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Abstract: Epilepsy is a chronic disorder that causes sudden, recurring seizures and early detection of seizures is needed 

for prompt treatment to reduce the higher risk. An electroencephalogram (EEG) can detect epilepsy based on traces of 

electrical activity and wave patterns in the brain. However, analyzing EEG signals takes a long time and is operated 

by neuroscientists. In this paper, we propose automatic seizure detection using a one-dimension convolutional neural 

network (1D CNN) and the approach of whale optimization algorithm (WOA). The EEG signal is trimmed every three 

seconds, and features are extracted using discrete wavelet transform (DWT). The WOA approach was used to optimize 

the number of layers and neurons in 1D CNN. The experimental results show that the proposed model can improve 

CNN’s performance in detecting seizures with an accuracy of 99.76%, respectively. The proposed method is suitable 

for the children’s hospital boston – massachusetts institute of technology (CHB-MIT) dataset. 

Keywords: Epilepsy, Electroencephalography (EEG), Discrete wavelet transform (DWT), Convolutional neural 

network (CNN), Whale optimization algorithm (WOA). 

 

 

1. Introduction 

Epilepsy is a neurological disorder that affects 

approximately 50 million people worldwide, of 

which 80% reside in developing nations [1, 2] 

epilepsy is a failure of the brain in which patients 

typically experience seizures that are accompanied 

by no outward signs or symptoms. In addition, 

epilepsy is dangerous since it can raise the risk of 

other diseases such as dementia, cardiovascular 

disorders, depression [2]. An electroencephalogram 

(EEG) is typically used in clinical diagnostics 

because of its ability to record brain wave patterns 

and identify even minute traces of electrical activity 

in the brain. The diagnosis of epilepsy is performed 

manually by examining EEG patterns, which is a 

method that is both time-consuming and prone to 

inaccuracy [3]. Therefore, the process of evaluating 

recorded EEG brain signals causes a significant strain 

on neuroscientists and affects the effectiveness of 

their work. These restrictions have prompted efforts 

to create and develop automated systems to assist 

neurologists in identifying seizure and non-seizure 

EEG brain signals. These automated systems will 

help neurologists distinguish between the two types 

of EEG brain signals [1]. 

There have been several research done in the past 

that used EEG data to carry out automatic detection 

of epilepsy. These studies classified EEG data into 

two class as well as three categories. A one-

dimensional pyramidal CNN, an Adam optimizer, 

and a dataset obtained from BONN University were 

used in the method that Ullah I, presented for 

diagnosing epilepsy. After the convolution layer, the 

suggested model includes one more layer, which is 

referred to as the batch normalization (BN) layer. 

This layer helps give fast convergence while 

eliminating special initialization of a parameter. In 
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their particular example, they carried out two 

