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Abstract: This paper introduces a new metaphor-free metaheuristic called attack-leave optimizer (ALO). As the name 

suggests, ALO deploys two strategies to find the optimal solution. The central concept of ALO is to intensify guided 

searches as a required method. Then, a random search is performed only if the guided search fails to improve the 

current solution. ALO consists of four guided searches and one random search, performed in three phases: two 

mandatory and one optional. In the first phase, the guided search is conducted with the best global solution as the 

reference. In the second phase, the guided search is conducted with a randomly selected solution as the reference. The 

random search is performed in the third phase. Evaluating ALO, it was tested on 23 classic functions and benchmarked 

against five existing metaheuristics with known shortcomings: Mixed leader-based optimizer (MLBO), slime mould 

algorithm (SMA), golden search optimizer (GSO), zebra optimization algorithm (ZOA), and coati optimization 

algorithm (COA). The results indicate that ALO is highly competitive, outperforming MLBO, SMA, GSO, COA, and 

ZOA in solving 16, 16, 14, 10, and 9 functions respectively, and demonstrating ALO as a promising new metaheuristic. 
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1. Introduction 

Metaheuristics are popular methods extensively 

applied in various optimization fields, including 

energy, economy, manufacturing, logistics, 

engineering, and more. For instance, Northern 

goshawk optimization (NGO) was utilized to 

determine the optimal allocation (i.e., size and 

location) of photovoltaic systems (PV), wind turbine 

systems, distribution generators, and reactive power 

sources in the radial distribution system [1]. In the 

energy sector, artificial rabbit optimization (ARO) 

was employed to optimize the location and rating of 

passive power filters and solar photovoltaic systems 

in the radial distribution system [2]. An enhanced 

whale optimization algorithm (EWOA) was used to 

improve the speed and accuracy of classification in 

the groundwater quality monitoring system [3]. A 

combination of the genetic algorithm (GA) and firefly 

algorithm (FA) was utilized to optimize the make-

span in job-shop scheduling problems [4]. Non-

dominated sorting genetic algorithm (NSGA II) was 

applied to reduce the total travel time and operational 

cost of the school bus mixed-load route optimization 

for students [5]. Grey wolf optimization (GWO) was 

used to optimize the feature selection and improve the 

accuracy of tumor detection [6].  

Nowadays, there is a vast number of 

metaheuristics available. The majority of these 

metaheuristics incorporate metaphors as their novel 

contribution. Various animal behaviors are commonly 

used as metaphors for shortcomings, including the 

tunicate swarm algorithm (TSA) [7], GWO [8], 

marine predator algorithm (MPA) [9], Komodo mlipir 

algorithm (KMA) [10], chameleon swarm algorithm 

(CSA) [11], cheetah optimizer (CO) [12], chimp 

optimization algorithm (ChOA) [13], clouded leopard 

optimization (CLO) [14], coati optimization 

algorithm (COA) [15], zebra optimization algorithm 

(ZOA) [16], NGO [17], pelican optimization 

algorithm (POA) [18], fennec fox optimization (FFO) 

[19], raccoon optimization algorithm (ROA) [20], red 

fox optimization (RFO) [21], remora optimization 
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algorithm (ROA) [22], Siberian tiger optimization 

(STO) [23], and many others. 

Besides animal behavior, several shortcomings of 

metaheuristics use social activities, traditional games, 

and leadership as metaphors. Chef-based optimization 

algorithm (CBOA) [24], election-based optimization 

algorithm (EBOA) [25], sewing training-based 

optimization (STBO) [26], and driving training-based 

optimization (DTBO) [27] are the example of 

metaheuristics that use the social activity as a 

metaphor. Football game-based optimization (FBGO) 

[28], dart game optimization (DGO) [29], and shell 

game optimization (SGO) [30] are an example of 

metaheuristics that use the traditional game as a 

metaphor. Mixed leader-based optimization (MLBO) 

[31], multi-leader optimization (MLO) [32], and 

hybrid leader-based optimization (HLBO) [33] are an 

example of metaheuristics that use the term leader as 

a metaphor. Fortunately, some metaheuristics, such as 

average subtraction-based optimization (ASBO) [34], 

golden search optimization (GSO) [35], and total 

interaction algorithm (TIA) [36], do not use metaphor 

and focus on their distinct mechanics for their novel 

contribution. 

