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Abstract: Visual representation of synthetic images is very accurate, due to which it is difficult to differentiate them 

for their natural counterparts. Existing models that perform this differentiation are either very complex, or cannot be 

scaled for multidomain image sets. Moreover, the accuracy of these models depends directly upon type of dataset & 

feature sets used for training & validation purposes. To overcome these limitations, this paper proposes design of a 

Hybrid GWO CNN Model for identification of Synthetic Images for big data Applications. The proposed model 

initially extracts multidomain feature sets from input images, that includes wavelet, cosine, fourier & convolutional 

features. These features are processed via a grey wolf optimization (GWO) Model, that assists in improving inter-class 

feature variance while minimizing intra-class variance levels. The GWO Model identifies training & validation sets, 

thereby assisting the classification model to accurately differentiate between different image types. To perform this 

task, a variance-based fitness function was modelled that covers both inter-class & inter-class variance levels. This 

classification is performed via use of a transfer learning-based CNN Model, that extends VGG-19 for high-efficiency 

operations. The proposed model was tested on a large number of datasets including Synthetic Fruit, Unsplash, ESPL 

Synthetic Image, and Okazaki Synthetic Texture Image (OSTI) databases. Based on these datasets, accuracy, precision, 

computational delay, recall & AUC (Area Under the Curve) metrics were evaluated & compared with existing models. 

It was observed that the proposed model showcased 9.5% better accuracy, 8.3% higher precision, 6.5% better recall, 

and 3.9% faster performance when compared with existing models. Due to such high performance under different 

datasets, the proposed model is useful for large-scale synthetic-image identification use cases. 

Keywords: Natural, Synthetic, Image, Classification, Cosine, Fourier, Wavelet, Convolutional, Transfer, Learning, 

Accuracy. 

 

 

1. Introduction 

Identification of synthetic images requires design 

of multi-domain operations that include, but are not 

limited to, large-scale dataset collection, pre-

processing for filtering operations, multi-domain 

feature representationand identification of features 

that can improve classification performance. These 

features are processed via design of accurate 

classifiers that can categorize images based on these 

features, development of post-processing models that 

can pre-empt presence of synthetic regions in natural 

image sets. A typical synthetic image identification 

model [1] is depicted in Fig. 1, wherein image 

processing operations including instance matching, 

image rendering, partial modelling, feature 

adaptation, class validation, and continuous learning 

can be observed. The model uses machine learning 

methods (MLMs), in order to classify input datasets 

into different synthetic classes. These models are 

generally designed via convolutional neural networks 

(CNNs), gated recurrent units (GRUs), Q-Learning, 

and other deep learning methods. 

Similar models [2-4] along with their functional 

nuances, application-specific advantages, contextual 

limitations, and deployment-specific future scopes 
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Figure. 1 Design of a typical synthetic image 

classification model via continuous validation operations 

 

are discussed in the next section of this text. Based on 

this discussion, it can be observed that existing 

models for synthetic image classification are either 

extremely sophisticated or incapable of scaling to 

multi-domain image sets. Furthermore, the accuracy 

of these models is closely related to the type of 

dataset and feature sets utilized for training and 

validation. To address these limitations, section 3 

proposes the development of a Hybrid GWO CNN 

Model for detection of Synthetic Images in Big Data 

scenarios. Initially, the proposed model identifies 

multi-domain feature sets from input images, 

including wavelet, cosine, fourier, and convolutional 

features. These features are handled using a grey wolf 

optimization (GWO) Model, which helps to improve 

inter-class feature variance while reducing intra-class 

variation levels. The GWO Model identifies training 

and validation sets, enabling the classification model 

in distinguishing between distinct image kinds. To 

complete this goal, a variance-based fitness function 

covering both inter-class and inter-class variation 

levels was created. This categorization is carried out 

using a CNN Model based on transfer learning, which 

extends VGG-19 for high-efficiency operations. The 

model is validated in section 4, wherein its 

performance is evaluated under multiple datasets, and 

compared with various existing methods. This paper 

concludes with some insightful remarks on the 

proposed model’s performance, as well as 

suggestions for improving it under real-time use 

cases. 

Contributions of the paper 

The following are major contributions of this 

paper, 

• The proposed model extracts multidomain feature sets 

from input images, that includes wavelet, cosine, 

fourier & convolutional features.  