experiments, the first of which divided participants 

into two categories (seizure and non-seizure), while 

the second of which divided participants into three 

categories (normal, ictal, and interictal). The overall 

accuracy for the 2 class classification is found to be 

96.1%, while the overall accuracy for the 3 class 

classification is found to be 98.1%. In neither 

instance was any application of classification 

hyperparameter optimization discovered by the 

classifier [1]. Xiaoyan Wei suggested using a three-

dimensional CNN and compared it to a two-

dimensional CNN in a situation where the 

classification that was carried out was a three-class 

classification. These three classes include pre-ictal, 

interictal, and ictal. When a 3-dimensional CNN is 

utilized, the accuracy that is achieved is 92.37%, 

however when a 2-dimensional CNN is utilized, the 

accuracy that is achieved is 89.91%. Xiaoyan Wei's 

classification work also does not make advantage of 

CNN's hyperparameter tuning feature [3]. Wei Z 

proposed the identification of epilepsy coming from 

CHB-MIT, which was then processed into a time-

domain waveform. Additionally, Wei Z introduced 

the use of merger of the increasing and decreasing 

sequences (MIDS) and data augmentation to improve 

classification performance using CNN. The accuracy 

that was acquired for the experiment that used MIDS 

was 82.37%, whereas the accuracy that was gained 

for the experiment that used augmentation data was 

84.00 %. The classification that was done by Wei did 

not make use of parameter optimization, which is the 

reason why the accuracy that was reached is still less 

than 90% [4]. To classify two different datasets, 

namely the BONN university and CHB-MIT datasets, 

Li and Chen made use of the fast fourier transform 

(FFT) to get matrix generation, the principal 

component analysis network (PCANet) to get hidden 

features in the matrix generation generated by FFT, 

and the super vector machine (SVM) to label each 

feature generated by PCANET. The BONN dataset 

has an accuracy of at least 99%, but the CHB-MIT 

dataset has an accuracy of 98.47%. Within the scope 

of this study, the classification model does not 

incorporate optimization [5]. Using the CHB-MIT 

dataset, which has an average accuracy of 99.44%, 

Nath Bairagi diagnoses epilepsy using discrete 

wavelet transform (DWT), and then distinguishes 

two types, namely seizures and non-seizures, using 

artificial neural network (ANN). The sequential 

window algorithm (SWA), which is used to increase 

the false detection rate, is one of the things that makes 

Nath Bairagi's method better (FDR) [6]. In order to 

diagnose epilepsy in the datasets from CHB-MIT and 

Seoul national university hospital (SNUH), 

Chulkyun Park utilized 1D and 2D CNNs. On the 

CHB-MIT dataset, accuracy was measured at 86.60%, 

whereas on the SNUH dataset, accuracy was 

measured at 90.50%. Within the scope of this 

investigation, they do not make use of classification 

hyperparameter optimization [7]. The accuracy of 

Jana G's research, which involved identifying 

epilepsy by employing CNN 1D with input 

information in the form of a spectrogram, came out 

to be 77.56%. There was no evidence identified of the 

employment of a classification hyperparameter 

optimization technique [8]. The CHB-MIT dataset 

was used to test Aayesha's method for identifying 

epilepsy, which uses a classification that is divided 

into two groups, namely fuzzy and traditional. 

Aayesha's method was carried out with CHB-

MIT dataset. Utilized DWT in order to extract 

features. Both the standard method of k-nearest 

neighbor (KNN) classification (with an accuracy of 

91.09%) and the fuzzy method of fuzzy rough nearest 

neighbor (FRNN) classification (with an accuracy of 

92.76%) yielded the best results in terms of accuracy. 

In this particular investigation, classification 

hyperparameter tuning was not utilized in any way  

[9]. Mengni Zhou proposed the use of the fast fourier 

transform (FFT) for feature extraction and the 

convolutional neural network (CNN) for the 

classification model on the CHB-MIT and Freiburg 

datasets for the classification of three classes: 

interictal, ictal, and preictal. On the Freiburg dataset, 

the resulting accuracy is 92.30% and on the CHB-

MIT dataset, it is 93.00%. The classification makes 

no use of hyperparameter optimization [10]. Rajendra 

Acharya U. proposed using 13-Layer CNN to detect 

epilepsy in the Bonn dataset. Achieved an accuracy 

rate of 88.67%. Neither was hyperparameter 

optimization discovered in this investigation [11]. In 

the absence of hyperparameter optimization study, 

researchers achieve a level of accuracy in the region 

of up to 80%.  

The optimal classification accuracy can be 

obtained by tuning the hyperparameters of the 

classifier. Several researchers have employed meta-

heuristic optimization techniques to adjust these 

hyperparameters. In addition, several new 

metaheuristic optimization techniques have been 

developed, such as stochastic komodo algorithm 

(SKA) [12], fixed-step average and subtraction-based 

optimizer (FS-ASBO) [13], multi leader optimizer 

(MLO) [14], mixed leader based optimizer (MLBO) 

[15],  three influential members based optimizer 

(TIMBO) [16], random selected leader based 

optimizer (RSLBO) [17], squirrel search optimizer 

[18], puzzle optimization algorithm (POA) [19], and 

ring toss game-based optimization algorithm [20]. 
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However, those algorithms have not yet been applied 

to optimize the hyperparameters of the classification 

model. On the other hand, the whale optimization 

algorithm (WOA) [21] has been applied in some 

studies to optimize the hyperparameters of the CNN 

model, as reported in [22, 23]. Both of the 

aforementioned studies demonstrate how WOA can 

significantly improve CNN's classification 

performance. In this study, we proposed a CNN 

optimization strategy using the whale optimization 

algorithm (WOA) to detect epilepsy. The proposed 

method is utilized to select the number of filters, 

number of neurons in the hidden layer, and dropout 

employed in the hidden layer of CNN. Discrete 

wavelet transform (DWT) is employed for feature 

extraction. This research seeks to detect EEG signals 

by distinguishing between seizure and non-seizure 

signals. 

The following is the order in which each section 

of this paper is presented: Section 2 presented work 

related to this study. The materials and methods that 

were utilized in this research are discussed in section 

3. Section 4 provides an analysis of the findings of 

the research as well as the discussion. In the final 

section, the conclusions are discussed. 

2. Materials and method 

2.1 EEG dataset 

This study makes use of a dataset from children's 

hospital boston – massachusetts institute of  

 

 
Figure. 1 Data information extraction flow chart 

technology (CHB-MIT), which is accessible online. 

This data comprises of 24 recordings of EEG signals 

originating from 22 patients, with the 23rd recording 

being the recording of the first patient and a time 

interval of approximately 1.5 years between records. 

