COA, which splits the population into two fixed groups, each performing 

its strategy. ESCO implements three sequential phases in every iteration. Two options can be chosen in every phase. 

ESCO has three references in its guided search: the global best unit, a randomly selected unit, and a randomized unit 

within the search space. In this work, ESCO is challenged to solve 23 classic functions and benchmarked with five 

shortcoming metaheuristics: guided pelican algorithm (GPA), puzzle optimization algorithm (POA), average 

subtraction-based optimizer (ASBO), and coati optimization algorithm (COA). The result presents the superiority of 

ESCO among five shortcoming metaheuristics by outperforming the GPA, POA, GSO, ASBO, and COA in solving 

13, 21, 23, 16, and 13 functions, respectively. Through investigation, the multiple search approach is more effective 

than the single search approach. 
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1. Introduction 

Metaheuristics are popular in various optimization 

studies, especially in the engineering field. In studies 

regarding electric vehicle (EV) systems, 

metaheuristics have been implemented to optimize the 

routing problem of the plugin hybrid electric vehicles 

(PHEV) [1], fast charging stations [2], distributed 

photovoltaic systems [3], and so on. In studies 

regarding manufacturing systems, metaheuristics 

have been implemented to optimize the coupling 

between integrated batch machines and direct 

shipping trucks [4], reducing risk in the spare part 

inventory system [5], and so on. In studies regarding 

power systems, metaheuristics have been 

implemented to optimize the installation and 

allocation of the distributed generation units [6], 

radial distribution system [7], reactive power flow in 

the large-scale power system [8], and so on. 

The popularity of metaheuristics comes from two 

main reasons: efficiency and flexibility. Metaheuristic 

is efficient enough. After all, it does not consume 

excessive computational resources and time because 

it does not trace all possible solutions within the 

search space [9]. Metaheuristic deploys a stochastic 

approach to find the solution. On the other hand, this 

approach has the consequence that metaheuristic does 

not guarantee a real optimal solution [9]. On the other 

hand, the exact method guarantees on finding the 

optimal solution [10]. Metaheuristic guarantees on 

giving the best effort to find the quasi-optimal 

solution within the given time. Metaheuristics are 

flexible in solving various optimization problems. 

This flexibility comes from its nature of focusing on 

the objective and search space and is independent of 

the problem itself [9]. It performs a trial-and-error 

approach in every iteration. On the other hand, the 

exact method is not flexible and feasible to solve 

various and complex problems. 

In recent decades, there has been a huge number of 

new metaheuristics. Many of them are metaphor-

based metaheuristics. Animal behaviors are 

commonly used as inspiration for the development of 
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metaheuristics. Example of metaheuristics that mimic 

animal behavior is white shark optimizer (WSO) [11], 

reptile search algorithm (RSA) [12], marine predator 

algorithm (MPA) [13], cheetah optimizer (CO) [14], 

grey wolf optimizer (GWO) [15], clouded leopard 

optimizer (CLO) [16], snow leopard optimization 

algorithm (SLOA) [17], Komodo mlipir algorithm 

(KMA) [18], northern goshawk optimizer (NGO) [19], 

butterfly optimization algorithm (BOA) [20], red fox 

optimization algorithm (RFO) [21], remora 

optimization algorithm (ROA) [9], and so on. Some 

metaheuristics imitates the mechanism of traditional 

game, such as puzzle optimization algorithm (POA) 

[22], ring toss game-based optimization (RTGBO) 

[23], and so on. Some metaheuristics utilize term 

leader for their reference, such as random selected 

leader-based optimizer (RSLBO) [24], mixed leader-

based optimizer (MLBO) [25], and so on.  

Fortunately, some shortcomings of metaheuristics 

do not use a metaphor. Some of these metaheuristics 

are average subtraction-based optimizer (ASBO) [26], 

golden search optimizer (GSO) [27], total interaction 

algorithm (TIA) [28], and three on three optimizers 

(TOTO) [29]. As metaphor-free metaheuristics, their 

name represents their novel strategy directly. It differs 

from metaphor-based metaheuristics, which face 

critique for hiding the mere novelty of their metaphor 

[10]. 

The coati optimization algorithm (COA) is one of 

the shortcomings of metaheuristics. As its name 

suggests, COA is a metaphor-based metaheuristic. 

COA adopts the behavior of coati in nature [30]. As a 

swarm-based metaheuristic, COA is constructed by a 

certain number of coatis. There are two behaviors of 

the coati in this algorithm. The first one is the behavior 

of coatis during hunting and attacking the iguana as 

their prey [30]. The second one is the behavior of 

coatis in escaping from their predators [30]. In its first 

introduction, COA is tested to solve CEC-2011 as a 

theoretical optimization test and four engineering 

design problems as a practical optimization test [30]. 

This COA is proven to outperform eleven other 

metaheuristics: WSO, RSA, MPA, tunicate search 

algorithm (TSA), whale optimization algorithm 

(WOA), multiverse optimizer (MVO), GWO, 

teaching learning-based optimizer (TLBO), 

gravitational search algorithm (GSA), particle swarm 

optimization (PSO), and genetic algorithm (GA). 

There are several notes regarding this shortcoming 

COA despite its outstanding performance. COA 

performs segregation of roles in its first phase by 

splitting its population into two same size groups 

without considering the quality of each coati. Then, 

coatis in the first group perform a guided search 

toward the global best solution, while coatis in the 

second group perform a guided search toward a 

randomized solution within the search space. All 

coatis perform neighborhood searches in the second 

phase. 