• This paper proposes a grey wolf optimization (GWO) 

model that assists in improving inter-class feature 

variance while minimizing intra-class variance levels.  

• This classification is performed via use of a transfer 

learning-based CNN Model, that extends VGG-19 for 

high-efficiency operations. 

Organization of the paper 

After referring to the introduction and short 

review about different image classification models, 

next section proposes design of a Hybrid GWO CNN 

model for identification of synthetic images for big 

data Applications. The model was evaluated under 

multiple datasets in section 3, and compared with 

different models for validation purposes. Finally, this 

text is concluded with some contextual observations 

about the proposed model, and also recommends 

methods to improve its performance under real-time 

scenarios. 

2. Literature review 

A wide variety of classification models are 

proposed by researchers, and each of them vary in 

terms of their internal characteristics. For instance, 

work in [5, 6] proposes use of latent space learning 

(LSL), and support vector machine (SVM) with 

Bayesian classifier, which assists in identification of 

synthetic & natural images with high accuracy. But 

these models have higher complexity, which limits 

their applicability. To overcome this issue, work in 

[7] proposes design of global-local network structure 

with CNN, which assists in improving classification 

accuracy for multiple use cases. It uses vision 

transformers, which makes it useful for high density 

feature extraction & classification deployments. 

Based on this model, work in [8, 9, 10] proposes use 

of multiple feature weighted sparse graph (MFWSG), 

self-distillation feature learning network (SDFLN), 

and transfer fuzzy clustering and active learning-

based classification operations, which assists in 

improving its classification performance under 

multiple use cases. These models showcase low 

complexity, but cannot be scaled for multiple 

numbers of classes. To enhance this performance, 

work in [11, 12, 13, 14] proposes use of adaptive 

fuzzy learning (AFL), active ensemble deep learning 

(AEDL), autoencoder regularization joint contextual 

attention network (ARJCAN), which assists in 

improving classification performance for multiple 

datasets and scenarios. Similar models are discussed 

in [ 15, 16, 17], which propose use of Spatial & 

Semantic Features, Novel Attention Fully 

Convolutional Network Method (NAFCNN), which 
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allow the model to augment multiple feature sets for 

enhancing classification performance.  

Models that use hybrid conditional random field 

model (HCRF) [18], FrequencyAware attention with 

adaptive feature fusion [19], statistical scattering 

components (SSCs) [20], and simple linear iterative 

clustering (SLIC) [21], which assists in extraction of 

multi-domain feature sets. These models aim at 

improving classification performance for a wide 

variety of application scenarios. They can be 

extended via use of the models discussed in [22, 23, 

24], that propose use of residual network (ResNet) 

withDeep autoencoder (DAE), deep CNN (DCNN), 

and structure match generative adversarial network 

(SM GAN), which assist in enhancing feature 

performance for multiple image analysis scenarios. 

Models like Ensemble Dual-Branch CNN (EDB 

CNN) [25], semi supervised complex valued GAN 

(SSCV GAN) [26], CNN, normalized difference 

vegetation index (NDVI) [27] and RidgeNets [28] 

with speckle reduction regularization (RN SRR) [29] 

propose use of deep learning, thereby improving 

classification performance for different applications. 

But these models are either very complex, or cannot 

be scaled for multi-domain image sets. Moreover, the 

accuracy of these models depends directly upon type 

of dataset & feature sets used for training & 

validation purposes.  

Issues with existing techniques 

The identification of synthetic images is an active 

research area that has gained significant attention in 

recent years. The reviewed techniques used for 

identification of synthetic images have limitations, 

some of which include, 

 

1. The current techniques used for identifying 

synthetic images are not always effective in 

distinguishing between real and synthetic 

images [1-3]. Some of the techniques are based 

on statistical analysis of pixel-level features, 

which can be easily manipulated by 

sophisticated generators [4]. 

2. Some techniques that are effective in 

identifying synthetic images require significant 

computational resources, which limits their 

scalability for real-world applications [7, 8, 10]. 

3. Most current techniques are tailored to specific 

types of synthetic images, such as those 

generated by Generative Adversarial Networks 

(GANs) [26]. This limits their ability to identify 

synthetic images generated by other types of 

models or techniques [11, 12]. 