The twenty-fourth record was added in 2010. Each 

case (chb01, chb02, etc.) consists of nine to forty-two 

continuous edf files from a single patient. In most 

situations, these signal recordings capture EEG 

signals with a duration of one hour; however, in 

chb10, they are captured with a duration of two hours, 

whereas in chb04, chb06, chb07, chb09, and chb23, 

they are captured with a duration of four hours. All 

signals are sampled at a rate of 256 samples per 

second with a resolution of 16 bits. Positioning and 

naming of electrodes for signal recording also adhere 

to the international 10-20 system. The file record 

contains 664 lists of edf files, and the list of files with 

one or more seizures is stored in a file named 

RECORDS-WITH-SEIZURE. Describe the recorded 

file pertaining to the presence or absence of seizures. 

2.2 Preprocessing 

The raw data from the CHB-MIT dataset is 

processed first, with the information contained in 

each patient extracted via a file ending in 

summary.txt in each patient's folder. The data 

collected includes which signal a seizure occurred at, 

when it happened, and which channel was used.  

Some patients were recorded with 24 or 26 

channels, however the majority of patients were 

captured with 23 channels. Because the number of 

channels used by each patient varies, the selected 

channels in this research are 18 channels, and these 

channels are used to classify each patient. F8-T8, F3-

C3, T8-P8, P8-O2, T7-P7, FP1-F7, F7-T7, FP2-F4, 

CZ-PZ, C3, P3, C4-P4, FZ-CZ, P7-O1, P3-O1, P4-

O2, FP2-F8, F4-C4, and FP1-F3 are the channels 

utilized [24]. The flow of the data information 

extraction procedure is depicted in Fig. 1. 

Each file that showed seizures in each patient was 

then chopped every 3 seconds with a stride of 1 and 

labeled with seizure and non-seizure locations 

depending on the time received from the summary.txt. 

Fig. 2 (a) illustrates an EEG signal recording from 

one subject for one hour. Fig. 2 (b) shows an EEG 

signal recording that was cropped for 3 seconds and 

labeled in red for the seizure region. A stride is the 

number of seconds between signal cuts. In this 

scenario, a one-second stride is employed, with the 

first cut beginning from the 0th second to the 2nd 

second and the second cut beginning from the 1st 

second to the 3rd second. Fig. 2 (c) and (d) show a 

signal cut with one stride. 
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(a) 

(b) 

 
(c) 

 
(d) 

Figure. 2 Different EEG signals condition: (a) one hour 

EEG signal record, (b) three seconds crop and labelled 

EEG signal, (c) crop before first stride, and (d) crop after 

first stride 

2.3 Feature extraction 

A wavelet is an oscillation with a wave-like 

amplitude that starts at zero, can rise or decrease, and 

can return to zero several times. The EEG signal 

dataset may be represented using wavelets in this 

work, but utilizing raw wavelets that are directly 

categorized without feature extraction results in 

unacceptable accuracy. Jana G previously suggested 

a 1-dimensional CNN model with a spectrogram 

foundation for identifying epilepsy, with an average 

accuracy of less than 80% without the use of feature 

extraction [8]. A wavelet is an oscillation with a 

wave-like amplitude that starts at zero, can rise or 

decrease, and can return to zero several times. The 

EEG signal dataset in this research may be 

represented using wavelets, but utilizing raw 

wavelets, which are categorized directly without 

feature extraction, can result in inadequate accuracy. 

Jana G previously suggested a 1-dimensional CNN 

model with a spectrogram foundation for identifying 

epilepsy, with an average accuracy of less than 80% 

without the use of feature extraction [24]. DWT can 

partition the signal into many sets, each of which is a 

time series coefficient describing the evolution of the 

time signal in the proper frequency range. The use of 

DWT in obtaining EEG signal characteristics is 

proposed in this study. 

The wavelet transform's capacity is highly 

dependent on the mother wavelet (t), which is used to 

generate a time-frequency representation (TFR) that 

matches the original waveform. The following Eq. 

(1) depicts the mother wavelet. The scale employed 

here is s , and the translation parameter is u . DWT 

employs two distinct functions, namely the scaling 

and wavelet functions. Because these two functions 

output two filters and two down-samplers in each 

phase, low and high pass filters are employed. Using 

the down-sample output, the high and low pass filters 

may examine details and approximations for the 

former. 

 

ψ(t) =
1

√S
 ψ (

t−u

s
)                   (1) 

 

The DWT can capture small changes in the EEG 

signal by expressing it in the multi-scale time-

frequency domain with the approximation (Ai ) and 

detailed (Di, i =  0,1, … l − 1) coefficients, where l is 

the decomposition level [25]. There are various 

extant wavelet families, including Haar, Daubechies, 

Biorthogonal, Symlets, Coiflets, Reverse 

Biorthogonal, and Discrete Meyer, however only the 

Daubechies family will be tested in this work because 

EEG signals are commonly dissected using this 

wavelet family [25]. It was also tried varying the 

decomposition level between levels 1 and 6. For 

feature extraction, the coefficients Ai  and Di  were 

employed to represent sub-band EEG signals in the 

frequency range 0-32 Hz. This wavelet coefficient 

correlates to multiple sub-bands in the EEG signal, 

including delta (1 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 
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15 Hz), beta (15 - 30 Hz), and gamma (30 Hz), 60 

Hz). 