As stated in the no-free-lunch theory, no method 

performs superior in solving all problems [14]. Some 

methods may perform well in solving some problems, 

but their performance needs to improve in solving 

other problems. On the other hand, many new 

metaheuristics were developed by modifying previous 

metaheuristics, such as the modified honey badger 

algorithm (MHBA) [31], guided pelican algorithm 

(GPA) [32], ensemble grey wolf optimizer (EGWO) 

[33], random walk grey wolf optimizer (RWGWO) 

[34], and so on. In their first introduction, their 

performance is better than the basic ones. Based on 

this circumstance, the research question in this work 

is how to improve the performance of COA, 

especially in the low maximum iteration and low 

population size circumstances. 

This work is aimed to propose a new metaheuristic 

based on COA. Following this objective, the main 

contributions of this work are as follows. 

1) ESCO is the improved version of the 

shortcoming COA. 

2) The improvement is performed by expanding the 

sequential phase, references in the guided search, 

number of searches, and shifting the fixed split to 

a stochastic split in the segregation of roles. 

3) The performance of ESCO is evaluated by 

challenging it to solve 23 classic functions and 

comparing its performance with five other 

metaheuristics (GPA, POA, GSO, ASBO, and 

COA). 

4) The hyper-parameters test is performed to 

evaluate the dominance of the searches in solving 

optimization problems. 

The rest of this paper is structured as follows. The 

review regarding the COA and the other shortcomings 

of metaheuristics are performed in section two. A 

detailed description of the proposed ESCO is 

presented in section three. This presentation includes 

the main concept, the difference with COA, and the 

formalization through pseudocode and mathematical 

model. The simulation performed to evaluate the 

ESCO, and its result is presented in section four. The 

in-depth analysis of the result, finding, and their 

connection with the theoretical basis is provided in 

section five. Finally, the conclusion and future 

research suggestions are summarized in section six. 

2. Related works 

COA is a shortcoming metaheuristic that adopts 

the behavior of coati during hunting prey and escaping  
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Table 1. Comparison among shortcoming metaheuristics 

No Metaheuristic Metaphor Number of 

Phases 

Number of 

Searches 

Reference 

1 GPA [32] pelican 2 2 global best unit 

2 POA [22] puzzle 2 2 a randomly selected unit within the 

population 

3 GSO [27] - 1 1 global best unit, local best unit 

4 ASBO [26] - 3 3 best and worst units within the 

population 

5 COA [30] coati 2 3 best unit within the population, a 

randomized unit within the search space 

6 MLBO [25] leader 1 1 a mixture between global best unit and a 

randomized unit within the search space 

7 KMA [18] komodo 1 4 some best units, the best unit within the 

population 

8 NGO [19] northern goshawk 2 2 a randomly selected unit within the 

population 

9 BOA [20]  butterfly 1 2 the best unit within the population and 

two randomly selected units within the 

population 

10 RFO [21] red fox 2 2 the best unit within the population 

11 TIA [28] - 1 1 all other units within the population  

12 TOTO [29] - 1 6 global best unit, a randomized unit 

within search space, a randomly unit 

within the population 

13 this work coati 3 6 global best unit, a randomized unit 

within search space, a randomly unit 

within the population 

 

from predators [30]. As an overview, the coati is a 

mammal in America, such as South America, Central 

America, Mexico, and the United States. Its 

dimension ranges from 33 to 69 cm, and its weight 

ranges from 2 to 8 kg [30]. It means coati is middle 

size mammal. Coatis eat small animals such as 

tarantulas, birds, reptiles, and eggs [30]. The green 

iguana is its favorite. On the other hand, coati faces 

the bigger animals as its predators [30]. 

By abstracting its metaphor, the concept of COA 

can be described as follows. COA is constructed of a 

certain number of solutions. As a metaheuristic, COA 

is split into two steps: initialization and iteration. In 

the initialization, all solutions are generated randomly 

within the search space [30]. This process follows 

uniform random with lower and upper boundary 

constraints in every dimension. The iteration consists 

of two sequential phases. The first phase is guided 

search, while the second is random or neighborhood 

search. In the first phase, segregation of roles is 

applied by splitting the population into two same size 

groups. In the first group, a guided search toward the 

best solution in the population (iguana on the tree) is 

performed [30]. The second group performs a guided 

search toward a randomized solution within the search 

space (iguana on the ground) [30]. In the second phase, 

a random search within the local search space is 

performed [30]. This local search space size decreases 

due to the increase in iteration. The strict acceptance-

rejection approach is performed in every phase, which 

means a new solution cannot replace the current 

solution, except if the new solution is better than the 

current solution. Due to this approach, the best 

solution in the population means the best global 

solution. 

Like COA, many metaphor-based metaheuristics 

adopt animal behavior while hunting prey as their core 

strategy. This hunting process can be seen as a guided 

search because there is a reference (prey) to guide the 

movement. On the other hand, the term escaping from 

a predator is often used to represent the random or 

neighborhood search. Table 1 presents the 

summarization of some shortcoming metaheuristics. 

Some of these metaheuristics in Table 1 use metaphor 

while the others do not. 

Based on this review, especially by connecting the 

mechanics of COA and the mechanics of other 

metaheuristics summarized in Table 1, improvement 

of COA is still possible. This improvement and 

modification can be performed through several 

approaches, such as expanding the number of 

sequential phases, increasing the number of searches, 

enriching the references, modifying the splitting 

mechanism, and so on. These approaches are then 

used to develop new metaheuristic based on COA in 

this work. 
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3. Model 

The ESCO is designed to improve the existing 

COA. The improvement comes from two terms: 

extending and stochastic. First, ESCO extends the 

strategy implemented in COA. Second, ESCO is more 

stochastic than COA. There are three extensions, 

according to ESCO. First, ESCO implements three 

sequential rather than two sequential phases in the 

COA. Second, ESCO implements six searches rather 

than only three, as in the COA. Third, ESCO uses 

three references in its guided searches: the global best 

unit (iguana on the tree), a randomized unit within the 

search space (iguana on the ground), and a randomly 

selected unit.  

