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Abstract: Most electrical distribution systems (EDS) are radially structured so that primary and secondary 

protection control devices can work together well. Because they have a high R/X ratio in their design, they also have 

a bad voltage profile, high distribution losses, and less stability margins. As a result, integrating reactive power 

compensation devices like the distribution-static VAr compensator (D-SVC) can solve these issues. Yet, the situation 

can get worse if D-SVCs are placed and rated incorrectly in radial distribution networks (RDNs). Determining the 

optimum locations and their ratings simultaneously requires an updated version of the Firefly algorithm (FA) with 

adaptive parameters, which is introduced in this paper as the adaptive firefly algorithm (AFA). The multi-objective 

function that has been presented relates to improving loadability, voltage stability, and reducing active power loss. 

On the IEEE 69-bus, simulations are run for three different VAr compensation levels. In comparison to the base case, 

the losses are reduced by 34.04% and 33.14% with 50% and 75% VAr compensation, respectively. But for the 

optimal VAr compensation of 73.14 percent by AFA, the losses are reduced by 35.29 percent, which is higher than 

both under and over compensation cases. Similarly, the loadability margin is increased to 3.099 p.u. with optimal 

VAr compensation, but it is observed as only 2.833 p.u. and 2.939 p.u. with 50% and 75% VAr compensation, 

respectively. On the other hand, the findings produced with APF demonstrate its efficiency for resolving complex 

optimization issues and outperform those obtained with previous research. Also, the proposed D-SVCs allocation has 

improved RDN's overall performance, demonstrating how well it adapts to real-time applications.  

Keywords: Radial distribution networks, Adaptive parameter, Distribution-static VAr compensator, Firefly 

algorithm, Multi-objective optimization. 

 

 

1. Introduction 

Industrialization and automation have resulted in 

a high demand for electricity in almost all power 

systems around the world. In comparison to the 

growth rate of active power generation sources in 

any power system, the growth rate of reactive power 

compensation sources is very low. And thus, most of 

the electrical distribution networks (EDNs) draw 

more reactive power from the main grid, resulting in 

inadequate voltage magnitudes and voltage 

instability/blackouts [1]. In addition, the radial 

structure and high r/x ratio branches of EDNs cause 

the network performance to worsen significantly [2]. 

Thus, many researchers have been focused on 

reactive power compensation in power systems after 

experiencing blackouts. Flexible AC transmission 

system (FACTS) devices are highly suggested for 

reactive power flow control in transmission lines [3]. 

On the other hand, capacitor banks (CBs), on-load 

tap-changers (OLTC), booster transformers, voltage 

regulators, network reconfiguration (NR), etc. have 

been playing a key role in reactive power 

compensation at the distribution side [4]. 

The technical (actual power loss reduction, 

feeder voltage profile improvement, and overall 

voltage stability margin enhancement) and financial 

(operating cost reduction) benefits of integrating 

FACTS in distribution networks are numerous. Yet, 
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these advantages are only accessible when they are 

perfectly networked. In this context, studies on 

power system planning have given a lot of attention 

to the issue of optimal FACTS device integration in 

EDN. 

In [5], loss sensitivity factors (LSFs) are 

proposed for determining pre-defined candidate 

locations for CBs integration, and hybrid artificial 

bee colony-particle swarm optimization (ABC-PSO) 

with fuzzy logic is introduced for deducing the 

optimal locations and ratings. The multi-objective 

function is formulated for real power loss and 

annual loss reduction. In [6], the dragonfly 

algorithm (DFA) and fuzzy expert system are 

employed for identifying the optimal sites and 

ratings of CBs in RDNs for real power loss 

reduction. In [7], minimization of active energy loss 

and voltage deviation is aimed by optimally 

controlling the OLTCs along with distribution 

generation (DGs) using moth search optimization 

(MSO). In addition to DGs, CBs, and OLTCs, the 

NR approach is also highly explored for managing 

network power flows and improving overall 

performance [8]. In [9], the modified culture 

algorithm (MCA) is employed for reducing the 

active power loss in EDNs by using an optimal NR 

approach. In [10], NR and DGs are proposed for 

improving the consistency of EDN in terms of loss 

reduction and voltage stability enhancement under 

multiple loading conditions. The optimization 

problem is solved using the enhanced marine 

predator algorithm (EMPA). In [11], NR with soft 

open points (SOPs) is proposed using artificial 

rabbit optimization (ARO) for improving the 

resilience of multi-lateral EDNs under renewable 

energy (RE)-based DGs and electric vehicle (EV) 

uncertainty.                     