4. Many identification techniques are dependent 

on training data that may not be representative 

of the full range of synthetic images that may 

exist [18, 19, 20]. This can lead to inaccurate 

classification of synthetic images that are not 

well-represented in the training dataset samples 

[22, 23, 24]. 

5. Some identification techniques are vulnerable 

to adversarial attacks, where a malicious actor 

can manipulate the input image in a way that the 

identification technique misclassifies it [13, 15]. 

 

Overall, while current techniques have made progress 

in identifying synthetic images, there are still many 

models that can be used for improving its 

performance under real-time scenarios. 

3. Design Of the proposed hybrid GWO 

CNN model for identification of synthetic 

images via transfer learning process 

Based on the literature survey, it was observed 

that existing models for synthetic & natural image 

classification are either very complex, or cannot be 

scaled for multi-domain image sets. Moreover, the 

accuracy of these models depends directly upon type 

of dataset & feature sets used for training & 

validation purposes, which further limits it scalability. 

To overcome these limitations, this section proposes 

design of a Hybrid GWO CNN Model for 

identification of Synthetic Images for big data 

Applications.  

Flow of the proposed model is depicted in Fig. 2, 

wherein it can be observed that the model initially 

extracts multi-domain feature sets from input images, 

that includes wavelet, cosine, fourier & convolutional 

features. These features are processed via a grey wolf 

optimization (GWO) Model that assists in improving 

inter-class feature variance while minimizing intra-

class variance levels. The GWO model identifies 

training & validation sets, thereby assisting the 

classification model to accurately differentiate 

between different image types. To perform the 

classification task, a variance-based fitness function 

was modelled that covers both inter-class & inter-

class variance levels. This classification is performed 

via use of a transfer learning-based CNN Model, 

which extends VGG-19 for high-efficiency 

operations. The model initially collects datasets from 

multiple sources, and aggregates them to form a 

corpus of Natural & Synthetic images. These images 

are initially passed through a feature extraction layer, 

that extracts Wavelet, Cosine, Fourier & 

Convolutional feature sets. 
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Figure. 2 Overall flow of the proposed synthetic image 

classification process 

 

 

The Haar Wavelet features are extracted via Eqs. 

(1)-(4), which assists in representing input image as 

approximate, diagonal, horizontal & vertical 

components. 

 

𝑤𝑖,𝑗𝑎𝑝𝑝𝑟𝑜𝑥 =
𝑥𝑖,𝑗+𝑥𝑖+1,𝑗

2
                 (1) 

 

𝑤𝑖,𝑗𝑑𝑒𝑡𝑎𝑖𝑙 =
𝑥𝑖,𝑗−𝑥𝑖+1,𝑗

2
                    (2) 

 

𝑤𝑖,𝑗ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 =
𝑥𝑖,𝑗+𝑥𝑖,𝑗+1

2
           (3) 

 

𝑤𝑖,𝑗𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
𝑥𝑖,𝑗−𝑥𝑖,𝑗+1

2
                  (4) 

 

 
Figure. 3 Extraction of haar wavelet components of 

natural images 

 

Where, 𝑥𝑖,𝑗  represents image pixel at 𝑖𝑡ℎ  row, 

and 𝑗𝑡ℎ  column, while 𝑤𝑖,𝑗  represents respective 

wavelet components. These components are 

extracted for every pixel, and can be visualized from 

Fig. 3, where natural scene image is used for division 

analysis. similar to haar wavelets, discrete cosine 

transform (DCT) is extracted via Eq. (5), thereby 

representing input image in multiple domains. In Eq. 

(5), 𝑅, 𝐶  represents rows & columns, while 𝑥 

represents image pixel levels. Similar to DCT 

components, discrete fourier transform (DFT) 

components are also extracted via Eq. (6), which 

assist in identification of different frequency 

representations in input image sets. 