ESCO implements the segregation of roles 

differently from COA. In ESCO, the segregation of 

roles is performed in all phases. It is different from 

COA, where the segregation of roles is implemented 

only in the first phase. In ESCO, the segregation of 

roles is performed stochastically. It is also different 

from COA, where the segregation of roles is a static 

process where the first half of the population performs 

the guided search toward the best global unit. The 

second half of the population performs the guided 

search relative to the randomized unit. 

The rationale for choosing this strategy is as 

follows. First, as many shortcoming metaheuristics 

perform multiple searches, more searches may give a 

better opportunity for improvement. Second, 

choosing a randomly selected unit as a reference is 

common in many shortcoming metaheuristics to 

improve the exploration capability. Third, stochastic 

approach in segregating roles is chosen rather than a 

static split to avoid a monotone search as performed 

in a static split in COA. 

The proposed ESCO consists of three sequential 

phases. In the first and second phases, each unit 

performs guided searches. In the third phase, each unit 

performs a random search. There are two possible 

searches in every phase. In the first phase, each unit 

performs the guided search toward the global best unit 

or the guided search relative to a randomized unit 

within the search space. In the second phase, each unit 

performs a guided search relative to a randomly 

selected unit. However, there are two options in this 

second phase. The starting point of the guided search 

may be the corresponding unit or the randomly 

selected unit. In the third phase, each unit performs a 

neighborhood search. However, two options can be 

selected as the local search boundary. The options 

selected in each phase are performed stochastically 

based on a threshold. The first option is chosen if a 

generated random number is below the threshold. 

Otherwise, the second option is chosen. 

A candidate is generated in every phase. The 

proposed ESCO adopts strict acceptance-rejection 

strategy in which a candidate will replace the current 

unit only if the candidate is better than the current unit. 

This concept is formalized in Algorithm 1. The last 

value of the global best unit becomes the final solution. 

Meanwhile, the detail formalization of each process 

within the algorithm is presented in Eq. (1) to Eq. (12). 

Below is the list of annotations used in this model. 

 

c unit candidate 

f objective function 

r floating point random number between 0 

and 1 

r1 first phase threshold 

r2 second phase threshold 

r3 third phase threshold 

t iteration 

tmax maximum iteration 

U uniform random 

xi corresponding unit 

xs randomly selected unit 

xu upper boundary 

xl lower boundary 

xb global best unit 

X set of units/units 

xll local lower boundary 

xlu local upper boundary 

xgr randomized unit within the search space 

 

There are two processes performed in the 

initialization phase. The first process is generating 

initial unit randomly within the search space as 

formalized in Eq. (1). The second process is updating 

the global best unit as formalized in Eq. (2).  

 

𝑥𝑖 = 𝑥𝑙 + 𝑟(𝑥𝑢 − 𝑥𝑙)    (1) 

 

𝑥𝑏′ = {
𝑥𝑖, 𝑓(𝑥𝑖) < 𝑓(𝑥𝑏)

𝑥𝑏 , 𝑒𝑙𝑠𝑒
   (2) 

 

The guided searches in the first phase are 

formalized by using Eq. (3) to Eq. (5). Eq. (3) states 

that a reference is generated within the search space. 

Eq. (4) formalizes the guided search toward the global 

best unit. Eq. (5) formalizes the guided search relative 

to the randomized unit within the search space. 

Meanwhile, Eq. (6) formalizes the updating process of 

the corresponding unit.  

 

𝑥𝑔𝑟 = 𝑥𝑙 + 𝑟(𝑥𝑢 − 𝑥𝑙)    (3) 

 

𝑐 = 𝑥𝑖 + 𝑟(𝑥𝑏 − 2𝑥𝑖)    (4) 
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Algorithm 1: extended stochastic coati optimizer 

1 begin 

2   for i=1: n(X) 

3     initialize xi using Eq. (1) 

4     find xbest using Eq. (2) 

5   end for 

6   for t=1: tmax 

7     for i=1: n(X) 

8       //step 1 

9       determine xgr using Eq. (3) 

10       if U(0,1) < r1 then 

11         generate c using Eq. (4) 

12       else 

13         generate c using Eq. (5) 

14       update xi using Eq. (6) 

15       update xb using Eq. (2) 

16       //step 2 

17       determine xs using Eq. (7) 

18       if U(0,1) < r2 then 

19         determine c using Eq. (8) 

20       else 

21         determine c using Eq. (9) 

22       update xi using Eq. (6) 

23       update xb using Eq. (2) 

24       //step 3 

25       determine xlu using Eq. (10) 

26       determine xll using Eq. (11) 

27       determine c using Eq. (12) 

28       update xi using Eq. (6) 

29       update xb using Eq. (2) 

30     end for 

31   end for 

32 end 

 

𝑐 = {
𝑥𝑖 + 𝑟(𝑥𝑔𝑟 − 2𝑥𝑖), 𝑓(𝑥𝑔𝑟) < 𝑓(𝑥𝑖)

𝑥𝑖 + 𝑟(𝑥𝑖 − 2𝑥𝑔𝑟), 𝑒𝑙𝑠𝑒
        (5) 

 

𝑥𝑖′ = {
𝑐, 𝑓(𝑐) < 𝑓(𝑥𝑖)

𝑥𝑖, 𝑒𝑙𝑠𝑒
    (6) 

 

The guided search in the second phase is 

formalized by using Eq. (7) to Eq. (9). Eq. (7) 

formalizes the randomly selected unit among the 

population. As the uniform random is used, all units 

have equal opportunity to choose. Eq. (8) formalizes 

the guided search of the corresponding unit relative to 

the randomly selected unit. On the other hand, Eq. (9) 

formalizes the guided search of the randomly selected 

unit relative to the corresponding unit. 

