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Abstract: According to WHO, 6 million people are affected by an epileptic seizure every year as per a survey carried 

out in 2019. At the moment, doctors use direct observation of the electroencephalogram (EEG) signal to determine the 

presence of an epileptic seizure. However, epileptic detection in most of the previous research works suffers from low 

accuracy and is unsuitable for processing large datasets. In this work, the seizure EEG signal is effectively detected 

and enhanced using Chebyshev normalization. Additionally, the signals are decomposed by applying fast empirical 

mode decomposition (EMD). Then, entropy features are extracted and effective selection is obtained by using the 

improved artificial bee colony (ABC) optimization algorithm. Finally, a stacked autoencoder (SAE) is used for better 

EEG classification. The existing researches such as MCAFF, CNN-RNN, ESSA, SVM and 1D-CNN are used for 

comparing the IABC-SAE method. The proposed IABC-SAE method gained better performance in seizure EEG signal 

identification and achieves higher classification accuracy (CA) of 99.98% in TUH-EEG database compared to the 

existing ESSA. 

Keywords: Epileptic seizure, EEG signal, Chebyshev normalization, Fast empirical mode decomposition, Improved 

ABC optimization, Stacked auto encoder. 

 

 

1. Introduction 

According to the world health organization 

(WHO), epilepsy affected 50 million people 

worldwide in that 70% live seizure-free with proper 

analysis and action. On the contrary, 30% of people 

who are having epilepsy remain to suffer 

unidentifiable frequent seizures [1]. Epilepsy is one 

of the brain neurological chronic diseases that affect 

brain cells’ electrical activities. The symptoms of the 

neurological disorder are muscle weakness, broken 

bones, loss of sensation, bleeding into the brain and 

breathing difficulties [2-3]. Epilepsy affects the brain 

as well as the nerves throughout the human body and 

spinal cord. Epilepsy is a very serious and most 

commonly occurring neurological syndrome [4]. 

Epilepsy is occurred because of the hyper-

synchronous and excessive irregular electrical 

activities of neuron cells, which impact the both 

physical and mental health of the patient [5]. 

Epilepsy disease is characterized by paroxysmal 

events which are disrupted the neurons and 

neurotransmitters known as seizures which is 

growing from the irregular activation of neuronal 

networks [6-7]. Although it is rare, it is genuinely 

tough, and people need to be aware of the risk. [8]. 

Epilepsy is divided into two categories: focal and 

non-focal. In a focused disorder, only one hemisphere 

of the brain or another specific area of the brain is 

damaged. However, even though they were not 

directly impacted by the seizures, non-focal epilepsy 

has an impact on numerous brain regions. [9-10]. 

Therefore, they need surgical interference to treat the 

seizures as well as reduce the risks accompanied by 
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invasive interference with the brain [11]. The 

electroencephalogram (EEG) signal is generally used 

golden standard method for epileptic detection as it is 

a condition related to the brain’s electrical activity. It 

is the evaluation of brain electrical action by 

recording on the mainframe using small metal 

electrodes placed on the scalp [12-13]. EEG allows 

for obtaining focal and non-focal signals and 

provides effective brain records for examination as 

well as detection the neurological syndrome [14-15]. 

Therefore, this manuscript is mainly based on the 

feature selection and segmentation of the relevant 

aspects in the EEG-signal image classification. 

The main contribution of the research is given as 

follows: 

 

• In this recognition, a stacked auto-encoder 

classifier is used for classifying epilepsy 

seizures. In addition, it is handling high-

dimensional data and extracted features help to 

overcome imbalanced data problems. 

• Improved ABC optimization algorithm 

evaluates every fitness function to get the 

global optimal solution. 

 

The remaining part of this work is arranged as 

follows: the existing work related to Seizure EEG 

signal classification is given in section 2. A clear 

explanation of the IABC-SAE is given in section 3 

whereas the results and discussions of the existing 

and proposed work are given in section 4. Finally, the 

conclusion is presented in section 5.  

2. Literature survey 

This section provides a literature survey about the 

different techniques used in seizure EEG signal 

development. The following section presents the 

literature survey along with its advantages and 

limitations. 

Darshana Priyasad [16] represented a novel deep 

learning based interpretable seizure organization 

using unprocessed EEG and multi-channel attentive 

feature fusion (MCAFF). In this work, the direct use 

of EEG signals supports the network to learn rich 

aspects as well as develop the rhythmic activity of the 

seizure. Additionally, the convolution block and 

SincNet filter were applied after the EEG wave of 

each chosen channel to offer a compact and 

personalized filter during model training. Finally, the 

selected fusion aspects were delivered to the 

classification network over the high-level features of 

the system. Therefore, architecture could easily 

extend the different frequency distribution of new 

channels along with retraining to the fusion and 

classify the sub-models of the function. Although, it 

takes much computation time and costs the function. 