 

𝐷𝐶𝑇 =
1

2∗√𝑅∗𝐶
∑ ∑ 𝑥𝑖,𝑘

𝐶−1
𝑘=1 ∗ cos [

(2∗𝑖+1)∗𝑗∗𝑝𝑖

2∗𝑅
] ∗𝑅−1

𝑖=1

cos [
(2∗𝑘+1)∗𝑗∗𝑝𝑖

2∗𝐶
]    (5) 

 

𝐹𝑗,𝑘 =
1

𝑅∗𝐶
∑ ∑ 𝑥𝑗 ∗ exp (−𝑖 ∗ 2 ∗ 𝑝𝑖 ∗

𝑗

𝑅
) ∗𝐶−1

𝑘=0
𝑅−1
𝑗=0

exp (−𝑖 ∗ 2 ∗ 𝑝𝑖 ∗
𝑘

𝐶
)      (6) 

 

All these components are combined with 

convolutional features, which are evaluated via Eq. 

(7), to form a super feature vector set (SFVS), and is 

processed by the GWO Model for identification of 

variant feature sets. 

 

𝐶𝑜𝑛𝑣𝑜𝑢𝑡𝑖,𝑗 = ∑ ∑ 𝐼2𝐷(𝑖 − 𝑎, 𝑗 − 𝑏) ∗
𝑛

2

𝑏=−
𝑛

2

𝑚

2

𝑎=−
𝑚

2

𝐿𝑅𝑒𝐿𝑈 (
𝑚

2
+ 𝑎,

𝑛

2
+ 𝑏)    (7) 

 

Where, 𝐼2𝐷  represents input image, while 𝑚, 𝑛 

represents number of rows & columns of the image, 
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and 𝑎, 𝑏  represents window size for extraction of 

convolutional features. These features are activated 

by a leaky rectilinear unit (LReLU) operation, which 

is represented via Eq. (8) as follows, 

 

𝐿𝑅𝑒𝐿𝑈(𝑥, 𝑦) = 𝑙𝑎 ∗ 𝑥 + 𝑙𝑏 ∗ 𝑦,𝑤ℎ𝑒𝑛𝑥 < 0 𝑜𝑟𝑦
< 0, 𝑒𝑙𝑠𝑒 

𝐿𝑅𝑒𝐿𝑈(𝑥, 𝑦) = 𝑥 + 𝑦                (8) 

 

To further augment these features, window sizes 

are varied between 32x32, 64x64, 128x128, and 

256x256 ranges, which assists in extraction of a large 

number of feature sets. Due to which redundancies 

are inherent, which are removed via use of a GWO 

based feature selection layer. This layer works via the 

following process, 

 

• To initialize the Grey Wolf Optimizer, setup the 

following optimization constants, 

o Optimization Iterations = 𝑁𝑖 
o Optimization Wolves = 𝑁𝑤 

o Rate at which the model is learning = 𝐿𝑟 

• All Wolves must be setup as ‘Delta’ Wolves, 

which will assist in modifying their internal 

configurations. 

• Scan all Wolves for 𝑁𝑖 iterations, via following 

process, 

o Check Wolf status, and if it is marked as 

‘Alpha’, ‘Beta’, or ‘Gamma’, then skip it and 

go to the next Wolf in sequence 

o Else, modify internal configuration of the Wolf 

via following process, 

▪ Select 𝑁𝑓 stochastic features, via Eq. (9), 

 

𝑁𝑓 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑟 ∗ 𝑁𝑆𝐹𝑉 , 𝑁𝑆𝐹𝑉)         (9) 

 

Where, 𝑁𝑆𝐹𝑉  represents number of features 

present in the Super Feature Vector, which is the total 

features extracted via combination of DCT, DFT, 

Wavelet and Convolutional operations. 

▪ Based on these feature sets, identify solution 

fitness via Eq. (10), 

 

𝑓 =
√
  
  
  
  
  
  
  
  
 

∑

(

 
 
 
 
 
 
 

𝑥𝑎−

∑

√
  
  
  
  
  
 

∑ (𝑥𝑗−
∑ 𝑥𝑘

𝑁𝑆𝐹𝑉−𝑁𝑓
𝑘=1

𝑛
)

2

𝑁𝑆𝐹𝑉−𝑁𝑓
𝑗=1

𝑁𝑆𝐹𝑉−𝑁𝑓−1

𝑁𝑓
𝑖=1

𝑁𝑆𝐹𝑉−𝑁𝑓

)

 
 
 
 
 
 
 

2

𝑁𝑓
𝑎−1

𝑁𝑓−1
   

(10) 

 

 

 
Figure. 4 Internal flow of the VGGNet-19 model for 

classification of selected feature sets into synthetic & 

natural images 

 

Where, 𝑎, 𝑖&𝑗  represents number of features in 

current class, number of features common between 

current & other classes and number of features in 

other classes, while 𝑥  represents value of extracted 

features. 