 

𝑥𝑠 = 𝑈(𝑋)    (7) 

 

𝑐 = {
𝑥𝑖 + 𝑈(0,1). (𝑥𝑠 − 2𝑥𝑖), 𝑓(𝑥𝑠) < 𝑓(𝑥𝑖)

𝑥𝑖 + 𝑈(0,1). (𝑥𝑖 − 2𝑥𝑠), 𝑒𝑙𝑠𝑒
   (8) 

 

𝑐 = {
𝑥𝑠 + 𝑈(0,1). (𝑥𝑠 − 2𝑥𝑖), 𝑓(𝑥𝑠) < 𝑓(𝑥𝑖)

𝑥𝑠 + 𝑈(0,1). (𝑥𝑖 − 2𝑥𝑠), 𝑒𝑙𝑠𝑒
   (9) 

 

The random search in the third phase is formalized 

using Eqs. (10) to Eq. (12). As a neighborhood search, 

a candidate is randomly generated around the 

corresponding unit. Eq. (10) formalizes the local 

lower boundary calculation while Eq. (11) formalizes 

the local upper boundary calculation. Eq. (12) 

formalizes the random search due to the use of both 

local boundaries. 

 

𝑥𝑙𝑙 = {

𝑥𝑙

𝑡
, 𝑈(0,1) < 𝑟3

𝑥𝑙 (1 −
𝑡

𝑡𝑚𝑎𝑥
) , 𝑒𝑙𝑠𝑒

   (10) 

 

𝑥𝑙𝑢 = {

𝑥𝑢

𝑡
, 𝑈(0,1) < 𝑟3

𝑥𝑢 (1 −
𝑡

𝑡𝑚𝑎𝑥
) , 𝑒𝑙𝑠𝑒

   (11) 

 

𝑐 = 𝑥𝑖 + (1 − 2𝑈(0,1)). 𝑈(𝑥𝑙𝑙, 𝑥𝑙𝑢)  (12) 

4. Simulation and result 

This section presents the performance evaluation 

of the proposed ESCO in solving a theoretical 

optimization problem, benchmarking with other 

metaheuristics, and the hyper-parameters. The set of 

23 classic functions is chosen as the problem.  

In this test, ESCO is benchmarked with five 

shortcoming metaheuristics: GPA [32], POA [22], 

GSO [27], ASBO [26], and COA [30]. The rationale 

for choosing these five metaheuristics is as follows. 

All these five competitors are the shortcoming 

metaheuristics due their first introduction is no older 

than 2021. GSO is chosen due its distinct 

characteristic by implementing non-strict acceptance 

approach. Meanwhile, COA is chosen because ESCO 

is the improvement of COA. It is essential to evaluate 

the improved version with the original version. 

Several parameters are set as follows. The 

population size is 5. The maximum iteration is 25. In 

ESCO, all ratios are 0.5, representing the balance 

between the first and second choices. In GPA, the 

number of candidates is 5.  

The first sub-test in the theoretical optimization 

problem test is solving the high-dimension unimodal 

functions. As unimodal functions, these functions 

contain only one optimal unit. The main challenge is 

finding this optimal unit as fast as possible. In this  
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Table 2. Fitness score comparison in solving high dimension unimodal functions. 