We can use the wavelet transform to describe the 

EEG signal with discrete wavelet coefficients. The 

significance of these signals increases when they are 

described by statistical information. This statistical 

property minimizes signal dimensionality [26]. The 

coefficients generated by DWT are extracted for 

statistical characteristics and crossing frequency 

features in this study. Five statistical features are 

extracted: the 5th percentile, the 25th percentile, the 

50th percentile, the 75th percentile, and the 95th 

percentile. The total number of features recovered 

from the DWT coefficients is 5(l + 1), where l is the 

decomposition level. In addition to statistical 

characteristics, crossovers in extracted coefficients 

result in zero crossing frequency (ZCF). When the 

two coefficient vectors shift from positive to negative 

or vice versa, the ZCF is the frequency at which this 

occurs. In some cases, the signal is just above or 

below the horizontal axis, indicating that there is no 

ZCF. As a result, in addition to ZCF, the mean 

crossing frequency (MCF) is calculated, which is the 

frequency of the two elements of the mean cross of 

the coefficient vector ( m ). The extraction of the 

crossover frequency characteristics yields 2(l +  1), 

where l is the decomposition level. The total number 

of features acquired from feature extraction is 5 (l +
 1)  +  2 (l +  1) . The Numpy library is utilized in 

the implementation of percentiles, ZCF extraction, 

and MCF extraction in this study [27]. 

Section 2.2 of this study describes the application 

of DWT on preprocessed EEG recordings. Only the 

Daubechies wavelet family was used. The 

decomposition level is selected heuristically and 

ranges from 1 to 6. In order to achieve the optimum 

classification performance, the wavelet family and 

decomposition level are combined. The DWT 

coefficients are then extracted again for statistical and 

intersection frequency characteristics. 

2.4 One-dimensional convolutional neural 

network (1D-CNN) 

A convolutional neural network (CNN) is a 

biologically inspired classification algorithm for 

image classification and pattern detection. [22]. 

Several research used CNN with varying dimensions 

to detect epilepsy, with promising results [1, 3, 4]. 

This study proposes using CNN 1D to classify two 

class of EEG signals. 

The architecture of a simple CNN is typically 

described using the diagram in Fig. 3. The 

convolution layer processes data from the input layer 

with the help of a kernel/filter to build a feature map,  
 

 
Figure. 3 Basic CNN architecture 

 

where this map feature reflects the raw features. 

Down sampling is performed at the pooling layer to 

minimize the size of the map features. The features 

analyzed by the rectified linear unit (ReLU) unit will 

be fed into a fully connected layer, which will 

perform the classification process on the data. In 

general, the output layer has a soft-max estimate, 

which aids in multiclass classification but is not 

usually employed when the classification is simply 

ternary. 

The convolution layer is made up of numerous 

convolution filters that, during the convolution step, 

will convolute the input and stride data [4]. The CNN 

utilized in this study is a 1D CNN since the input data 

is in the time domain, and 1D convolution works very 

well with data in this domain. This is due to the kernel 

shifting in one dimension in 1D convolution. This 

layer is created by convoluting the preceding layer 

with the kernel 𝐾  receptive field 𝑅𝑓  and into 𝑐 , 

which is equal to the previous layer's number of 

channels or map features.  In the convolution process, 

the layer 𝑋 = {𝑥𝑖𝑗: 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑧}  is 

transformed to layer 𝑌 = {𝑦𝑙𝑚: 1 ≤ 𝑙 ≤ 𝐾, 1 ≤ 𝑚 ≤
𝐾} using Eq. (2), where 𝑐 is the number of channels 

in the layer 𝑋, and 𝑧 is the number of neurons in each 

channel. 

 

𝑦𝑙𝑚 =  ∑ ∑ 𝑘𝑑,𝑒
′𝑅𝑓

𝑒=1  𝑥𝑑,𝑒+𝑚,
𝑐
𝑑=1         (2) 

 

Each channel has 𝑚  neurons, and the total 

number of channels in the layer is 𝐾. The convolution 

layer generates the same number of channels as the 

number of kernels. Various kernels extract various 

types of discriminatory features from the input data 

[1]. This layer down samples the map feature, and the 
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1D kernel is utilized in this research to determine the 

maximum value based on the pool size of the map 

feature. The FC layer converts the representation of 

features studied in the preceding layer to label space. 

An activation function that maps the outcome 

value between 0 and 1 or -1 and 1 is used to obtain 

the output of a neural network, such as "yes" or "no." 