CBs can be either fixed or switched 

configuration and not able to provide appropriate 

and dynamic VAr support. Thus, CBs can lead to 

either under or over compensation, results for either 

low voltage or high voltages in the EDNs. On the 

other side, NR method needs remote control 

switches (RCSs) in each branch and need to 

cooperatively to control these switches along with 

tie-lines. Unfortunately, most of the EDNs are not 

fully automated with RCSs for dynamic NR and this 

approach for performance improvement of EDNs is 

limited. Similarly, OLTC transformers designed with 

fixed tap-settings and are not fine tuneable for 

dynamic VAr control. In comparison to these 

methods using CBs, NR, and OLTC, now a days, the 

adaptation of FACTS devices at the distribution side, 

namely D-FACTS devices, is getting high attention 

due to their dynamic and fast response to the 

uncertainties [12]. Unified power quality controllers 

(UPQCs), Distribution- static synchronous 

compensators (D-STATCOMs), distribution-static 

VAr compensators (D-SVCs), and distributed 

thyristor-controlled series compensators (D-TCSCs) 

are the best examples of such D-FACTS devices. In 

order to accommodate high DG penetration, the 

need for voltage regulation in uncertain EDNs is 

optimised by using OLTCs and static VAr 

compensators (SVCs) using robust optimization 

(RO) [13]. In [14], a literature survey on optimal 

allocation of D-FACTS such as distribution-static 

synchronous compensators (DSTATCOMs), unified 

power quality controllers (UPQCs), and CBs is 

presented. In addition, the grasshopper optimization 

algorithm (GOA) is adapted for the allocation of 

DSTATCOMs in the 69-bus EDN towards loss 

reduction, voltage profile improvement, and voltage 

stability enhancement. In [15], the impact of D-

STATCOM on RDNs with different kinds of load 

models is analyzed, and the optimal location and 

sizes are determined using improved bald eagle 

search (IBES) by targeting a multi-objective 

function of loss, voltage profile, and voltage stability. 

In [16], the improved flower pollination algorithm 

(IFPA) and the voltage stability index (VSI) are 

hybridised for solving the CBs and DSTATCOMs in 

RDNs and mitigating the negative impact of electric 

vehicle (EV) loads considering techno-economic 

benefits. In [17], optimal ratings and locations for 

UPQC along with NR are solved using the improved 

whale optimization algorithm (IWOA) for reducing 

the active power loss and cost of UPQC and 

switching operations. In [18], basic open-source 

mixed-integer nonlinear programming (BONMIN) 

is proposed for optimal integration of D-SVC and 

D-TCSC along with DGs for improving the 

efficiency of EDN. In [19], the adaptive differential 

search algorithm (ADSA) is utilised for solving the 

SVC location and sizes, along with active power 

DGs for ensuring minimum distribution losses. In 

[20], a gradient-based optimizer with a crossover 

operator (GBOC) is introduced for solving D-SVCs 

in RDN for techno-economic benefits. Further, 

different approaches to reactive power compensation 

in EDNs via conventional approaches and D-FACTS 

can be reviewed in [21]. 

From the above reviewed works, different 

methodologies, like linear programming (LP), non-

linear programming (NLP), and dynamic 

programming (DP), were employed for solving the 

optimal allocation of D-FACTS in EDN. Meta-

heuristics were highly used due to their multiple 

advantages. The complexity involved in solving 

real-time engineering problems with multiple 
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objectives formulated with various simultaneous 

linear and non-linear constraints, equal and unequal 

constraints, and continuous and discrete variables 

can be easily overcome by meta-heuristics. They are 

free from derivatives and easy to adapt with 

minimum control variables [22]. However, meta-

heuristics suffer from the generation of a random 

population in the optimization process, which can 

lead to poor exploration and/or exploitation 

characteristics and further result in a local minima 

trap. On the other hand, the no-free-lunch (NFL) 

theorem states that many algorithms may not suit 

solving all kinds of optimization problems [23]. 

Thus, the researchers are still motivated to introduce 

new algorithms and also make improvements to the 

existing algorithms. Firefly algorithm (FA) is one 

such simple and efficient algorithm in recent times 

inspired by the flashing patterns and behaviour of 

fireflies [24]. But it has to be strengthened and made 

simpler because it sometimes gets stuck in local 

optima and loses its ability to optimise [25]. The 

performance of basic FA is dependent on mainly two 

controlling factors i.e., light variation and attraction. 

In literature [26], various improvements have been 

suggested for basic FA by modifications to these 

parameters. On the other side, some researchers are 

also experimented with hybridizing with other 

algorithms. In order to overcome these issues, 

adaptive parameters are introduced for improving 

the search ability of the basic FA in the adaptive 

firefly algorithm (AFA) [27]. 

In light of the above-identified research problem 

and in comparison to the literature, the following are 

the major contributions of this paper: 

 

1) A multi-objective approach for optimal 

allocation of D-SVC is proposed. 

2) At the first stage, the preferable locations for 

installing D-SVC are determined using the 

voltage stability index (VSI). 