F Paramater GPA [32] POA [22] GSO [27] ASBO [26] COA [30] ESCO 

1 mean 2.0003x102 3.6364 2.5476x104 0.0124 0.0424 0.0000 

st dev 6.7222x101 1.3906x101 8.6026x103 0.0076 0.0681 0.0000 

min 7.6136x101 0.0000 1.1069x104 0.0023 0.0037 0.0000 

max 3.3011x102 6.4000x101 4.5043x104 0.0306 0.3077 0.0000 

mean rank 5 4 6 2 3 1 

2 mean 5.9243x1017 0.0000 2.9481x1033 0.0000 0.0000 0.0000 

st dev 2.7788x1018 0.0000 1.1671x1034 0.0000 0.0000 0.0000 

min 0.0000 0.0000 3.9329x1022 0.0000 0.0000 0.0000 

max 2.0003x1019 0.0000 5.4553x1034 0.0000 0.0000 0.0000 

mean rank 5 1 6 1 1 1 

3 mean 3.2715x103 3.2228x104 4.0693x104 3.6309x102 4.3760x102 0.0097 

st dev 1.0851x103 2.9756x104 2.1833x104 6.5978x102 8.8119x102 0.0349 

min 1.2071x103 0.0000 1.2621x104 2.0772x101 1.9532 0.0000 

max 5.4733x103 1.1119x105 9.7657x104 2.8712x103 4.1855x103 0.1645 

mean rank 4 5 6 2 3 1 

4 mean 1.8999x101 3.5818x101 5.6858x101 0.2120 1.0377 0.0006 

st dev 6.7488 2.9754x101 8.6944 0.0829 0.4585 0.0009 

min 1.1093x101 0.0000 4.1105x101 0.1012 0.2776 0.0000 

max 4.2141x101 8.8000x101 6.8931x101 0.4024 1.8408 0.0043 

mean rank 4 5 6 2 3 1 

5 mean 9.2654x103 8.2305x105 4.9669x107 2.4081x101 2.4775x101 2.3951x101 

st dev 6.9375x103 3.6957x106 1.8904x107 0.1239 1.6774 0.0262 

min 2.1812x103 2.4000x101 1.6667x107 2.3786x101 2.3971x101 2.3854x101 

max 3.1916x104 1.7361x107 9.9967x107 2.4339x101 3.2077x101 2.3982x101 

mean rank 4 5 6 2 3 1 

6 mean 1.6244x102 6.9909x101 2.4017x104 3.7859 5.1718 4.8053 

st dev 6.5430x101 2.9976x102 6.3396x103 0.5651 0.4684 0.4337 

min 7.9222x101 6.0000 1.2186x104 2.0291 4.0283 3.8911 

max 3.2928x102 1.4120x103 3.9807x104 4.4553 6.0239 5.6261 

mean rank 5 4 6 1 3 2 

7 mean 0.2462 0.2189 2.2771x101 0.0527 0.0358 0.0088 

st dev 0.1271 0.6327 1.1237x101 0.0339 0.0208 0.0059 

min 0.0836 0.0040 6.5735 0.0125 0.0018 0.0000 

max 0.5279 3.0286 5.2111x101 0.1312 0.0897 0.0233 

mean rank 5 4 6 3 2 1 

 

challenge, exploitation capability plays a significant 

role. This group has seven functions (F1 to F7): 

Sphere, Schwefel 2.22, Schwefel 1.2, Schwefel 2.21, 

Rosenbrock, Step, and Quartic. Most of them have 

large search spaces. Quartic is the only function in this 

group whose search space is narrow. In this work, the 

dimension of these functions is 25. The result is 

presented in Table 2. The result, which precision is 

less than 10-4, is rounded to 0.0000. 

Table 2 indicates the superiority of ESCO in 

solving high-dimension unimodal functions. ESCO is 

in the first rank in solving six functions (Sphere, 

Schwefel 2.22, Schwefel 1.2, Schwefel 2.21, 

Rosenbrock, and Quartic) and in the second rank in 

solving one function (Step). Meanwhile, four 

metaheuristics achieve the same result in the first rank 

in solving Schwefel 2.22. These metaheuristics are 

POA, ASBO, COA, and ESCO. This result indicates 

that ESCO performs well in solving problems with 

narrow search space to large search space. 

The second sub-test in solving theoretical 

problems is the high-dimension multimodal functions. 

These functions have multiple optimal. One optimal 

is the global optimal, representing the destination. The 

other optimal is the local optimal. The main challenge 

is finding the area where the global optimal exists and 

avoiding being entrapped in the local optimal. There 

are six functions in these groups (F8 to F13). These 

functions are Schwefel, Rastrigin, Ackley, Griewank, 

and Penalized 2. Among them, Rastrigin represents a 

problem with a narrow search space, while Schwefel 

and Griewank represent problems with a large search 

space. In this work, the dimension in this group is 25. 

The result is presented in Table 3. 
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Table 3. Fitness score comparison in solving high dimension multimodal functions 

F Parameter GPA [32] POA [22] GSO [27] ASBO [26] COA [30] ESCO 

8 mean -5.5483x103 -2.2324x103 -2.6046x103 -3.0055x103 -3.4020x103 -3.3724x103 

st dev 8.5996x102 4.4147x102 6.2191x102 6.1490x102 4.2619x102 4.3061x102 

min -6.8697x103 -3.1517x103 -3.6837x103 -4.7884x103 -4.2537x103 -4.2086x103 

max -3.8963x103 -1.4180x103 -1.2388x103 -2.0362x103 -2.6287x103 -2.6239x103 

mean rank 1 6 5 4 2 3 

9 mean 1.1965x102 1.5437 2.2540x102 8.7277 3.6085 0.0000 

st dev 2.4053x101 4.5913 4.2901x101 1.9805 1.1264x101 0.0000 

min 6.7213x101 0.0000 1.4568x102 4.0002 0.0027 0.0000 

max 1.7450x102 1.9175x101 2.9682x102 1.4001x101 5.2404x101 0.0000 

mean rank 5 2 6 4 3 1 

10 mean 5.3988 5.5532 1.8732x101 2.5481 0.0430 0.0000 

stdev 0.8562 7.2591 0.7345 0.3645 0.0348 0.0001 

min 3.9091 0.0000 1.6595x101 2.0085 0.0088 0.0000 

max 6.7558 1.6729x101 1.9817x101 3.4214 0.1308 0.0006 

mean rank 4 5 6 3 2 1 

11 mean 2.3189 0.8503 2.3085x102 0.3167 0.1481 0.0000 

st dev 0.4336 2.0821 6.9652x101 0.1512 0.2431 0.0000 

min 1.3487 0.0000 8.1073x101 0.0948 0.0010 0.0000 

max 3.4639 8.4397 3.3599x102 0.5993 0.7658 0.0000 

mean rank 5 4 6 3 2 1 

12 mean 1.5973x101 1.8112 5.9599x107 0.0916 0.7146 0.8379 

st dev 7.6043 0.2402 4.6406x107 0.1935 0.2273 0.1560 

min 4.5788 1.7600 1.0076x106 0.0078 0.3883 0.4525 

max 3.2081x101 2.8865 1.5818x108 0.7299 1.1477 1.1132 

mean rank 5 4 6 1 2 3 

13 mean 7.6457x11 1.2984x106 1.6530x108 8.3868 3.1785 3.0718 

st dev 9.8608x101 5.1387x106 9.3905x107 0.9470 0.2635 0.1189 

min 8.1068 3.0144 2.1460x107 6.9080 2.4778 2.7266 

max 4.2394x102 2.3426x107 3.6046x108 1.0174x101 3.6744 3.2059 

mean rank 4 5 6 3 2 1 

 

Table 3 indicates that ESCO is still superior in 

solving high-dimension multimodal functions. 

Among these six functions, ESCO is in the first rank 

in solving four functions (Rastrigin, Ackley, 

Griewank, and Penalized 2) and in the third rank in 

solving two functions (Schwefel and Penalized). Due 

to its result, like in the first group, ESCO can tackle 

problems with extra-large search space. 