▪ Due to this fitness, an interclass variance is 

extracted between different classes, which 

assist in identification of features that are 

highly variant across Multiple Natural & 

Synthetic class sets. 

o Similar operations are performed for all ‘Delta’ 

wolves, and at the end of final iteration, a 

fitness threshold is calculated via Eq. (11), 

 

𝑓𝑡ℎ = ∑ 𝑓𝑖 ∗
𝐿𝑟

𝑁𝑠

𝑁𝑠
𝑖=1                    (11) 

 

• Once an iteration is completed, then re-evaluate 

Wolf status via following process, 

o Wolf is marked as ‘Alpha’, if 𝑓 > 2 ∗ 𝑓𝑡ℎ 

o Else, it is marked as ‘Beta’, if 𝑓 > 𝑓𝑡ℎ 

o Else, it is marked as ‘Gamma’, if 𝑓 > 𝐿𝑟 ∗ 𝑓𝑡ℎ 

o Else, it is marked as ‘Delta’, if 𝑓 ≤ 𝐿𝑟 ∗ 𝑓𝑡ℎ 

 

At the end of final iteration, select wolf with 

maximum fitness levels, and use its features for 

classification process.  

To perform this classification, the VGGNet-19 

model is used, which consists of a combination of 

convolutional, max pooling, drop out and fully 

connected neural network (FCNN) layers. The 

internal layer flow of the VGGNet-19 model is 
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depicted in Fig. 4, where these layers along with an 

output Soft Max Layer are depicted for final 

classification operations. Convolutional features are 

extracted via Eq. (7), which results in identification 

of multidomain feature sets. These feature sets are 

reduced via a Max Pooling layer, that evaluates a 

variance threshold via Eq. (12) for identification of 

variant feature sets. 

 

𝑓𝑡ℎ = (
1

𝑋𝑘
∗ ∑ 𝑥𝑝𝑘𝑥∈𝑋𝑘 )

1/𝑝𝑘
              (12) 

 

Where, 𝑋𝑘  represents extracted convolutional 

features, while 𝑝𝑘  represents variance of these 

feature sets. 

Based on this variance, features with 𝑓 > 𝑓𝑡ℎ 

are passed to the next convolutional layers, while 

others are removed from the convolution process. 

This process is repeated for all layers, and finally a 

fully connected neural network (FCNN) is used to 

identify final image class. This layer uses a Soft Max 

based activation function and optimizes weights 𝑤& 

biases 𝑏  to identify output class via Eq. (13) as 

follows, 

 

𝑐𝑜𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓𝑖 ∗ 𝑤𝑖
𝑁𝑓
𝑖=1

+ 𝑏)       (13) 

 

The output class is compared with ground truth 

values, and parameters like accuracy, precision, 

recall, & delay needed for evaluation are calculated 

& compared with existing models, which assists in 

performance estimation for multiple use cases. This 

performance can be observed from the next section of 

this text. 

4. Result analysis & comparison 

The proposed model uses a combination of GWO 

with multi-domain feature sets & CNN in order to 

efficiently classify images into natural & synthetic 

classes. To validate the proposed model, its accuracy 

(A), precision (P), recall (R) & classification delay 

(D), and was evaluated on the following datasets, 

 

• IEEE synthetic image database which is available 

at https://ieee-dataport.org/keywords/synthetic-

image-database 

• ESPL synthetic image database which is 

available at 

http://signal.ece.utexas.edu/~bevans/synthetic/ 

• CVOnline Database which is available at 

https://homepages.inf.ed.ac.uk/rbf/CVonline/Im

agedbase.htm 

 

Table 1. Average accuracy of classification for 

different image types 

TIS 

A (%) 

CNN 

[3] 

A (%) 

SDFL 

[9] 

A (%) 

FWE 

NET 

[14] 

A (%) 