3) In the second stage, AFA is used to get the best 

reactive power output from D-SVC. 

4) Adaptive parameters are introduced for the basic 

Firefly algorithm (FA) for developing the 

proposed adaptive Firefly algorithm (AFA) for 

improving its search capabilities in the 

optimization process. 

5) The optimal VAr values of D-SVC are evaluated 

under different loading conditions on the IEEE 

69-bus radial EDN. 

 

The D-SVC is not optimally integrated to figure 

out how much the RDN can be loaded. The 

effectiveness of FA in resolving the D-SVC 

allocation issue in EDN has not yet been  
 

    
                      (a)                                       (b) 

Figure. 1 Schematic diagram of D-SVC, (a) combination 

of TCR and TSC, (b) fixed CB and TCR  

 

investigated. Hence, adding adaptive parameters to 

FA's exploration and exploitation stages can enhance 

its convergence characteristics. In light of this, this 

work presents an intriguing subject for studies on 

power system management and performance 

enhancement.       

The mathematical modelling of D-SVC is 

covered in section 2. The suggested multi-objective 

problem is described in section 3 along with its 

equal and unequal restrictions. The solution 

methodology utilising AFA and its mathematical 

relationships in the optimization process is presented 

in section 4. The simulation results on the IEEE 69-

bus using the suggested AFA and a comparison of 

effeteness to literary works are covered in section 5. 

Lastly, section 6 projects the thorough study results 

and major advancements made by this paper.       

2. Modelling of D-SVC 

One of the shunt type FACTS devices is SVC 

which is designed basically with thyristor switched 

capacitor (TSC) and thyristor controlled reactor 

(TCR) for working in either reactive power source 

(under capacitive mode) or reactive power sink 

(under inductive mode). The schematic diagram of 

SVC is given in Fig. 1.  

By controlling the firing angles of thyristors, the 

total susceptance of either TCR or TSC can be 

regulated. The relation between firing angle and 

susceptance of the TCR is given by, 

 

 𝐵𝐿(𝛼) =
1

𝜔𝐿
(1 −

2𝛼

𝜋
) and 𝐵𝐶 = 𝜔𝐶                (1) 

 

The total susceptance of the D-SVC is equal to 

the summation of both 𝐵𝐿(𝛼) and 𝐵𝐶, given by, 
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 𝐵𝑆𝑉𝐶 = 𝐵𝐿(𝛼) + 𝐵𝐶     (2) 

 

The reactive power support by D-SVC under 

reactive power source/ sink scenarios is given by, 

 

𝑄𝑆𝑉𝐶 = ∓𝐵𝑆𝑉𝐶𝑉𝑔𝑟𝑖𝑑
2     (3) 

 

where 𝐵𝐿(𝛼) , 𝐵𝐶  and 𝐵𝑆𝑉𝐶  are the susceptances 

of TCR, CB and D-SVC, respectively, 𝜔  is the 

angular frequency, 𝐿  and 𝐶  are the inductance and 

capacitances, respectively; 𝛼  is the firing angle of 

thyristor, 𝑄𝑆𝑉𝐶  is the reactive power compensation 

by D-SVC;  𝑉𝑔𝑟𝑖𝑑 is the voltage magnitude of grid-

bus or D-SVC incident bus in the network.       

In Eq. (3), positive sign indicates the reactive 

power consumption state by D-SVC for reducing the 

grid-bus voltage magnitude and whereas negative 

sign indicates the reactive power support by D-SVC 

for increasing the voltage magnitude of grid-bus. 

Thus by changing the 𝛼, the overall susceptance of 

the D-SVC can be changed and consequently, the 

reactive power output from D-SVC can be adjusted 

dynamically as per the operating conditions.    

3. Problem formulation 

This section introduces the proposed multi-

objective optimization problem along with its 

various equal and unequal constraints.  

3.1 Multi-objective function 

Reduction of power losses(𝑓1), improvement of 

voltage stability index (𝑓2) , and enhancement of 

loadability (𝑓3) are aimed in optimizing the location 

and sizes of D-SVC in this paper. Mathematically,  

 

𝑓1 =
𝑃𝑙𝑜𝑠𝑠(𝐷𝑆𝑉𝐶)

𝑃𝑙𝑜𝑠𝑠(𝑏𝑎𝑠𝑒)
         (4) 

 

𝑓2 =
𝑉𝑆𝐼(𝑏𝑎𝑠𝑒)

𝑉𝑆𝐼(𝐷𝑆𝑉𝐶)
                      (5) 

 

𝑓3 =
𝜆𝑚𝑎𝑥(𝑏𝑎𝑠𝑒)

𝜆𝑚𝑎𝑥(𝐷𝑆𝑉𝐶)
          (6) 

 