Anand Shankar [17] demonstrate the analysis and 

organization of epileptic seizures using the EEG 

recurrence plot (RP) images and CNN. It is possible 

to analyze non-linear, non-stationary, and brief data 

of the function using the RP. After that, the RP was 

directly fed into the CNN for performing the different 

kernel functions and analysis of the quality 

assessment of the system therefore, it would increase 

the error rate of the system. 

Anis Malekzadeh [18] introduced a computer-

aided diagnosis system for the automatic analysis of 

epileptic seizures in EEG signals using a fusion of 

handcrafted and deep learning aspects. Additionally, 

Bonn and Freiburg datasets were used to enhance the 

performance of the EEG detection including pre-

processing, feature extraction, and classification of 

the system. First, they applied a band-pass filter with 

0.5 to 40 Hz incidence for the elimination of 

substances in the EEG datasets and Tunable-Q 

Wavelet Transform for EEG signal rotting of the 

system. Then the CNN–RNN-based DL method 

improved the coherence and accuracy of the system 

detection of epileptic seizures from EEG signals. 

However, it was difficult to apply the signal band 

system of the function. 

T. J. Rani, and D. Kavitha, [19] presented the 

deep learning based automatic discovery of normal 

and abnormal EEG signals. The artifacts from the 

EEG signals were removed by using the 8th order 

butter worth filter followed by the signal 

decomposition was achieved by using the swarm 

decomposition. Next, the multidimensional features 

were obtained by semantic feature extraction and 

enhanced salp swarm algorithm (ESSA) was used to 

choose an appropriate feature for classification. The 

utilization of hand-crafted features was not effective 

while classifying the signals. 

Sriraam [20] represented the classification of 

focal and non-focal epileptic seizures using the 

application of multi-aspects and SVM classifiers. In 

this application, initially, the EEG seizure signal 

information was acquired from the Bern Barcelona 

database which obtain focal and non-focal signal 

recordings from five epilepsy patients for effective 

classification. Then outlier removal approach was 

performed to decrease the change of the trailing data 

as well as improve the classification level using 

Turkey’s range test and standardized before 

classification. After removal, the SVM classifier was 

used to improve the EEG seizure classification 

productivity along with fewer false positives 

 



Received:  February 24, 2023.     Revised: March 20, 2023.                                                                                            334 

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023           DOI: 10.22266/ijies2023.0630.27 

 

 
Figure. 1 The Block Diagram of proposed IABC-SAE 

method 

 

 

therefore, the application accuracy was insufficient. 

Sunaryono [21] developed the integration of one-

dimension convolution neural network (1D-CNN) 

and majority voting and deep neural network 

(MVDNN) for automatic discovery of seizure. The 

discrete wavelet transform and discrete Fourier 

transform were used to obtain the features of EEG 

signals. Subsequently, the features were reduced 

using XGBoost for classifying the signals using 1D-

CNN. Therefore, the combination 1D-CNN and 

MVDNN was improved the classification 

performances. However, the classification of seizure 

using 1D-CNN was mainly based on wavelets. 

3. Proposed methodology 

In this research, the EEG seizure signal based 

Epilepsy detection and classification is performed 

using IABC- SAE of the function. Initially, the 

seizure data are acquired based on three datasets thus 

performing the effective feature extraction and 

selection of the epileptic seizure. The block diagram 

of the IABC-SAE method is shown in Fig. 1. 

 

 

 

(a) 

  

(b) 

Figure. 2 The sample: (a) FNSZ and (b) GNSZ signals of 

the TUH EEG dataset 

3.1 Data acquisition 

In this proposed method, the Epilepsy seizure 

detection and classification is done using EEG 

signals based on three main datasets namely; Temple 

University Hospital (TUH-EEG) database, Bonn 

University EEG and Bern-Barcelona EEG database. 

The TUH EEG dataset obtains 2,012 seizure 

information from various patients [17]. The sample 

TUH EEG signal datasets are shown in Fig. 2. 

The Bern-EEG dataset contains 7500 signal 

groups from 5 epilepsy patients, and it is classified 

into two groups of EEG signals namely; focal and 

non-focal signals. The sample Bern EEG signal 

images are shown in Fig. 3. 

Finally, Bonn-EEG datasets are including 500 

signal information with five subsets such as; S, N, F, 

Z and O and these signals are verified from 128 

channel amp and 12-bit analog to digital transmute. 

In this order S, N and F are containing intracranial 

epileptic activity of EEG signals. Therefore, seizure 

events will help to effectively extract from the  
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Figure. 3 The sample Bern EEG signals 

 

original EEG based on the time duration and the 

sampling level. 