HGC 

MSI TL 

1875 79.93 62.93 64.97 98.81 

2813 80.02 63.00 65.04 98.92 

3750 80.07 63.04 65.08 98.98 

4688 80.10 63.07 65.11 99.01 

5625 80.11 63.08 65.12 99.03 

6563 80.13 63.09 65.13 99.05 

7500 80.15 63.11 65.15 99.08 

8438 80.19 63.13 65.18 99.12 

9375 80.24 63.17 65.22 99.18 

10313 80.30 63.23 65.27 99.27 

11250 80.37 63.28 65.32 99.34 

12188 80.43 63.32 65.37 99.42 

13125 80.48 63.37 65.42 99.49 

14063 80.53 63.41 65.46 99.55 

15000 80.58 63.44 65.49 99.60 

 

 

 
Figure. 5 Average accuracy of classification for different 

image types 

 

When aggregated, these datasets constitute of 

over15k images of different categories, making them 

ideal for validation of different classifier sets. The 

dataset was divided into a ratio of 65:15:20, out of 

which 65% images were used for training, 15% were 

used for testing while 20% were used for validation 

purposes. To further facilitate this process, CNN [3], 

SDFL [9], &FWE NET [14] were evaluated with 

these Test Image Sets (TIS). The NAFCNN [16] 

model uses a high-efficiency CNN Model for 

identification of Synthetic images;thus, it is used for 

comparisons. While, the SDFL [9] and FWE NET 

[14] Models showcased use of GAN, which is a 

highly effective classification technique, and thus is 

used for comparison with our proposed model, under 

real-time dataset samples.The accuracy performance 

can be observed from Table 1 as follows, 
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Table 2. Average precision of classification for different 

image types 

TIS 

P (%) 

CNN 

[3] 

P (%) 

SDFL 

[9] 

P (%) 

FWE 

NET 

[14] 

P (%) 

HGC 

MSI TL 

1875 64.56 59.69 50.05 79.79 

2813 64.63 59.75 50.11 79.88 

3750 64.67 59.79 50.14 79.93 

4688 64.69 59.81 50.16 79.96 

5625 64.70 59.82 50.16 79.97 

6563 64.71 59.83 50.17 79.99 

7500 64.73 59.85 50.19 80.01 

8438 64.76 59.88 50.21 80.05 

9375 64.80 59.91 50.24 80.10 

10313 64.85 59.96 50.28 80.16 

11250 64.90 60.01 50.32 80.23 

12188 64.95 60.06 50.36 80.29 

13125 65.00 60.10 50.39 80.34 

14063 65.04 60.14 50.43 80.39 

15000 65.07 60.17 50.45 80.44 

 

 
Figure. 6 Average precision of classification for different 

image types 

 

The results of this assessment and the comparison 

shown in Fig. 5 show that the suggested model is 

capable of obtaining anaccuracy that is 18.4 percent 

higher than CNN [3], 25.5 percent higher than SDFL 

[9], and 23.9 percent higher than FWE NET [14] for 

a variety of test imagesizes. This is because GWO 

was combined with multiple feature sets & CNN, 

which helps improve search performance across a 

variety of use cases. Evaluations for the classification 

precision that are comparable to these are observed in 

Table 2 as follows, 

The results of this assessment and the 

comparison shown in Fig. 6 show that the suggested 

model is capable of obtaining an accuracy that is 14.5 

percent higher than CNN [3], 18.5 percent higher 

than SDFL [9], and 23.4 percent higher than FWE 

NET [14] for a variety of test image sizes. This is 

because GWO was combined with multiple feature 

sets & CNN, which helps improve search 

performance across a variety of use cases. 

Evaluations for the classification recall that are 

comparable to these are observed in Table 3 as 

follows, 

 
Table 3. Average recall of classification for different 

image types 

TIS 

R (%) 

CNN 

[3] 

R (%) 

SDFL 

[9] 

R (%) 

FWE 

NET 

[14] 

R (%) 