𝑂𝐹 = 𝑚𝑖𝑛(𝑤1𝑓1 + 𝑤2𝑓2 + 𝑤3𝑓3)                   (7) 

 

where 𝑃𝑙𝑜𝑠𝑠(𝑏𝑎𝑠𝑒)  and 𝑃𝑙𝑜𝑠𝑠(𝐷𝑆𝑉𝐶)  are the real 

power losses with and without D-SVC in the 

network, respectively; 𝑉𝑆𝐼(𝑏𝑎𝑠𝑒)  and 𝑉𝑆𝐼(𝐷𝑆𝑉𝐶)  are 

the voltage stability index (VSI) of the network 

before and after D-SVC integration in the network, 

respectively; 𝜆𝑚𝑎𝑥(𝑏𝑎𝑠𝑒)  and 𝜆𝑚𝑎𝑥(𝐷𝑆𝑉𝐶)  are the 

maximum loadability margin before and after D-

SVC integration in the network, respectively; 𝑤1 , 

𝑤2  and 𝑤3  are the weighting factors for the 

objective functions 𝑓1, 𝑓2 and 𝑓3, respectively.         .   

3.2 Constraints 

The bus voltage magnitudes, VAr and location 

limits for D-SVC and VSI limit are considered.   

 
|𝑉|𝑚𝑖𝑛 ≤ |𝑉|𝑛 ≤ |𝑉|𝑚𝑎𝑥, ∀𝑛 = 2: 𝑛𝑏𝑢𝑠              (8) 

 

∑ 𝑄𝐷𝑆𝑉𝐶(𝑘)
𝑛𝑑𝑠𝑣𝑐
𝑘=1 ≤= ∑ 𝑄𝑑(𝑖)

𝑛𝑏𝑢𝑠
𝑖=1                (9) 

 

2 ≤ 𝐿𝐷𝑆𝑉𝐶 ≤ 𝑛𝑏𝑢𝑠                                       (10) 

 

𝑉𝑆𝐼 > 0, ∀𝑛 = 2: 𝑛𝑏𝑢𝑠                           (11)             

 

where |𝑉|𝑛 , |𝑉|𝑚𝑖𝑛  and |𝑉|𝑚𝑎𝑥 are the voltage 

magnitude of bus-n, and its minimum and maximum 

limits, respectively; 𝑄𝐷𝑆𝑉𝐶(𝑘) and 𝑄𝑑(𝑖) are the VAr 

capacity of D-SVC at bus-k and VAr load at bus-i, 

respectively; 𝐿𝐷𝑆𝑉𝐶 is the location of D-SVC in the 

network, 𝑛𝑏𝑢𝑠 and 𝑛𝑑𝑠𝑣𝑐 are the number of buses 

and number of D-SVCs in the network, respectively. 

4. Solution methodology 

The mathematic modelling of firefly algorithm 

concept and the proposed modifications with 

dynamic parameter are explained in this section.  

4.1 Evaluation of objective functions 

The real power distribution losses are evaluated 

by using the Newton Raphson load flow method 

(NRLF) [28]. The VSI is evaluated by using the 

methodology defined in [29]. The maximum 

loadability is evaluated by using the repeated power 

flow (RPF) [29]. Mathematically, 

 

𝐿 = {∑ (𝑃𝑑(𝑖) + 𝑗𝑄𝑑(𝑖))𝑛𝑏𝑢𝑠
𝑖=1 }(1 + 𝜆𝑚𝑎𝑥)        (8) 

 

where 𝑃𝑑(𝑖) is the real power demand at bus-i, 

𝜆𝑚𝑎𝑥  is the maximum load increment factor at 

which the NR load flow method fails to converge. In 

other words, the loading condition at which Jacobian 

matrix becomes singular.     

4.2 Strategy for D-SVC locations 

The VSI should be more than 0 and less than 1, 

according to [28]. The buses that are getting close to 

0 can be thought of as having more potential for 

voltage collapse. Hence, enhancing the voltage 

profile and consequently the VSI at those locations 

can lead to an improvement in overall stability of 
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the network. All of the locations are ranked in 

descending order based on their respective VSI 

values after being determined. As a pre-defined 

search space for D-SVC integration, the top ten 

locations are taken into consideration. Next, by 

employing the suggested optimization approach, the 

optimal locations are deduced from them together 

with the ratings.   

4.3 Basic firefly algorithm 

In nature, fireflies' flashing inspired the firefly 

algorithm (FA). Fireflies release quick, rhythmic 

bioluminescent flashes. Flashing lights attract 

companions, prey, and predators. Hence, the 

intensity of the light affects other fireflies' approach. 

The FA's main objective function is brightness, 

based on the fireflies’ 𝑓𝑖 and 𝑓𝑗. The particle's lesser 

brightness helps find and brighten the brightest 

particles. Distance between particles reduces 

brightness. Fireflies are ordered by brightness. The 

particle will locate their ideal partner until the 

number of generations is limited.    