3.2 Data pre-processing 

After the data collection, a pre-processing step is 

required to extract efficient information from EEG 

signals. In this step, the EEG signal is commonly 

based on several objects such as; muscle activity, eye 

movement, etc. However, hence these relics must be 

removed before pre-processing the EEG signal. To 

extract more suitable features, each signal segment is 

disintegrated into incidence subbands by three 

methods of incidence spectrum decay, discrete 

wavelet transform, and empirical mode 

decomposition. Moreover, min-max methods are 

applied to normalize the datasets. The process of 

mini-maxi normalization is defined by Eq. (1) and the 

error is diminished among the idealized filter based 

on the characteristics range of filter. Chebyshev type 

2 low pass filters are stated using the Eq. (2). 

 

𝑀𝑖𝑛𝑖 –  𝑀𝑎𝑥𝑖. 𝑁𝑜𝑟𝑚 =  
𝑧𝑖− 𝑧𝑚𝑖𝑛𝑖

𝑧𝑚𝑎𝑥𝑖−𝑧𝑚𝑖𝑛𝑖
            (1) 

 

where, 𝑧𝑖  is input, and 𝑧𝑚𝑖𝑛𝑖  & 𝑧𝑚𝑎𝑥𝑖  defines the 

minimum and maximum value of input respectively.  

 

𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 𝑡𝑦𝑝𝑒 2 𝑙𝑜𝑤 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟 

=  
1

√1+𝜌2𝑇𝑛
2(

𝑤

𝑤0
)
              (2) 

 

From Eq. (2),  𝜌 is the ripple factor, 𝑤 is angular 

frequency, 𝑤0 is cut-off frequency at 60 Hz and 𝑇𝑛 

Chebyshev polynomial of the 6th order.  

3.3 EEG signal data decomposition using FEMD  

After the EEG signals are pre-processed, the 

signals are fed into the decomposition by using the 

FEMD technique, which decomposed the non-

stationary EEG signals into oscillatory modes called 

as IMFs and satisfies every following condition.  The 

empirical mode decomposition produces a group of 

intrinsic mode activity with ‘0’oscillations and time-

frequency circulation using hilbert-huang transform. 

The principle of the EMD is that provides the sum of 

obtained IMFs given to the original signal. The IMF 

satisfies two conditions: (1) the amount of ‘0’ 

crossing and extrema should be equivalent or differs 

with one, and (2) the mean value of the upper and 

lower coverings should be zero.  

IMF is stated as 𝑧𝑖 = {𝑧1, 𝑧2, … . 𝑧𝑛} at 𝑛 − 𝑝𝑜𝑖𝑛𝑡 

data and local minima 𝐿𝑜𝑐𝑎𝑙𝑚𝑖 , 𝑖 = 1,2, … and local 

maxima 𝐿𝑜𝑐𝑎𝑙𝑧𝑗, 𝑗 = 1,2, … are using to input signal 

values 𝑧[𝑛]. 
Calculation of upper 𝑈[𝑛] and lower envelopes 

𝐿[𝑛] by using cubic interpolation thereby evaluating 

the mean of the envelopes values of the function 

shown in Eq. (3). 

 

𝑀𝑛[𝑛] =
(𝑈[𝑛]−𝐿[𝑛])

2
                           (3) 

 
Fig. 4 shows the FEMD - EEG signals taken from 

TUH EEG dataset. 

Calculate the difference among input and mean of 

envelope value i.e., 𝑑1[𝑛] = 𝑧[𝑛] − 𝑀𝑛[𝑛] and IMF,  

𝑑1[𝑛] = 𝐼𝑀𝐹1[𝑛] of the function. After obtaining the 

𝐼𝑀𝐹1[𝑛]  evaluate the residue 𝑅𝑖[𝑛] = 𝑧[𝑛] −
𝐼𝑀𝐹1[𝑛] if the residue signal value has more than 

zero return and calculate the new IMF of the function. 

This process continues until it achieves last residue 

𝑅𝐿[𝑛] which has a non-zero cross and reformulates 

the 𝑧[𝑛] as shown in Eq. (4). 

 

𝑧[𝑛] = (∑ 𝐼𝑀𝐹1[𝑛]) + 𝐿
𝑖=1 𝑅𝐿[𝑛]           (4) 

 

Where 𝐿 is the number of 𝐼𝑀𝐹𝑠 and 𝑅𝐿[𝑛] is the 

residue. 

3.4 Feature extraction 

The signals were first decomposed and fed into the 

feature extraction process, which extracts the Hjorth 

parameters based on entropy features. Moreover, the 

selected features are fed into the  
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(a) 

 
(b) 

Figure. 4: (a) TUH-EEG dataset signals are decomposed into FNSZ class and (b) TUH EEG dataset signals decomposed 

into GNSZ class 

 

Improved ABC optimization method, which 

extracts the features and uses them as input to better 

obtain the ideal feature for classification.  