The activation function itself is classified into two 

types: linear and non-linear. The linear produces a 

linear graph by using the formula 𝑓(𝑥)  =  𝑥 , 

however the non-linear can help the graph to seem 

like a parabolic shape, which can assist the model 

adapt to varied data and differentiate the output. The 

-linear activation function is a common activation 

function in neural networks. There are several types 

of activation functions, including the sigmoid or 

logistic, the tanh or hyperbolic tangent, the rectified 

linear unit (ReLU), and the leaky ReLU. The sigmoid 

has a graph that looks like a s and the formula 𝜙(𝑧) =
1

1+𝑒−𝑧  . Because the sigmoid function has a value 

between 0 and 1, it is widely employed in models to 

predict output as a probability, with the likelihood of 

anything being between 0 and 1. Tanh has a graph 

similar to a sigmoid, although it works best when the 

range of tanh is between -1 and 1. Tanh has the benefit 

over sigmoid in that it can map negative inputs as 

negative and zero inputs as near zero on the tanh 

graph. Because it is utilized in practically all CNNs 

and deep learning, ReLU is the most widely used 

activation function in the data world. As in Eq. (3), 

ReLU is 0 when 𝑥 <  0 and x when 𝑥 ≥  0. Because 

a threshold can supply a ReLU activation value, 

ReLU has a lower computational and faster 

convergence speed. The difficulty with utilizing 

ReLU alone is that any negative values are turned to 

zero, reducing the model's capacity to effectively 

train the data. 

 

𝑓(𝑥) = max(𝑥, 0)                   (3) 

 

Finally, leaky ReLU is a solution to the ReLU 

issue. In leaky ReLU, 𝑓(𝑥) = 𝑎𝑥  produces a graph 

that can overcome negative values, resulting in a 

leaky graph. This leak contributes to the expansion of 

the ReLU function set. 

2.5 Whale optimization algorithm (WOA) 

WOA is a herd intelligence-based optimization 

algorithm that simulates the predation behavior of 

humpback whales when hunting for food. Fig. 4 

depicts the simulation of the unique behavior of 

humpback whales in building a bubble network when 

foraging. The humpback whale's foraging strategy is 

as follows: once the whales have located their prey, 

 

 
Figure. 4 Humpback whale bubble-net foraging 

 

they begin to form a network of bubbles along a spiral 

path and migrate upstream to prey. WOA activity can 

be classified into three stages: swarming prey, bubble 

network attack, and hunting prey [28]. 

The first stage is swarming the prey; because the 

whales do not know the specific location of the prey 

at first, they swarm around it. If the current optimal 

position is the target prey, each individual whale in 

the group advances to it. The following Eqs. (4) and 

(5) expresses this behaviour: 

 

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 ∙ 𝐷   
𝐷 = |𝐶 ∙ 𝑋∗(𝑡) − 𝑋(𝑡)|                  (4) 

 

The current iteration count is 𝑡 , 𝑋∗(𝑡)  is the 

prey's position vector or the current optimal solution, 

𝑋(𝑡)  is the current ideal position, and 𝐴 ∙  𝐷  is the 

surrounding step size. In Eq. (5), 𝑟𝑎𝑛𝑑 is a random 

number between 0 and 1, and 𝑎  is the control 

parameter, which decreases linearly from 2 to 0 with 

increasing iterations. 

 

𝐴 = 2𝑎 ∙ 𝑟𝑎𝑛𝑑 − 𝑎 

𝐶 = 2 ∙ 𝑟𝑎𝑛𝑑                                 (5) 

 

The mathematical formula is stated at Eq. (6). 

 

𝑎 = 2 −
2𝑡

𝑇𝑚𝑎𝑥
,                             (6) 

 

𝑇𝑚𝑎𝑥   represents the maximum number of 

iterations. In the second stage, the whale begins to 

form a network of bubbles by swimming in a limited 

encirclement along a spiral path towards prey. WOA 

divides this behavior into two categories: shrinking 

and crowding processes, and spiral update positions. 

The convergence factor 𝑎 in Eqs. (5) and (6) yields 

the shrinkage and crowding mechanism. The spiral 

update position is derived by computing the distance 

between individual whales and their current best 

location, and then simulating the whale catching its 

prey in a spiral. This can be stated mathematically as 

Eq. (7).  
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𝑋(𝑡 + 1) = 𝐷′ ∙ 𝑒𝑏𝑙 ∙ cos(2𝜋𝑙) + 𝑋∗(𝑡), 
 𝐷′ = |𝑋∗(𝑡) − 𝑋(𝑡)|,                          (7) 

 

Where 𝐷′, b, l denotes the distance between the i-

th whale and the current ideal position, a constant 

coefficient defining the spiral's logarithm, and a 

random number between -1 and 1. The spiral 

envelope and contraction envelope done with the 

same probability to produce this synchronization 

model. If |𝐴| ≥  1  in the third stage of hunting for 

prey, the whale is randomly selected to replace the 

current optimal solution, which can boost the 

algorithm's global exploration capability, shift the 

whale away from the current reference target, and 

necessitate the search for a better prey to replace it. 