The light intensity (𝐿𝑖) of the firefly associated 

with the solution is proportional to the target value 

of the fitness function and is defined by: 

 

𝛾𝑖(𝑑) = 𝛾𝑖(0)𝑒−𝜎𝑑2
, 𝑑 ≥ 1   (9) 

 

where 𝑑  is the distance between two fireflies, 

𝐿𝑖(0)  and 𝛾𝑖(𝑑)  are the firefly’s initial ( 𝑑 =0) and 

distance based light intensity, respectively; 𝜎 is the 

light absorption factor.  

The distance (𝑑) is modelled using Euclidian 

distance formula, as follows: 

 

𝑑(𝑖,𝑗) = ‖𝑓𝑖 − 𝑓𝑗‖ = √∑ (𝑓𝑖,𝑘 − 𝑓𝑗,𝑘)
2𝑛𝑠

𝑘=1       (10) 

 

where 𝑓𝑖,𝑘 and 𝑓𝑗,𝑘 are the kth member of ith and 

jth firefly, respectively; 𝑛𝑠 is the number of search 

variables of the problem.   

The movement between ith and jth fireflies is 

modelled by, 

 

𝑓𝑖 = 𝑓𝑖 + 𝛾𝑖(0)𝑒−𝜎𝑑2
(𝑓𝑖 − 𝑓𝑗) + 𝛿 (𝑟 −

1

2
)          (11) 

   

Here, the first and second parts in Eq. (11) are 

used to define attraction and third is for defining 

random step movement by a parameter 𝛿 and 𝑟 is a 

randomly generated uniform number between 0 and 

1.   

4.4 Adaptive firefly algorithm 

An adaptive parameter strategy is used in the 

AFA to control the step factor and attractiveness. In 

the basic FA, the parameters 𝛿  and 𝛾  are constant 

and thus subjected to local optima trap. In AFA, they 

are dynamically tuned for improving search 

characteristics.  

 

𝛾(𝑡 + 1) = 𝛾(𝑡) × 𝑒
(−𝑘

𝑡

𝑡𝑚𝑎𝑥
)
                         (12) 

 

𝛿(𝑡 + 1) = 𝛿(𝑡) − 𝜗𝑒
(−𝑚

𝑡

𝑡𝑚𝑎𝑥
)
                      (13) 

 

where 𝜗= 0.9, 𝑘{= 1,2,3, . . } and 𝑚{= 1,2,3, . . } 

are used to defined the rate of decrease and increase 

the dynamic movements, respectively; 0.5 and 1 are 

used for 𝛾(0) and 𝛿(0), respectively; 𝑡 and 𝑡𝑚𝑎𝑥 are 

the number of present and maximum iteration, 

respectively.    

5. Results and discussion   

The proposed AFA is implemented for solving 

the D-SVC locations and ratings in IEEE 69-bus 

feeder. The load data and branch data are taken from 

[29]. It has real and reactive power loading levels as 

3802.1 kW and 2694.7 kVAr, respectively.   

5.1 Simulations with different algorithms 

Base case: For the standard test system data [30], 

NRLF is performed for determining the performance 

of EDN. It is noted that the total real and reactive 

power losses of 𝑃𝑙𝑜𝑠𝑠(𝑏𝑎𝑠𝑒) = 225 kW and 102.2 

kVAr, respectively. The minimum voltage 

magnitude is registered at bus-65 as 0.9092 p.u. The 

least VSI is determined as 𝑉𝑆𝐼(𝑏𝑎𝑠𝑒)= 0.55 at bus-60. 

By implementing repeated power flow (RPF) [31], 

the maximum loadability of the network is 

determined as 𝜆(𝑏𝑎𝑠𝑒) = 2.211 p.u. These results 

treated as base case for comparison. 

Ideal case: Before optimization the locations 

and ratings of D-SVCs, the global optima values or 

ideal case values are determined by considering total 

reactive power loading as zero, which is aimed by 

VAr compensation with D-SVCs in the network. 