Entropy: 

Entropy is a measure of the amount of 

information that can be utilized to distinguish 

between desirable information gathered from the 

environment. The consistency or degree of ambiguity 

using different levels of EEG signal and signal 

instability were assessed utilizing approximate 

entropy (𝐴𝑝𝐸𝑛). In where the signal with 𝑁 sample 

points repeats itself along with the tolerance of 

𝑟 𝑓𝑜𝑟 𝑚  points and  𝑚 + 1 was demonstrated in 

entropy. 𝐴𝑝𝐸𝑛 was given in Eqs. (5) and (6). 

 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = ∅𝑚(𝑟) − ∅𝑚+1(𝑟)        (5) 

 

𝜙𝑚(𝑟) =
1

(𝑁−𝑚+1)
∑ 𝐼𝑛(𝐶𝑖

𝑑(𝑟))𝑖           (6) 

where 𝐶𝑖
𝑑 is a correlation integral indicating the 

probability of a vector 𝑌(𝑖), which remains related to 

𝑌(𝑗) within tolerance range 𝑟. 

3.5 Feature selection using improved artificial bee 

colony (ABC) algorithm: 

A population-based stochastic optimization 

technique is known as artificial bee colony (ABC) 

algorithm. It can be applied to function categorization, 

clustering, and optimization. An artificial collection 

of bees in the ABC algorithm contains three various 

groups such as scout bees, onlooker bees and 

employed bees. The number of bees betrothed in the 

colony and the number of observers are same in this 

procedure. Moreover, the massive number of 

resources is correlated to the fitness value of the 

solution. Three main bees operations are used while 

the iteration which was the initial swarm has 𝑆𝑁 
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solution and initial population 𝑋𝑖 =
 𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3 … . . , 𝑥𝑖,𝐷 , where 𝑆𝑁  is the size of the 

swarm and 𝐷 is the dimension. The detailed 

operation of the improved ABC algorithm is as 

follows. 

3.5.1. Employed bee search 

An employed bee slightly adjusts its posture as a 

result of a new source which is added to the local 

knowledge stored in its memory. This bee compares 

the amount of nectar that was produced by a new 

source (fitness amount) and the nectar amount of the 

prior source and determines which is superior to the 

function. In this stage, the employed bees search each 

resolution of  𝑋𝑖 =  1,2,3 … . . , 𝑆𝑁  and effort to 

determine improved resolutions as shown in Eq. (7); 

 

𝑣𝑖,𝑗𝑟
∗ =  𝑥𝑖𝑏.𝑗𝑟 + 𝜙𝑖.𝑗𝑟(𝑥𝑖𝑏.𝑗𝑟 − 𝑥𝑘.𝑗𝑟) + 

𝜙𝑖.𝑗𝑟. (𝑥𝑏𝑒𝑠𝑡.𝑗𝑟.𝑥𝑖𝑏.𝑗𝑟
)      (7) 

 
Here, where 𝜙𝑖.𝑗𝑟  is random number among 

 [−1, 1]  and  𝑥𝑖𝑏.𝑗𝑟  are the highest resolution data 

from the 𝑘-region of 𝑋 and [0, C] are taken at random 

from the entire swarm (𝑥𝑖𝑏.𝑗𝑟 =𝑥𝑖), and 𝑗𝑟 is a random 

number in the range [1, 𝐷].  
In additionally, for the 𝑖𝑡ℎ onlooker bee 𝑥𝑖𝑏.𝑗𝑟 is 

chosen from the 𝑘-region of  𝑋𝑖 and improved search 

strategy as shown in Eq. (8) and (9). 

 

𝑣𝑖𝑏,𝑗𝑟
∗ = 𝑥𝑖𝑏.𝑗𝑟 + 𝜙𝑖.𝑗𝑟. ( 𝑥𝑖𝑏.𝑗𝑟 − 𝑥𝑘.𝑗𝑟)     (8) 

 
And 

 

𝑣𝑖𝑏,𝑗
∗ = {  𝑣𝑖𝑏,𝑗𝑟

∗ , 𝑖𝑓 𝑗 = 𝑗𝑟}                                 (9) 

 
𝑥𝑖𝑏.𝑗𝑟 ,     otherwise 

where 𝑗 =  1, 2, . . . , 𝐷 . shows modified search 

strategy resolution selection of the onlooker bee 

search phase of 𝑣𝑖𝑏 and  𝑋𝑖𝑏 , the better one is 

selecting according to Eq. (10): 

 

𝑥𝑖𝑏 = {
𝑣𝑖𝑏 ,     𝑖𝑓 𝑓(𝑣𝑖𝑏) < 𝑓(𝑋𝑖𝑏)

𝑋𝑖𝑏,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                (10) 

              

3.5.2. Scout bee search 

The counter 𝑡𝑟𝑎𝑖𝑙𝑖 keeps track of the search status 

for the solution  𝑋𝑖 . The abandoned 𝑋𝑖 is then 

replaced by a brand-new one that is created at random 

and the swarm is convergent as the iteration rate rises. 