The third sub-test in this first test is solving the 

fixed dimension multimodal functions. The search 

space is also narrow. Although the dimension in these 

functions is minimal and the search space is narrow, 

more is needed to solve them. There are ten functions 

in this group (F14 to F23). In some functions, the 

terrain is flat, and the area where the optimal global 

exits are very narrow. In some other functions, the 

terrain is very wavy. It makes it very difficult to find 

the area of the optimal global unit. On the other hand, 

the unit is easily thrown away from the area of the 

global optimal. These functions are Shekel Foxholes, 

Kowalik, Six Hump Camel, Branin, Goldstein-Price, 

Hartman 3, Hartman 6, Shekel 5, Shekel 7, and 

Shekel 10. The result is presented in Table 4. 

Table 4 indicates that ESCO is still influential in 

solving fixed-dimension multimodal functions. 

Among these ten functions, ESCO is in the first rank 

in solving two functions (Kowalik and Hartman 3), in 

the second rank in solving two functions (Branin and 

Goldstein-Price), in the third rank in solving three 

functions (Six Hump Camel, Hartman 6, and Shekel 

10), and in the fourth rank in solving three functions 

(Shekel Foxholes, Shekel 5, and Shekel 7). 

The comparison result indicating the superiority of 

the ESCO compared to other metaheuristics is 

presented in Table 5. Table 5 strengthens the 

superiority of ESCO among other metaheuristics. 

ESCO is significantly superior compared to POA and 

GSO. Meanwhile, ESCO is also still superior 

compared to GPA, ASBO, and COA. The superiority 

of ESCO is significant compared to all these five 

competitors in solving high dimension functions, 

whether they are unimodal functions or multimodal 

ones. ESCO is absolute superior to GSO in solving 

the fixed dimension multimodal functions. On the 

other hand, ESCO is still superior to POA and ASBO, 

and inferior to GPA and COA in the third group of  
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Table 4. Fitness score comparison in solving fixed dimension multimodal functions 

F Paramater GPA [32] POA [22] GSO [27] ASBO [26] COA [30] ESCO 

14 mean 1.7969 9.7338 3.0007x101 4.5799 4.7257 6.0382 

st dev 1.0624 4.2440 8.4975x101 2.6687 3.9108 3.7220 

min 0.9980 1.0291 0.9980 1.9920 0.9980 1.0023 

max 4.9505 1.2670x101 4.1895x102 1.0763x101 1.3619x101 1.2671x101 

mean rank 1 5 6 2 3 4 

15 mean 0.0057 0.1071 0.0384 0.1123 0.0053 0.0036 

st dev 0.0077 0.0549 0.0380 0.0403 0.0085 0.0062 

min 0.0007 0.0023 0.0013 0.0257 0.0004 0.0004 

max 0.0204 0.1484 0.1170 0.1484 0.0338 0.0226 

mean rank 3 5 4 6 2 1 

16 mean -1.0315 -0.4391 -0.9048 -0.0387 -1.0311 -1.0300 

st dev 0.0001 0.4548 0.2622 0.0903 0.0008 0.0025 

min -1.0316 -0.9216 -1.0316 -0.2956 -1.0316 -1.0316 

max -1.0313 0.0000 -0.2477 0.0000 -1.0285 -1.0201 

mean rank 1 5 4 6 2 3 

17 mean 0.3981 2.5935 0.6136 1.1446 0.4060 0.4042 

st dev 0.0000 3.0319 0.8370 1.2706 0.0339 0.0101 

min 0.3981 0.4438 0.3981 0.6438 0.3981 0.3981 

max 0.3983 1.2729x101 4.3170 6.1148 0.5578 0.4458 

mean rank 1 6 4 5 3 2 

18 mean 3.0012 3.9242x101 1.3103x101 2.8000x101 1.1356x101 3.0668 

st dev 0.0011 5.0483x101 2.0943x101 8.0917x101 2.0474x101 0.0968 

min 3.0001 3.0000 3.0001 3.0000 3.0000 3.0001 

max 3.0043 1.7139x102 9.3723x101 2.7800x102 8.4157x101 3.3429 

mean rank 1 6 4 5 3 2 

19 mean -0.0495 -0.0495 -0.0147 -0.0495 -0.0495 -0.0495 

st dev 0.0000 0.0000 0.0132 0.0000 0.0000 0.0000 

min -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

max -0.0495 -0.0495 0.0000 -0.0495 -0.0495 -0.0495 

mean rank 1 1 6 1 1 1 

20 mean -3.2873 -1.1154 -2.0987 -0.5785 -3.1067 -2.9316 

st dev 0.0664 0.5684 0.6779 0.4211 0.0846 0.2761 

min -3.3222 -2.7233 -3.1465 -1.6231 -3.2627 -3.1995 

max -3.1208 -0.1895 -0.9088 -0.0849 -2.9434 -2.2183 

mean rank 1 5 4 6 2 3 

21 mean -6.3070 -0.4190 -2.4484 -3.9940 -5.7729 -3.9766 

st dev 3.2695 0.0993 1.9795 3.8261 2.3804 0.6626 

min -1.0148x101 -0.6601 -9.3624 -1.0153x101 -8.8823 -4.8331 

max -2.6235 -0.3172 -0.5020 -0.4965 -2.3876 -2.8793 

mean rank 1 6 5 3 2 4 

22 mean -7.3651 -0.4701 -1.9404 -4.2655 -4.5937 -3.9079 

st dev 3.2304 0.1947 0.9546 3.3589 1.8577 1.3811 

min -1.0384x101 -1.0086 -4.1265 -1.0403x101 -8.9320 -8.7333 

max -2.7460 -0.2936 -0.5520 -0.9100 -2.3489 -2.0361 

mean rank 1 6 5 3 2 4 

23 mean -6.1046 -0.6132 -2.3495 -2.4003 -5.3194 -3.7469 

st dev 3.6205 0.2298 1.5521 1.5470 2.3417 0.6773 

min -1.0520x101 -1.2409 -7.8994 -5.1285 -9.8285 -4.8052 

max -2.4904 -0.3774 -0.7323 -0.5556 -2.4063 -2.0363 

mean rank 1 6 5 4 2 3 

 

functions. Contrary, GPA is superior in this third 

group by achieving the first rank in solving nine out 

of ten functions. 