The total real and reactive power losses reduced to 

𝑃𝑙𝑜𝑠𝑠(𝑏𝑎𝑠𝑒) = 143.523 kW and 65.298 kVAr, 

respectively. The minimum voltage magnitude is 

registered at bus-65 as 0.9317 p.u. The least VSI is 

determined as 𝑉𝑆𝐼(𝑏𝑎𝑠𝑒) = 0.7012 at bus-60. By 

implementing RPF, the maximum loadability of the 

network is determined as 𝜆(𝑏𝑎𝑠𝑒)= 3.064 p.u. These 

results treated as ideal case for comparison.   
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Table 1. Results of different algorithms 

Method 
D-SVC in ± kVAr  

(bus #) 

Ploss  

(kW) 
VSI 

CSA 
604 (66), 699 (47), 

1250 (61) 
147.553 0.7178 

FPA  
172 (52), 1255 (61), 

340 (19) 
145.985 0.7170 

TLBO  
510 (50), 1252 (61), 

368 (19) 
145.778 0.7155 

FA 
303 (23), 1169 (61), 

469 (53) 
145.721 0.7166 

AFA 
281 (21), 1184 (61), 

506 (53) 
145.605 0.7175 

 

 

 
Figure. 2 Convergence characteristics 

 

 
Figure. 3 Comparison of voltage profile 

 

Optimal Case: For improving this operating 

state, three D-SVCs are proposed to integrate 

optimally. The search dimension is equal to 6 (i.e., 3 

for locations and 3 for ratings). In the proposed 

multi-objective function, the weighting factors 𝑤1 , 

𝑤2 and 𝑤3 are taken as 0.6, 0.2 and 0.2, respectively. 

The best results obtained by AFA are as follows:  

The sizes (locations) in ± kVAr are 281 (21), 

1184 (61), and 506 (53), respectively. The total real 

and reactive power losses reduced to 𝑃𝑙𝑜𝑠𝑠(𝑏𝑎𝑠𝑒) = 

145.605 kW and 67.844 kVAr, respectively. The 

minimum voltage magnitude is registered at bus-65 

as 0.9315 p.u. The least VSI is determined as 

𝑉𝑆𝐼(𝑏𝑎𝑠𝑒)= 0.7175 at bus-63. By implementing RPF, 

the maximum loadability of the network is 

determined as 𝜆(𝐷𝑆𝑉𝐶) = 3.099 p.u. These results 

treated as optimal VAr comparison level of 73.14%. 

In addition to APFA, basic FA, cuckoo search 

algorithm (CSA) [32], flower pollination algorithm 

(FPA) [33] and teaching learning based optimization 

(TLBO) [34] also used solve the proposed objective 

function. With respect to base case values, the best 

results obtained by each algorithm over 25 

independent runs are given in Table 1. The 

convergence characteristics of these algorithms are 

given in Fig. 2.  

In order to compare the effectiveness of VAr 

compensation on the performance of EDN, the AFA 

is used for determining the D-SVCs’ locations and 

ratings. The corresponding results for different VAr 

compensation levels are given in Table 2. From this 

analysis, it is evident that the under compensation 

(less than optimal) or over compensation (more than 

optimal) of VAr can result for adverse effects on the 

network performance. The improved voltage 

profiles for different VAr compensation levels are 

compared and given in Fig. 3.     

5.2 Comparison with literature 

5.2.1. Simulations with D-SVCs 

In this section, the efficiency of AFA is 

compared with literature for two different case 

studies. In case 1, the VAr compensation limit is 

defined as 50% of total reactive power demand of 

the network and whereas in case 2, it is taken as 

75%, respectively. From [20], the results of 

gradient-based optimizer (GBO), GBO with 

crossover operator (GBOC), dwarf mongoose 

optimization algorithm (DMOA), salp swarm 

algorithm (SSA), differential evolution (DE), 

bernstein-levy search DE (BSDE) and honey badger 

algorithm (HBA) are compared with the proposed 

AFA.  

Under Compensation (50%): In this case, three 

D-SVCs are optimally integrated for 50% reactive 

power compensation. This is less than optimal VAr 

compensation and treated as under compensation. 

The best sizes of D-SVCs by AFA in ± kVAr (bus #) 

are as follows: 163 (63), 973 (61) and 212 (18). The 

total real and reactive power losses reduced to 

𝑃𝑙𝑜𝑠𝑠(𝑏𝑎𝑠𝑒) = 148.342 kW and 69.197 kVAr, 

respectively.  

The minimum voltage magnitude is registered at 

bus-65 as 0.9287 p.u. The least VSI is determined as 

𝑉𝑆𝐼(𝑏𝑎𝑠𝑒)= 0.7029 at bus-60. By implementing RPF, 

the maximum loadability of the network is 

determined as 𝜆(𝐷𝑆𝑉𝐶)= 2.833 p.u. The comparison  
 

0.680

0.700

0.720

0.740

0.760

0.780

0.800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

Iteration

TLBO

FPA

CSA

FA

AFA

0.900

0.920

0.940

0.960

0.980

1.000

1.020

1 4 7 1013161922252831343740434649525558616467

B
u

s 
v
o

lt
a

g
e
 m

a
g

n
it

u
d

e
 (

p
.u

.)