In addition, three solutions created in scout bee 

search, 𝑈1, 𝑈2, and 𝑈3, are created when 𝑋𝑖 is given 

up. Then, to replace the discarded 𝑋𝑖, the best option 

among 𝑈1, 𝑈2, 𝑎𝑛𝑑 𝑈3 is chosen. Like the originally 

improved 𝐴𝐵𝐶, 𝑈1 is created randomly by 𝑈2,  the 

best resolution 𝑋𝑖𝑏 is selection in the k-region of 𝑋𝑖. 
Then, 𝑈2 is produced around 𝑋𝑖𝑏  if  𝑡𝑟𝑎𝑖𝑙𝑖  is greater 

than a parameter, and the corresponding solution of  

𝑋𝑖 is abandoned thus new one is created in Eq. (11) 

 

𝑈2.𝑗 =  𝑋𝑖𝑏.𝑗 + 𝑟𝑎𝑛𝑑(0,1). (𝑥𝑟1.𝑗 − 𝑥𝑟2.𝑗)   (11) 

 
Where 𝑗 =  1, 2, . . . , 𝐷,  𝑋𝑟1 and 𝑋𝑟2  are two 

various resolutions which are generally selected from 

the whole swarm, and 𝑟1 ≠  𝑟2 ≠  𝑖𝑏. Opposition-

Based Learning (OBL) is a powerful technique that 

can increase the likelihood of discovering superior 

candidate solutions. The OBL then produces the third 

answer, 𝑈3 . In the k-region of the abandoned 

solution 𝑋𝑖, the best neighbour 𝑋𝑖𝑏  is identified. The 

following is the generation of an opposite solution 

𝑈3 based on 𝑋𝑖𝑏 as follows; 

 

𝑈3.𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑖𝑏.𝑗                    (12) 

 
𝑥𝑗

𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑥𝑖,𝑗} , 𝑥𝑗
𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑥𝑖,𝑗}      (13) 

 

𝑖 =  1, 2, . . . , 𝑆𝑁, 𝑗 =  1, 2, . . . , 𝐷, Where [𝑥𝑗
𝑚𝑖𝑛 , 

𝑥𝑗
𝑚𝑎𝑥  ] is the limit of the current swarm, and it is 

dynamically updated by Eq. (15). As can be observed, 

for each dimension, | 𝑋𝑖𝑏.𝑗  𝑥𝑗
𝑚𝑖𝑛  | and | 𝑥𝑗

𝑚𝑎𝑥  𝑈3.𝑗  | 

are equivalent. We attempt to verify the opposite side 

of the current 𝑋𝑖𝑏   when it is stationary (𝑈3). This 

may make it more likely to come across superior 

potential solutions for the function. A straightforward 

elite approach is applied after the generation of the 

three new solutions 𝑈1, 𝑈2, 𝑎𝑛𝑑 𝑈3 . The most 

effective answer among 𝑈1, 𝑈2, 𝑎𝑛𝑑 𝑈3 is chosen to 

take the place of the discarded answer 𝑋𝑖. 

3.6 Classification 

Once the feature selection is performed it requires 

the classification of the EEG signals to provide 

effective results for diagnosis. Stacked auto-encoder 

technique is used for performing the classification of 

epilepsy disease into ictal, interictal, and normal 

cases. 

Stacked auto encoder classifier: 

The Stacked Sparse Auto-Encoder (SSAE) is a 

neural network technique connecting an amount of 

auto-encoders that signifies a layer and is trained in 

unlabeled data. The training of an auto-encoder 

estimates the optimum parameters using various 

algorithms which reduce the deviation between input 
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and output. The coding among input and output is 

represented by the eqs. (14-16) illustrated below. 

Here, the input path 𝑥 =  (1, 2, 3, 4 . . . , 𝑁),  is 

transformed into hidden representation “  𝑥 ”, by 

employing a nonlinear model which is shown as Eq. 

(14) to Eq. (16). 

 

𝑥 = 𝑓(𝑥) = 𝑀𝑓(𝑊1𝑥 + 𝑏1)                (14) 

 

𝑛1
(1)

= 𝑀𝑓(𝑤11
(1)

𝑥1 + ⋯ 𝑤15
(1)

𝑥5 + 𝑏1
(1)

      (15) 

 

𝑛𝑖
(1)

= 𝑀𝑓(𝑤𝑖1
(1)

𝑥1 + ⋯ 𝑤𝑖5
(1)

𝑥5 + 𝑏𝑖
(1)

      (16)  
 

Here, 𝑛𝑖
(1)

 denotes the  𝑖 th  neuron in the SSAE 

architecture's first layer, 𝑀  denotes an activation 

function, and 𝑤𝑖 and 𝑏𝑖  stand for the weight matrix 

and the bias parameter.  