The second test is the hyperparameter test. This 

test focuses on the adjusted parameters in ESCO that 

do not affect the computational resource. In general,  

 



Received:  March 15, 2023.     Revised: April 11, 2023.                                                                                                   490 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.38 

 

Table 5. Group based superiority of ESCO 

Group Number of Functions Where ESCO is 

Better 

GPA 

[32] 

POA 

[22] 

GSO 

[27] 

ASBO 

[26] 

COA 

1 7 6 7 5 6 

2 5 6 6 5 4 

3 1 9 10 6 3 

Total 13 21 23 16 13 

 
Table 6. Relation between r1 and the average fitness score 

F Average Fitness Score Which r1 is 

Better? r1 = 0.1 r1 = 0.9 

1 0.0057 0.0000 high 

2 0.0000 0.0000 none 

3 9.4903x101 0.0000 high 

4 0.2160 0.0000 high 

5 2.4209x101 2.3944x101 none 

6 4.9641 4.9850 none 

7 0.0216 0.0076 high 

8 -3.2280x103 -3.1975x103 none 

9 0.1213 0.0000 high 

10 0.0182 0.0000 high 

11 0.0121 0.0000 high 

12 0.7535 0.7083 none 

13 3.1339 3.0960 none 

14 5.0813 4.9205 none 

15 0.0025 0.0022 none 

16 -1.0292 -1.0293 none 

17 0.4018 0.4019 none 

18 3.4362 4.2966 none 

19 -0.0495 -0.0495 none 

20 -2.9251 -3.0081 none 

21 -4.3738 -4.2138 none 

22 -3.6406 -4.1395 none 

23 -3.9246 -3.8671 none 

 

the population size and maximum iteration improve 

the quality of the final unit but with the consequence 

of the increase of computational resources. On the 

other hand, due to some previous work, the increase 

of these two parameters does not guarantee 

improvement due to the characteristics of the 

problem. In this second test, three sub-tests are 

performed to evaluate the relation between the three 

ratios in ESCO and the average fitness score. 

Moreover, this test evaluates which strategy is more 

dominant in every phase of solving the problem. The 

result is presented in Table 6, Table 7, and Table 8. 

Table 6 indicates different circumstances 

regarding the value of r1 to the average fitness score. 

In the first group of functions, there are four functions 

where the average fitness score is improved when the 

r1 is high, and there are three functions with a less 

significant difference. In the second group, there are 

four functions where the average fitness score is  

 

Table 7. Relation between r2 and the average fitness score 

F Average Fitness Score Which r2 is 

Better? r2 = 0.1 r2 = 0.9 

1 0.0000 0.0000 none 

2 0.0000 0.0000 none 

3 0.0285 0.0033 high 

4 0.0006 0.0000 high 

5 2.3942x101 2.3954x101 none 

6 4.9843 4.8414 none 

7 0.0114 0.0079 none 

8 -3.3225x103 -3.3567x103 none 

9 0.0000 0.0000 none 

10 0.0001 0.0000 none 

11 0.0000 0.0000 none 

12 0.7378 0.7273 none 

13 3.0884 3.0597 none 

14 3.9395 4.7153 none 

15 0.0041 0.0027 none 

16 -1.0300 -1.0304 none 

17 0.4036 0.4084 none 

18 3.1300 3.0431 none 

19 -0.0495 -0.0495 none 

20 -3.0531 -2.9787 none 

21 -3.8775 -4.2917 none 

22 -3.8991 -3.6995 none 

23 -4.0728 -3.7992 none 

 

improved when r1 is high, and there are two functions 

with a less significant difference. In the third group, 

all functions meet no difference in the average fitness 

score, whether r1 is low or high. 

Table 7 indicates that the different values of r2 

provide a less significant effect in improving the 

average fitness score. Only two functions from the 

first group in which the average fitness score is 

significantly improved when r2 is high. Otherwise, 

there is no difference between whether r2 is low or 

high. 

Table 8 indicates that the different values of r3 

provide a less significant effect in improving the 

average fitness score. Only two functions from the 

first group and one function in the third group in 

which the average fitness score is significantly 

improved when r3 is high. Otherwise, there is no 

difference between whether r3 is low or high. 

5. Discussion 

This section discusses the in-depth analysis 

regarding the result, findings, and the linkage with the 

theoretical background. This section is divided into 

five parts. The first part is analysis regarding the 

comparison between the proposed ESCO with five 

metaheuristics. The second part is an analysis of the 

hyperparameter tests. The third part is an analysis of  
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Table 8. Relation between r3 and the average fitness score 

F Average Fitness Score Which r3 is 

Better? r3 = 0.1 r3 = 0.9 

1 0.0000 0.0000 none 

2 0.0000 0.0000 none 

3 0.0303 0.0135 high 

4 0.0003 0.0003 high 

5 2.3943x101 2.3951x101 none 

6 4.8133 4.9208 none 

7 0.0085 0.0143 none 

8 -3.0982x103 -3.6965x103 none 

9 0.0000 0.0000 none 

10 0.0000 0.0000 none 

11 0.0000 0.0000 none 

12 0.8299 0.5889 none 

13 3.0728 3.0937 none 

14 5.2817 4.3584 none 

15 0.0032 0.0015 high 

16 -1.0262 -1.0309 none 

17 0.4070 0.4037 none 

18 3.0669 4.2604 none 

19 -0.0495 -0.0495 none 

20 -2.9931 -2.9702 none 

21 -2.8400 -4.5794 none 

22 -3.1617 -4.6331 none 

23 -3.2393 -4.2544 none 

 

the algorithm's complexity. The fourth part is the 

analysis regarding the limitations of the proposed 

ESCO and its linkage with future development. 