The following is the mathematical model : 

 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴 ∙ 𝐷 

𝐷 = |𝐶 ∙ 𝑋𝑟𝑎𝑛𝑑 − 𝑋(𝑡)|            (8) 

 

In Eq. (8), 𝑋𝑟𝑎𝑛𝑑 is the location vector of a whale 

chosen at random. 

WOA will be utilized in this study to establish the 

number of filters, neurons for each hidden layer, and 

use of dropout hidden layers on CNN that produces 

the best accuracy. The steps for applying WOA in 

CNN hyperparameter optimization are as follows. 

 

1. To get 𝐴0, 𝐷0, 𝐷1, … , 𝐷(𝑙−1), the EEG signal is 

feature extracted using DWT with l level of 

decomposition. 

2. To obtain the feature set 𝐹, extract 5(𝑙 + 1) 

statistical features and 2(𝑙 + 1) crossing 

frequency features from the coefficients 

𝐴0, 𝐷0, 𝐷1, … , 𝐷(𝑙−1). 

3. The following WOA in CNN classification: 

a. Loop as much as maximum iteration 𝑇𝑚𝑎𝑥. 

b. Generate random hyperparameter 𝑋 in the 

0th iteration as many as the number of 

whales. 

c. Train 2-class CNN (𝐶𝑖) with 

hyperparameter 𝑋. 

d. Calculate fitness value obtained from CNN 

e. If 𝑡 = 𝑇𝑚𝑎𝑥 then the optimal position is 

now 𝑋∗(𝑡). 

f. Using the formula 4,7,and 8 to generate a 

new hyperparameter 𝑋. 

g. Back to 3.c. until 𝑡 = 𝑇𝑚𝑎𝑥. 

 

Fig. 5 depicts the flow of the preceding steps. 

First, using DWT, the 𝐹 feature set is extracted from 

each class of EEG signals. Then, set the number of 

whales and the maximum number of iterations. WOA 

chooses hyperparameter 𝑋  at random. CNN  
 

 
Figure. 5 WOA flowchart 

 

classification uses hyperparameter 𝑋  to calculate 

fitness value. The hyperparameter 𝑋 is then updated 

using Eqs. (4), (7), and (8) based on the condition the 

iteration currently on. The loop will run until 𝑡 =
 𝑇𝑚𝑎𝑥  , at which point the current optimal position 

𝑋∗(𝑡) will be obtained. 

2.6 Experimental setup 

Many laboratory experiments have been 

conducted to validate the proposed EEG signal 

classification method for detecting epilepsy. The first 

experiment involved classification without the use of 

feature extraction, oversampling, as well as CNN 

parameter optimization with WOA. In the second 

experiment, classicization was performed using 

feature extraction without oversampling and CNN 

parameter optimization with WOA. In the third 

experiment, classification was performed through 

feature extraction with DWT and oversampling 

without CNN parameter optimization with WOA. 

The final experiment involved classifying the 

proposed model. All experiments divide the EEG 

signal into two classes: class 0 and class 1. In scenario 

2, an experiment is performed to determine the best 

combination of wavelet families and decomposition 
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levels for classification performance. 

This experiment was carried out on a high-end 

computer equipped with an AMD Ryzen 5 3600 CPU, 

an Nvidia GTX 1650 graphics card, and 16 GB of 

RAM. Some python libraries are also on the method 

used, namely Numpy [27], PyWavelets [29], and 

Tensorflow [30]. Stratified shuffle split is also 

utilized, which combines kfold and split with 1 

iteration for each optimization achieved by WOA. 

The amount of training and test data is divided into 

70% and 30%, respectively, with 90.543 training data 

and 38.805 test data. 

3. Result and discussion 

3.1 Classification with CNN 

In the first scenario, an experiment was carried 

out to categorize EEG signals into two classes, 

seizures and non-seizures, with the raw data of the 

EEG signal being directly entered into the CNN 

model. However, as mentioned in the Preprocessing 

step, the EEG input is cut every 3 seconds initially. 

The accuracy ranged from 10% to 30% in detecting 

seizure signals, and it was 99% in both classes. Table 

1 displays the classification experiment results. The 

accuracy of the resulting seizures is relatively low 

based on the findings of the categorization only with 

CNN. However, the classification accuracy for both 

classes gets high results. 

3.2 Classification with feature extraction 

The accuracy of the application of DWT and the 

combination of levels and wavelets utilized in the 

decomposition of the EEG signal is shown in Table 2. 