4. Results and discussions 

In this section, the outcomes of the proposed 

IABC-SAE method using TUH, Bern, and Bonn 

signal datasets are presented. The implementation 

and simulation of the IABC-SAE method are done 

using MATLAB R2022 software. The system 

configuration used for this research is an i5 processor 

with 8GB of RAM. All analysis and assessment trials 

are performed on public field databases, widely used 

in the related works datasets and output limits are 

utilized to construct the results of the function. The 

dataset used to analyze the IABC-SAE method and 

performs best in Seizure signal classification where 

80% of training and 20% of testing the function. In 

that, the data is randomly taken for training and 

testing based on the iteration. The performance of the 

IABC-SAE method is analyzed in terms of CA, 

sensitivity, specificity, Positive Predictive Value 

(PPV) and Negative Predictive Value (NPV). 

The classification accuracy of the method is 

shown in Eq. (17) 

 

𝐶𝐴 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                        (17) 

 

The sensitivity of the method is shown in Eq. (18) 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (18) 

 

The specificity of method is shown in the Eq. (19) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                             (19) 

 

The Positive predictive value of the method is 

defined in Eq. (20) 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                  (20) 

 

The Negative predictive value of the method is 

defined in Eq. (20) 

 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇|𝑁+𝐹𝑁
                         (21) 

 

Where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denotes the true positive, 

true negative, false positive and false negative 

respectively. 

4.1 Performance analysis of IABC-SAE methods: 

This section shows the performance of the 

Epilepsy Seizure EEG signal detection and 

classification using Bern, TUH, and Bonn EEG 

datasets. In Epilepsy Seizure EEG, the improved 

ABC optimization algorithm achieves an effective 

EEG signal’s accuracy of 99.98%. in TUH-EEG 

database. Additionally, the performance of IABC-

SAE optimization method helps to improve the 

effective detection and classification using seizure 

EEG signals.  

In this work, the performance evaluation of three 

different EEG signal datasets is evaluated with 

various classifiers such as; K-Nearest Neighbor 

(KNN), Multiclass Support Vector Machine 

(MSVM), Decision Tree (DE), Random Forest (RF) 

along with graphical comparison which is shown 

below. From the analysis, it is concluded that the 

IABC- SAE classifiers achieve a higher classification 

accuracy of 99.98%. in the TUH-EEG database than 

the other. Tables 1, 2 and 3 show the performance 

analysis of Bern-EEG Seizure signals without feature 

selection, with feature selection, and with different 

optimization algorithms respectively. A graphical 

comparison of the Bern datasets for various 

classifiers without feature selection is shown in Fig. 

5. A graphical illustration of the Bern datasets for 

various classifiers with feature selection is shown in 

Fig. 6. A graphical representation of the Bern datasets 

with various optimization algorithms is illustrated in 

Fig. 7. 

The performance of the proposed IABC-SAE 

method is analyzed with different optimization 

algorithms in terms of particle swarm optimization 

(PSO), grey wolf optimizer (GWO), whale 

optimization algorithm (WAO), and slap swarm 

algorithm (SSA). 
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Table 1. Performance analysis of Bern-EEG Seizure signals without feature selection 

Classifiers CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

KNN 82.04 78.76 76.46 70.98 82.46 

MSVM 86.47 80.47 81.10 82.45 85.10 

DE 89.61 82.45 84.07 85.80 88.46 

RF 90.32 89.05 85.45 86.43 89.44 

Proposed SAE 91.66 90.44 89.59 90.45 90.99 

Table 2. Performance analysis of Bern-EEG Seizure signals with feature selection 

Classifiers CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

KNN 89.58 78.57 79.80 90.88 82.46 

MSVM 90.68 89.46 88.80 90.78 84.51 

DE 91.35 92.59 89.69 91.58 89.69 

RF 92.90 93.68 93.66 92.46 91.48 

Proposed IABC-SAE 99.42 99.08 98.69 98.69 99.05 

Table 3. Comparison of Bern-EEG Seizure signals with different performance metrics and various optimization 

algorithms 

Optimization 

algorithm 

CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

PSO 88.45 90.65 90.43 91.35 90.49 

GWO 92.4 89.43 89.45 91.94 91.49 

WAO 93.09 91.45 93.46 93.57 91.96 

SSA 94.45 93.43 92.46 94.46 92.45 

Proposed SAE 99.42 99.08 98.69 98.69 99.05 

Figure. 5 Graphical comparison of the Bern datasets 

without feature selection 
 

Figure. 6 Graphical comparison of the Bern datasets with 

feature selection 

 
Figure. 7 Graphical comparison of the Bern datasets with 

various optimization algorithms. 