Table 4 indicates the superiority of the proposed 

ESCO over five metaheuristics. ESCO outperforms 

GPA, POA, GSO, ASBO, and COA in solving 13, 21, 

23, 16, and 13 functions. ESCO is absolute superior 

to GSO, almost absolute superior to POA, significant 

superior to ASBO, and still superior to GPA and 

COA. ESCO is absolute superior to GSO since ESCO 

outperforms GSO in all 23 functions. 

By splitting GSO and POA in the first group and 

GPA, ASBO, and COA in the second group, there are 

different approach between the first group and the 

second group. The strategy implemented in 

metaheuristics in the first group is more limited 

compared to the metaheuristics in the second group. 

GSO implements only single guided search that 

combines the global best unit and local best unit into 

single reference for single search [27]. GSO does not 

implement random search dedicatedly [27]. 

Moreover, GSO does not implement strict acceptance 

strategy that can be used to avoid the worsening 

circumstance [27]. On the other hand, POA depends 

only on a randomly selected unit within the 

population as a reference for its guided search and 

imitation based search [22]. Although POA 

implements strict acceptance approach, it still cannot 

compete with other metaheuristics.  

Implementing strict acceptance approach is 

proven effective to avoid the worsening circumstance. 

In GPA, POA, COA and ASBO, there is a guided 

search where the unit moves toward the reference 

only if the reference is better than the unit. Otherwise, 

the unit will avoid the reference. This selective 

movement can also be found in other shortcoming 

metaheuristics, such as KMA [18], TIA [28], NGO 

[19], and so on. 

Multiple search strategy is proven better than 

single search strategy. ESCO, COA, ASBO, GPA, 

and POA perform multiple search strategies. 

Meanwhile, GSO performs a single search. In the 

multiple search strategy implemented in ESCO, COA, 

and ASBO, at least two searches are performed: 

guided and random or neighbourhood searches.  

The result in Table 6 indicates that the guided 

search toward the global best unit is better than the 

guided search relative to a randomized unit within the 

search space. This option becomes more critical in 

solving high-dimension problems, whether unimodal 

or multimodal functions. Meanwhile, this choice is 

insignificant in solving fixed-dimension multimodal 

functions because there is no difference in selecting 

the first and second options.  

The result in Table 7 indicates that the difference 

between choosing the corresponding unit or the 

reference as the starting point is unimportant in the 

guided search relative to a randomly selected unit. 

The result is usually similar. Although choosing one 

approach between these two options is unnecessary, 

the guided search relative to a randomly selected unit 

is still essential, as previously discussed. 

The result in Table 8 indicates that the way the 

local search space is reduced is unimportant. There is 

no difference in average fitness score whether the 

local search space declines linearly or negatively 

exponentially. However, as previously mentioned, 

neighbourhood or random search with declining local 

search space is essential. 

The complexity of the proposed ESCO, especially 

in the iteration phase, is presented as O(3n(X).tmax). 

The letter 3 represents the three steps implemented 

for the entire population in every iteration. It means 

that the complexity of ESCO is linearly proportional 

to the population size or maximum iteration. This 

complexity is commonly found in many 

metaheuristics and is simple enough. This simplicity 

comes because there is no sorting at the beginning of 

the iteration. 

This work, especially this proposed ESCO, still 

has limitations despite presenting superior 

performance. First, ESCO is tested by using 23 

classic functions as theoretical problems. Meanwhile, 

other functions can be used as theoretical problems, 
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such as IEEE CEC 2011 [30], IEEE CEC 2017 [16], 

etc. ESCO has yet to be tested to solve practical 

optimization problems, whether numerical or 

combinatorial. Numerical optimization problems 

have a different challenge from combinatorial 

optimization problems. Combinatorial optimization 

problems can be seen as a task to arrange a set of 

blocks so that it does not need a precise floating-point 

number like in numerical optimization problems. In 

some numerical optimization problems, the decision 

variables are presented in integers. Second, a 

metaheuristic cannot accommodate too many 

approaches, so many approaches have not been 

accommodated in this proposed ESCO, such as 

eliminating the worst units, such as in GSO, invasive 

weed optimizer (IWO), or non-dominated sorting 

genetic algorithm (NSGA II). 

6. Conclusion 

A new metaheuristic developed by modifying and 

improving the shortcoming coati optimization 

algorithm (COA) has been presented. This proposed 

ESCO has been tested to solve 23 classic functions, 

and the result presents the superiority of ESCO among 

five shortcoming metaheuristics. The ESCO is better 

than GPA, POA, GSO, ASBO, and COA in solving 

13, 21, 23, 16, and 13 functions, respectively. The 

global best unit is more effective through 

investigation than a randomized unit within the search 

space or the local best unit, especially in solving big 

dimension problems. It is also shown that both the 

guided search and random search are essential, and 

they are better performed separately rather than 

combined into a single movement. 

Future works can be performed in many ways. The 

proposed ESCO can be challenged to solve various 

problems, efficient problems, whether they are 

numerical problems or combinatorial problems. 

Modifying or improving the existing COA and 

proposed ESCO is also available.  
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