Bus number

Base Optimal VAr

50 % VAr 75 % VAr



Received:  March 6, 2023.     Revised: April 3, 2023.                                                                                                       384 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.30 

 

Table 2. Network performance for different VAr compensation levels 
VAr  

Comp (%) 

Locations 

(bus #)  

Ratings  

(± kVAr) 

Ploss  

(kW) 

Qloss  

(kVAr 
Vmin (p.u.) VSI 

Base  - - 225 102.2 0.9092 (65) 0.55 (60) 

Ideal    143.523 65.298 0.9317 (65) 0.7012 (60) 

10 27, 26, 64 13, 13, 1995 192.034 88.448 0.9424 (61) 0.6266 (60) 

20 59, 61, 64 13, 981, 1026 175.018 79.694 0.9434 (61) 0.7367 (60) 

30 22, 61, 64  9, 1398, 614 170.679 77.598 0.9424 (65) 0.7739 (64) 

40 62, 61, 22 697, 1128, 196 158.363 72.832 0.9387 (65) 0.7408 (63) 

50 64, 61, 69 292, 1448, 281 155.952 71.774 0.9385 (65) 0.7612 (64) 

60 61, 61, 18 579, 902, 540 149.921 69.403 0.9347 (65) 0.7279 (63) 

70 61, 26, 11 1336, 138, 548 146.063 67.996 0.9331 (65) 0.7227 (63) 

73.14 21,  61, 53 281, 1184, 506 145.605 67.844 09315  (65) 0.7175  (61) 

80 53, 17, 61 643, 255, 1123 145.892 67.967 0.9310 (65) 0.7160 (63) 

90 61, 15, 29 927, 319, 776 151.868 71.159 0.9257 (65) 0.6902 (60) 

100 2, 62, 11 511, 859, 651  152.907 70.805 0.9260 (65) 0.5920 (60) 

 

 
Table 3. Comparison of AFA with various methods 

reported in [20] for of 50% VAr compensation 

Method 
D-SVC in ±kVAr  

(bus #) 

Ploss  

(kW) 
VSI 

BSDE  31 (61), 259 (62) 196.124 0.5656 

SSA 226 (61), 259 (64) 180.630 0.5944 

DMOA 
393 (62), 236 

(63), 309 (64) 
158.448 0.5889 

HBA  321 (61), 618 (62) 158.221 0.6232 

DE  
557 (62), 382 

(63), 82 (69) 
156.658 0.5897 

GBO  189 (21), 876 (61) 154.847 0.6813 

GBOC [20] 
204 (21), 589 

(62), 355 (64) 
152.690 0.5912 

AFA  
308 (22), 818 

(61), 221 (20) 
149.405 0.7085 

 

 
Table 4. Comparison of AFA with various methods 

reported in [20] for of 75% VAr compensation 

Method 
D-SVC in ±kVAr  

(bus #) 

Ploss  

(kW) 
VSI 

BSDE 
560 (22), 233 

(62), 413(63) 
196.124 0.5656 

SSA 226 (61), 259 (64) 180.630 0.5944 

DMOA  
393 (62), 236 

(63), 309 (64) 
158.448 0.5889 

HBA  321 (61), 618 (62) 158.221 0.6232 

DE  
557 (62), 382 

(63), 82 (69) 
156.658 0.5897 

GBO  189 (21), 876 (61) 154.847 0.6813 

GBOC [20] 
204 (21), 589 

(62), 355 (64) 
152.690 0.5912 

AFA  
681 (63), 546 

(41), 793 (57) 
150.442 0.6020 

 

Table 5. Comparison of AFA in solving optimal VAr 

compensation using CBs  

Method  
CB in kVAr  

(bus #) 

Ploss  

(kW) 
VSI 

FIS-ABC-

POS [5] 

126 (11), 93 (13), 

145 (17), 117 

(21), 94 (28), 104 

(39), 96 (45) 

214.28* - 

FES-DA [6] 

1230 (61), 190 

(64), 100 (59), 

100 (65), 360 (21) 

150.43* - 

AFA 

526 (12), 1035 

(61), 43 (69), 208 

(64) 

146.27 0.7177 

* Indicates, results are revised as per the load flow 

 

 

is given in Table 3 and the results of AFA are 

observed as superior to all other algorithms by 

having least objective function value.  

Over Compensation (75%): In this case, the 

reactive power compensation target is set as 75% by 

integrating three D-SVCs are optimally. This is 

more than optimal VAr compensation and treated as 

over compensation. The best sizes of D-SVCs by 

AFA in ± kVAr (bus #) are as follows: 308 (22), 818 

(61) and 221 (20). The total real and reactive power 

losses reduced to 𝑃𝑙𝑜𝑠𝑠(𝑏𝑎𝑠𝑒) = 148.405 kW and 

69.24 kVAr, respectively.  