 

Tables 4, 5, and 6 show the performance analysis 

of TUH-EEG Seizure signals without feature 

selection, with feature selection and with different 

optimization algorithms respectively. A graphical 

comparison of the TUH-EEG datasets for various 

classifiers without feature selection is shown in Fig. 

8. A graphical illustration of the TUH datasets for 

various classifiers with feature selection is shown in 

Fig. 9. A graphical representation of the TUH 

datasets with various optimization algorithms is 

illustrated in Fig. 10. 

From the analysis, the proposed IABC-SAE 

provides higher accuracy to effectively extract the 

unbalanced features compared to the others.  
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Table 4. Performance analysis of TUH-EEG Seizure signals without feature selection in different performance metrics. 

Classifiers CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

KNN 78.04 74.76 76.46 70.98 82.46 

MSVM 82.47 80.47 81.10 82.45 85.10 

DE 84.61 82.45 84.07 85.80 88.46 

RF 89.32 89.05 85.45 86.43 90.44 

Proposed SAE 89.66 90.24 88.79 88.25 90.46 

 

Table 5. Performance analysis of TUH-EEG Seizure signals with different performance metrics with feature selection 

Classifiers CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

KNN 87.58 79.57 80.80 91.88 83.46 

MSVM 89.68 89.96 89.00 90.98 85.51 

DE 92.35 91.59 90.69 92.58 89.79 

RF 93.90 93.99 92.66 92.46 91.48 

Proposed IABC-SAE 99.98 98.78 99.87 99.57 99.90 

 

Table 6. Comparison of TUH-EEG Seizure signals with different performance metrics and optimization algorithm 

Optimization 

algorithm 

CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

PSO 84.58 80.57 84.50 91.88 84.56 

GWO 89.8 88.69 88.00 92.56 85.52 

WAO 90.35 90.35 91.69 94.25 90.90 

SSA 94.90 94.99 95.66 93.15 92.48 

IABC 99.98 98.78 99.87 99.57 99.90 

 

 
Figure. 8 Graphical comparison of the TUH datasets 

without feature selection  
 

 
Figure. 9 Graphical comparison of the TUH datasets with 

feature selection 

 

 

 

 
Figure. 10 Graphical comparison of the TUH datasets 

with various optimization algorithms 

 

Tables 7, 8, and 9 show the performance analysis 

of Bonn-EEG Seizure signals without feature 

selection, with feature selection and with different 

optimization algorithms respectively. A graphical 

comparison of the Bonn-EEG datasets for various 

classifiers without feature selection is shown in Fig. 

11. A graphical illustration of the Bonn-EEG datasets 

for various classifiers with feature selection is shown 

in Fig. 12. A graphical representation of the Bonn 

datasets with various optimization algorithms is 

illustrated in Fig. 13. 

According to the investigation, the suggested 

IABC-SAE provides greater accuracy than the others. 
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Table 7. Performance analysis of Bonn-EEG Seizure signals without feature selection in different performance metrics 

Classifiers CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

KNN 78.04 74.76 76.46 70.48 82.46 

MSVM 82.47 80.47 81.1 82.45 85.1 

DE 84.61 82.45 84.07 85.8 88.46 

RF 89.32 89.05 85.45 86.43 90.44 

Proposed SAE 89.66 90.24 88.79 88.25 90.46 

 

Table 8. Performance analysis of Bonn-EEG Seizure signals with feature selection in different performance metrics. 

Classifiers CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

KNN 88.45 80.58 81.24 92.78 86.25 

MSVM 89.68 90.46 91.19 93.65 86.24 

DE 93.52 93.82 91.02 92.00 90.23 

RF 95.06 94.25 91.85 92.31 92.81 

Proposed IABC-SAE 99.73 98.37 99.88 99.01 99.22 

 

Table 9. Comparison of Bonn-EEG Seizure signals with different performance metrics and optimization algorithm. 

Optimization 

algorithm 

CA (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%) 

PSO 87.58 79.57 80.8 91.88 83.46 

GWO 89.68 89.96 89 90.98 85.51 

WAO 92.35 91.59 90.69 92.58 89.79 

SSE 93.9 93.99 92.66 92.46 91.48 

Proposed SAE 99.73 98.37 99.88 99.01 99.22 

 

Figure. 11 Graphical comparison to Bonn datasets 

without Feature selection 

 

 

Figure. 12 Graphical comparison to Bonn datasets with 

Feature selection 

 

 

 

 
Figure. 13 The Graphical comparison to Bonn datasets 

with various optimization algorithms. 