Only the Daubechies family was employed in the 

studies, with a combination of levels ranging from 1 

to 6. The best seizure accuracy was 87.59%, while the 

accuracy of seizure and non-seizure identification 

was 99.06% during which the db2 family and a 

decomposition level of 5 were used. There were 36 

features extracted from the best seizure accuracy 

produced by feature extraction with the db2 family 

and decomposition level 5. The accuracy of the 

seizure generated by Table 2 rose significantly after 

feature extraction, however the classification 

accuracy of both classes was similar to the accuracy 

generated by the classification without feature 

extraction. 

3.3 Classification with feature extraction and 

oversampling 

As a result, in the third experiment, the number of  
 

Table 1. Classification result only with CNN 

Experiment 

number 

Accuracy (%) 

Seizure All 

1 20.44 0.994694 

2 25.33 0.994816 

3 16.94 0.994725 

4 37.64 0.994037 

5 15.75 0.994663 

 

 
Table 2. Accuracy results for classification using wavelet 

Mother 

wavelet 

Decomposition 

level 

Accuracy (%) 

Seizure All 

Db1 1 81.44 99.33 

Db1 2 84.12 99.38 

Db1 3 81.64 99.52 

Db1 4 86.51 99.43 

Db1 5 75.35 99.56 

Db1 6 86.90 99.59 

Db2 1 85.27 99.46 

Db1 2 81.12 99.31 

Db1 3 82.29 99.57 

Db1 4 81.96 99.49 

Db1 5 87.59 99.06 

Db1 6 85.56 99.67 

Db3 1 81.87 99.50 

Db3 2 69.33 99.32 

Db3 3 79.47 99.56 

Db3 4 78.97 99.60 

Db3 5 84.24 99.49 

Db3 6 57.39 99.31 

 

 

whales and maximum iteration were increased, and 

the resulting accuracy increased by 15.24%. The 

parameter search reached convergence in the 25th 

iteration in the fourth experiment with a maximum 

iteration were increased, and the resulting accuracy 

increased by 15.24%. 

The parameter search reached convergence in the 

25th iteration in the fourth experiment with a 

maximum iteration of 35 times where the parameters 

produced were always the same, namely only the 

number of the first filter with the number 2.0 but the 

resulting accuracy was only 88.20% the same as the 

previous experiment. This suggests that a large 

number of iterations does not always improve seizure 

accuracy. The seizure accuracy in the last two 

experiments was greater than 90%, namely 91.28% 

and 91.84% when the number of WOA iterations was  
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Table 3. Classification experiment results with WOA 

Whales Iteration 

Best number of 

filters 

Best number of 

neurons 
Best Dropout Accuracy (%) 

1 2 3 1 2 3 1 2 3 Seizure All 

4 4 228 464 441 231 1493 458 0 0 0 72.95 99.12 

10 5 852 553 775 704 1654 419 0 0 0 73.13 99.14 

9 10 113 2 657 389 1352 0 0 0 0 88.20 99.02 

7 35 2 0 0 0 0 0 0 0 0 88.20 98.61 

10 15 5 46 231 236 70 135 0 0 0 89.29 98.50 

7 25 0 64 23 0 0 208 0 0 0 91.28 98.96 

7 10 882 975 385 2048 2048 1511 0 0 0 91.84 99.76 

 

 
Table 4. Accuracy comparison between scenario 

Methods 
Accuracy (%) 

Seizure All 

CNN 36.18 99.42 

CNN + DWT 87.59 99.06 

CNN + DWT + Oversampling 90.53 99.47 

CNN + DWT + Oversampling + 

WOA 
91.84 99.76 

 

25 and 10, respectively, with a total of 7 whales. 

Because of the imbalanced amount of data 

between the seizure signal data and the non-seizure 

signal data, an over sampler was utilized in the third 

scenario to equalize the seizure signal data. The 

seizure data is oversampled using a balanced data 

generator. When compared to the classification 

without oversampling, the resulting accuracy 

increased noticeably. With the db2 wavelet family, 5 

layers of decomposition, and oversampling, seizure 

accuracy is 90.53% and total accuracy is 99.47%. 

Based on these findings, it is fair to conclude that 

using oversampling improves CNN classification 

accuracy.  

3.4 Classification with feature extraction, over-

sampling, and hyperparameter optimization 

There were seven experiments and iterations to 

determine the number of whales shows in Table 3. 

The seizure detection accuracy was 72.95% in the 

first experiment with the same number of whales and 

iterations, i.e. 4. Accuracy The seizures obtained in 

the first trial were small. It can be concluded that the 

number of whales and maximum iterations are both 

small, resulting in a small seizure accuracy. 

Table 4 shows a comparison of the accuracy of 

each scenario. According to table 4, the accuracy 

generated by WOA optimization indicates that WOA 

can improve classification performance without 

optimization. However, the number of whales and the 

maximum iteration should be considered when using 

WOA. 