HGC 

MSI TL 

1875 63.75 58.94 49.43 78.80 

2813 63.82 59.01 49.49 78.89 

3750 63.86 59.05 49.52 78.94 

4688 63.88 59.07 49.53 78.97 

5625 63.89 59.08 49.54 78.98 

6563 63.90 59.09 49.55 78.99 

7500 63.92 59.11 49.56 79.02 

8438 63.95 59.13 49.58 79.05 

9375 63.99 59.17 49.62 79.10 

10313 64.05 59.22 49.66 79.17 

11250 64.10 59.27 49.69 79.23 

12188 64.14 59.31 49.73 79.29 

13125 64.19 59.35 49.77 79.34 

14063 64.23 59.39 49.80 79.39 

15000 64.27 59.42 49.82 79.44 

 

 
Figure. 7 Average recall of classification for different 

image types 

 

The results of this assessment and the 

comparison shown in Fig. 7 show that the suggested 

model is capable of obtaining a recall that is 15.5 

percent higher than CNN [3], 19.4 percent higher 

than SDFL [9], and 25.9 percent higher than FWE 

NET [14] for a variety of test imagesizes.  

This is because GWO was combined with 

multiple feature sets & CNN, which helps improve 

search performance across a variety of use cases. 

Evaluations for the classification delay that are 

comparable to these are observed in Table 4 as 

follows, 
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Table 4. Average delay of classification for different 

image types 

TIS 

D (ms) 

CNN 

[3] 

D (ms) 

SDFL 

[9] 

D (ms) 

FWE 

NET 

[14] 

D (ms) 

HGC 

MSI TL 

1875 161.24 126.95 131.05 74.74 

2813 161.42 127.09 131.20 74.83 

3750 161.52 127.17 131.28 74.87 

4688 161.58 127.21 131.33 74.90 

5625 161.60 127.23 131.35 74.91 

6563 161.63 127.26 131.37 74.92 

7500 161.68 127.29 131.41 74.95 

8438 161.75 127.35 131.47 74.98 

9375 161.85 127.43 131.55 75.03 

10313 161.99 127.54 131.66 75.09 

11250 162.11 127.63 131.76 75.15 

12188 162.24 127.73 131.86 75.20 

13125 162.35 127.82 131.96 75.26 

14063 162.45 127.90 132.04 75.30 

15000 162.54 127.97 132.11 75.34 

 

 
Figure. 8 Average Delay of Classification for different 

image types 

 

The results of this assessment and the comparison 

shown in Fig. 8 show that the suggested model is 

capable of obtaining an accuracy that is 18.5 percent 

faster than CNN [3], 8.3 percent faster than SDFL [9], 

and 8.5 percent faster than FWE NET [14] for a 

variety of test image sizes. This is because GWO was 

combined with multiple feature sets & CNN, which 

helps improve search performance across a variety of 

use cases. Due to these enhancements the proposed 

model is capable of deployment for a wide variety of 

real-time Natural & Synthetic classification 

application scenarios. 

5. Conclusion 

The proposed model is useful for classification of 

multiple natural & synthetic image datasets, which is 

done via combination of multi-domain feature sets 

along with GWO & VGGNet based classification 

operations. The proposed model was observed to be 

18.4 percent accurate than CNN [3], 25.5 percent 

accurate than SDFL [9], and 23.9 percent accurate 

than FWE NET [14], while 14.5 percent precise than 

CNN [3], 18.5 percent precise than SDFL [9], and 

23.4 percent precise than FWE NET [14], it was also 

observed to be having 15.5 percent higher recall than 

CNN [3], 19.4 percent higher recallthanSDFL [9], 

and 25.9 percent higher recallthanFWE NET [14] for 

a variety of test image sizes. This is because GWO 

was combined with multiple feature sets & CNN, 

which helps improve search performance across a 

variety of use cases. The model was observed to be 

18.5 percent faster than CNN [3], 8.3 percent faster 

than SDFL [9], and 8.5 percent faster than FWE NET 

[14] for a variety of test image sizes. This is due to 

use of GWO which assists in reducing number of 

features used for classification process. Due to these 

enhancements the proposed model is capable of 

deployment for a wide variety of real-time Natural & 

Synthetic classification application scenarios. In 

future, the proposed model must be validated on 

larger datasets, and can be extended via integration of 

deep learning models like auto encoders, gated 

recurrent units (GRUs), and recurrent neural 

networks (RNNs) for better performance under 

multiple scenarios. Moreover, this performance can 

be further enhanced via use of hybrid bio-inspired 

models which will further assist in improving their 

classification performance under multiple use cases. 
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