4.2 Comparative analysis  

This section shows the comparative analysis of 

the Improved ABC Optimization for EEG signal 

classification. The dataset used for the seizure signal 

classification is TUH, Bonn and Bern EEG where the 

performance of the stacked autoencoder is compared 

with the MCAFF [16], CNN-RNN [18], ESSA [19], 

SVM [20] and 1D-CNN [21]. The comparative 

analysis between the MCAFF [16], CNN-RNN [18], 

ESSA [19], SVM [20] and 1D-CNN [21] with IABC-

SAE is shown in Table 10. From the analysis, it is 

known that the Improved ABC Optimization with 

Stacked autoencoder provides better performance 

than others. For example, the accuracy of the IABC-

SAE is 99.98% in TUH-EEG database due to its 

optimal feature selection using IABC. 
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Table 10. Comparative analysis of existing and proposed classifiers  

Datasets Methods CA (%) Sensitivity 

(%) 

Specificity 

(%) 

NPV (%) PPV (%) 

TUH-EEG MCAFF [16] NA 96.5 NA NA 96.4 

ESSA [19] 99.20 98.99  99.01 NA NA 

IABC-SAE 99.98 98.78 99.87 99.57 99.90 

Bonn-EEG CNN-RNN [18] 99.71 99.61 99.79 NA 99.68 

ESSA [19] 97.84  97.34  97.56 NA NA 

1D-CNN [21] 98 NA NA NA NA 

IABC-SAE 99.73 98.37 99.88 99.01 99.22 

Bern -EEG SVM [20] 92.15 NA NA NA NA 

ESSA [19] 99.32  98.20  98.60 NA NA 

IABC-SAE 99.42 99.08 98.69 98.69 99.05 

5. Conclusion 

This research work is directed towards the 

detection and classification of epileptic seizures 

using EEG signals. In this research, different 

algorithms are proposed to classify epileptic and non-

epileptic seizures. From these three different datasets 

such as TUH-EEG, Bonn University EEG and Bern-

Barcelona EEG, the recorded EEG signal noise is 

eliminated using a Chebyshev type 2 low pass filter 

and by using ICA. Then, the signal is decomposed 

into Fast Empirical Mode Functions using EMD. 

From the IMFs, hybrid features are extracted and the 

proposed improved artificial bee colony feature 

selection method is introduced to eliminate the 

irrelevant features or to select the optimum aspect 

values. By utilizing values, the abnormality and 

normality of epileptic seizure disease were classified 

by using a Stacked autoencoder. The proposed 

method showed an improvement in the accuracy of 

99.98% for the TUH-EEG database when compared 

with the existing ESSA. In the future, a hybrid 

optimization can be used for improving the 

classification of an epileptic seizure. 

Notation 

Parameter Description 

𝑧𝑖 Input 

𝑧𝑚𝑖𝑛𝑖  & 𝑧𝑚𝑎𝑥𝑖  Minimum and maximum value of 

input 

𝜌 Ripple factor 

𝑤 Angular frequency 

𝑤0  Cut-off frequency 

𝑇𝑛 Chebyshev polynomial of the 6th 

order 

𝐿𝑜𝑐𝑎𝑙𝑚𝑖 Local minima 

𝐿𝑜𝑐𝑎𝑙𝑧𝑗 Local maxima 

𝑈[𝑛] Upper envelopes 

𝐿[𝑛] Lower envelopes 

𝑀𝑛[𝑛] Mean of the envelopes value 

𝑑1[𝑛] Difference among input and mean of 

envelope value 

𝐼𝑀𝐹1[𝑛] Intrinsic mode functions 

𝑅𝑖[𝑛] Residue 

𝑅𝐿[𝑛] Last residue 

𝑁 Sample Points 

𝑟 Tolerance 

𝑚 Points 

𝐴𝑝𝐸𝑛 Approximate entropy 

𝐶𝑖
𝑑 correlation integral indicating the 

probability 

𝑆𝑁 Size of the swarm 

𝑋𝑖 Initial population 

𝐷 Dimension 

𝜙𝑖.𝑗𝑟 Random number among  [−1, 1] 

𝑡𝑟𝑎𝑖𝑙𝑖  Counter 

𝑈1, 𝑈2, and 𝑈3 Solutions created in scout bee search 

𝑛𝑖
(1)

 𝑖th neuron in the SSAE architecture's 

first layer 

𝑀 Activation function 

𝑤𝑖  Weight matrix 

𝑏𝑖  Bias parameter 

𝐶𝐴 Classification accuracy 

𝑃𝑃𝑉 Positive predictive value 

𝑁𝑃𝑉 Negative predictive value 

𝑇𝑃 True positive 

𝑇𝑁 True negative 

𝐹𝑃 False positive 

𝐹𝑁 False negative 
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