3.5 Comparison with existing method 

There have been numerous methods for 

classifying epilepsy using the CHB-MIT dataset with 

various classes. Table 5 compares our method to 

methods developed by other authors using only the 

CHB-MIT dataset. The proposed method 

outperforms several state-of-the-art methods for 

detecting epilepsy from EEG signals, specifically for 

the study in [4, 6-10, 31-39]. It can be seen that the 

accuracy of the method that only uses CNN without 

feature extraction is lower than the accuracy of the 

method we propose, whereas the accuracy of the 

method that uses feature extraction such as DWT and 

FFT is higher than 90%. Our method outperforms the 

classification method based on FRNN and DWT by 

7%. Nath Bairagi's method for detecting epilepsy 

uses ANN and DWT as feature extraction and SWA 

to improve the performance of ANN classification, 

yielding an accuracy of 99.44%, 0.32% less than our 

proposed method. As can be seen in Table 5, the 

proposed method outperforms both CNN and non 

CNN classifiers in epilepsy detection from EEG 

signals. However, the proposed method was only 

evaluated using EEG signals from CHB-MIT dataset 

with two classes. 

4. Conclusion 

In this study, an epilepsy detection system is 

proposed, which classifies epilepsy into two classes: 

seizures and non-seizures. The proposed method 

employs the CNN model with WOA parameter 

optimization. This model is intended to improve 

seizure detection accuracy. The classification results 

of this study, on the other hand, are highly dependent 

on the wavelet family used in the feature extraction 

process using DWT. As a result, several experiments 

were conducted to determine the combination of the 

wavelet family and the level of decomposition that 

resulted in seizure accuracy and accuracy of both 

classifications of 87.59% and 99.06%, respectively, 
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Table 5. Classification results with other existing methods 

Author Methods Class Acc  

(%) 

[4] 
CNN + 

WGANs 

Interictal vs. 

Ictal vs. 

Preictal 

84.00 

[6] 
ANN + DWT 

+ SWA 

Seizure vs. 

Non-Seizure 
99.44 

[7] 
1D and 2D 

CNN 

Seizure vs. 

Non-Seizure 
85.60 

[8] 
1D CNN + 

Spectrogram 

Seizure vs. 

Non-Seizure 
77.56 

[9] FRNN + DWT 
Seizure vs. 

Non-Seizure 
92.76 

[10] CNN + FFT 

Interictal vs. 

Ictal vs. 

Preictal 

93.00 

[31] 
Hybrid 

Transformer 

Seizure vs. 

Non-Seizure 
91.80 

[32] 

Gradient 

Boosting 

Decision Tree 

(GBDT) 

Seizure vs. 

Non-Seizure 
92.50 

[33] CNN 2D 

Interictal vs. 

Ictal vs. 

Preictal 

94.00 

[34] 

Slow 

Component 

Analysis 

(SCA) 

Seizure vs. 

Non-Seizure 
94.41 

[35] LSTM 
Seizure vs. 

Non-Seizure 
96.40 

[36] 

DWT + 

RUSBoosted 

Tree 

Ensemble 

health 

control vs. 

seizure free 

vs. seizure 

active 

97.00 

[37] DWT + SVM 
Ictal vs. 

Preictal 
97.43 

[38] 
CNN + DWT 

+ SSA 

Seizure vs. 

Non-Seizure  
99.15 

[39] CNN + SVM 
Seizure vs. 

Non-Seizure 
99.57 

Proposed 

Method 

CNN + DWT 

+ WOA 

Seizure vs. 

Non-Seizure 
99.76 

 

 

when using the db2 wavelet family with 

five decomposition levels. As can be seen, the seizure 

accuracy has not yet reached 90%. Because the 

number of seizure signals is less than the number of 

non-seizure signals, this occurs. Oversampling was 

used to balance the data imbalance between the two 

classes, and the seizure accuracy obtained was 

90.53% and the classification accuracy for the two 

classes was 99.47%. This accuracy can be improved 

further by optimizing the CNN hyperparameter, 

which in this paper is WOA. The accuracy of 

detecting seizure signals was 91.84% and the 

accuracy of both classes was 99.76% using WOA. 

WOA improved seizure accuracy by 1.31%. The 

CNN optimization parameters using WOA are 882, 

975, and 385 for the number of filters 1 to 3, 2048, 

2048, 1511 for the number of neurons in hidden 

layers 1 to 3, and 0 for dropout 1 to 3. The findings 

were compared to other research methods that used 

the same dataset, namely CHB-MIT. Classification 

methods that do not use feature extraction achieve 

accuracy of 70-85%, whereas those that do use 

feature extraction achieve an average accuracy of 

more than 90%. The accuracy generated by the ANN 

classification with DWT and SWA extraction features 

is the closest to the accuracy of our proposed method. 

Overall, it can be concluded that using WOA to 

optimize CNN hyperparameters can improve 

epilepsy detection accuracy. 
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