The minimum voltage magnitude is registered at 

bus-65 as 0.9282 p.u. The least VSI is determined as 

𝑉𝑆𝐼(𝑏𝑎𝑠𝑒)= 0.7074 at bus-63. By implementing RPF, 

the maximum loadability of the network is 

determined as 𝜆(𝐷𝑆𝑉𝐶)= 2.939 p.u. The comparison 

is given in Table 4 and the results of AFA are 

observed as superior to all other algorithms by 

having least objective function value. 
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Table 6.  Comparison CBs and D-SVCs  

Method  Total kVAr (%) 
Ploss  

(Kw) 
VSI 

- - 225 0.55 

CBs 1812 (67.24) 146.27 0.7172 

D-SVCs 1971 (73.14) 145.605 0.7175   

 

5.2.1. Comparison of CBs and D-SVCs 

In this case study, VAr compensation by means 

of CBs and D-SVCs is compared. In [5, 6], the 

impact of CBs on the performance of EDNs is 

analyzed. Thus, the effectiveness of AFA in solving 

the CBs allocation problem is first analyzed, and 

then the performance of EDN with CBs and D-

SVCs is compared. The simulation results obtained 

with AFA are given in Table 5. 

Table 6 provides a comparison of CBs and D-

SVCs. CBs only reach the ideal VAr compensation 

of 67.24%, but it should be closer to 73.14%. D-

SVCs produced a result of 145.605 kW, while the 

losses decreased to 146.27 kW from the base case of 

225 kW. Moreover, the stability index is greater than 

the base case of 0.55 and equivalent to 0.7175 with 

D-SVCs. Nonetheless, CBs' stability index is 0.7172, 

which is once again lower than D-SVCs. In this 

fashion, D-SVCs are demonstrated to perform better 

than CBs.         

6. Conclusion 

In this paper, a novel meta-heuristic approach is 

presented for solving the optimal locations and 

ratings of distribution-static VAr compensators (D-

SVCs) for reducing active power loss, voltage 

stability index, and loadability margin in radial 

electrical distribution networks (EDNs). An adaptive 

firefly algorithm (AFA) with improved search 

capabilities is proposed for solving the multi-

objective function with different equal and unequal 

constraints. The computational efficiency of AFA is 

compared with that of other algorithms and 

literature. From the comparative study, it is observed 

that the AFA is performing well by resulting in a 

global optimum. Simulations are performed on the 

IEEE 69-bus EDN for different scenarios. For 

different VAr compensation levels, the network 

performance is evaluated and compared with the 

base case, ideal case, and optimal case. The results 

emphasise the need for optimal VAr compensation 

for ensuring the network's performance.    
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Notation list 

𝐵𝐿(𝛼) Susceptance of TCR 

𝐵𝐶  Susceptance of CB 

𝐵𝑆𝑉𝐶  Susceptance of SVC 

𝜔 Angular frequency  

𝐿 Inductance 

𝐶 Capacitance 

𝛼 Thyristor firing angle  

𝑸𝑺𝑽𝑪 Reactive power by SVC 

𝑽𝒈𝒓𝒊𝒅 Grid bus voltage magnitude 

𝑃𝑙𝑜𝑠𝑠(𝑏𝑎𝑠𝑒) Base case real power loss 

𝑷𝒍𝒐𝒔𝒔(𝑫𝑺𝑽𝑪) Real power loss with D-SVC 

𝑽𝑺𝑰(𝒃𝒂𝒔𝒆) Voltage stability index at base case 

𝑽𝑺𝑰(𝑫𝑺𝑽𝑪) Voltage stability index at base case 

𝝀𝒎𝒂𝒙(𝒃𝒂𝒔𝒆) Loadability factor at base case 

𝝀𝒎𝒂𝒙(𝑫𝑺𝑽𝑪) Loadability factor with D-SVC 

|𝑉|𝑛 Voltage magnitude of bus-n 

|𝑉|𝑚𝑖𝑛 Minimum voltage magnitude 

|𝑉|𝑚𝑎𝑥 Maximum voltage magnitude 

𝑄𝐷𝑆𝑉𝐶(𝑘) Reactive power by D-SVC at bus-k 

𝑷𝒅(𝒊) Real power load at bus-i 

𝑄𝑑(𝑖) Reactive power load at bus-i 

𝐿𝐷𝑆𝑉𝐶  Location of D-SVC 

𝑛𝑏𝑢𝑠 Number of buses 

𝑛𝑑𝑠𝑣𝑐 Number of D-SVCs 

𝝀𝒎𝒂𝒙 Maximum loadability factor 

𝐿𝑖 Light intensity 

𝑑 Distance between two fireflies 

𝐿𝑖(0) Firefly’s intial light intensity 

𝛾𝑖(𝑑) Firefly’s distance based light intensity 

𝜎 Light absorption factor 

𝑡 Present iteration number 

𝑡𝑚𝑎𝑥 Number of maximum iterations 
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