Despite the massive development of 

metaheuristics and the significant number that exists, 

developing new ones is still exciting and challenging. 

There are two reasons for this circumstance. First, 

there is not any metaheuristic can solve various 

optimization problems with a good result, as stated in 

the no-free-lunch theory [37]. Even a superior 

metaheuristic is not superior in solving all problems. 

In some problems, the quality of the solution is 

mediocre [25]. In various studies, a metaheuristic with 

superior performance in solving theoretical problems 

may face difficulty solving the practical ones. On the 

other hand, some old metaheuristics outperformed by 

many shortcomings become competitive in solving 

practical problems. Second, there are various 

optimization problems nowadays, and there will be 

more problems in the future. The circumstances of 

these problems are also various, such as ample 

solution space, a massive number of decision 

variables or dimension, non-convex problems, 

multiple objectives, and ambiguous [25]. Third, many 

new metaheuristics are developed by modifying the 

existing ones or by combining several of them, such 

as the hybrid pelican Komodo algorithm (HPKA) [38], 

stochastic Komodo algorithm (SKA) [39], and other 

similar approaches. 

In light of the current circumstances and potential 

for further development, this study aims to introduce 

a new metaphor-free metaheuristic, namely attack-

leave optimizer (ALO) that prioritizes guided search 

over random search. Specifically, the proposed 

algorithm performs two sequential steps of guided 

searches and only resorts to random search if the agent 

fails to improve the quality of its current solution after 

the guided searches. This approach addresses the 

limitations of existing metaheuristics and their 

reliance on animal behavior or other metaphors. 

Instead, it focuses on novel mechanics prioritizing the 

guided search for more efficient and effective 

optimization. 

Below are the main scientific contributions of this 

work: 

 

1) ALO is a novel swarm-based metaheuristic that 

focuses on guided search and incorporates random 

search when the guided search fails to improve the 

current solution. 

2) ALO performs multiple searches in sequential 

steps, each with multiple references, making it a 

unique approach. 

3) The performance of ALO is evaluated on a set of 

23 classic benchmark functions, demonstrating its 

effectiveness in solving a diverse range of 

optimization problems. 

4) ALO is compared against five state-of-the-art 

metaheuristics: MLBO, SMA, GSO, COA, and 

ZOA, and found to outperform them in terms of 

solution quality. 

5) A hyperparameter analysis is performed to identify 

the optimal configuration for ALO, providing 

insights into the dominant strategies for solving 

different optimization problems. 

 

The remainder of this paper is as follows. A 

literature review regarding the shortcomings of 

metaheuristics is provided in section 2. Section 3 

presents the mechanics of ALO, consisting of the 

central concept and formalization. The evaluation of 

ALO consisting of the benchmark and 

hyperparameter tests is presented in section 4. The in-

depth evaluation regarding the result, complexity, and 

limitation is discussed in section 5. The conclusion 

and potential future studies are summarized in section 

6. 

2. Related works 

Metaheuristic is an optimization technique that 

relies primarily on stochastic and trial-and-error 

approaches. Through a stochastic approach, the 

metaheuristic does not trace all possible search space 

solutions [25]. This circumstance has advantages and 

disadvantages.  

Metaheuristics can reduce computational 

resources, allowing it to be implemented in systems 

with limited computational resources. In addition, 
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metaheuristics can address complex problems with a 

vast search space or an abundance of decision 

variables. The disadvantage of this approach is that 

metaheuristics cannot guarantee the global optimal 

solution, only a quasi-optimal one [25]. Moreover, 

metaheuristics may be trapped on the optimal local 

solution. 

Metaheuristic employs a trial-and-error method 

that improves the solution's quality through an 

iterative process [25]. It is advantageous to the 

metaheuristic because it abstracts the problem. 

Metaheuristics disregard the complexity of the 

problem it faces so that it can be implemented in 

various optimization problems. It concerns only on 

the objectives and constraints. The metaheuristic 

should identify any problems within the constraints. 

Then, each time it finds a new solution, the objective 

function is used to evaluate its quality. Some 

problems have a single objective, whereas others have 

multiple objectives. This search process is also 

constrained by the maximum number of iterations 

implemented during optimization. The primary issue 

is that the metaheuristic fails to locate the quasi-

optimal solution even when the maximum number of 

iterations has been reached. This circumstance 

presents a new challenge for developing new 

metaheuristics, as it must find a quasi-optimal 

solution in the case of a low maximum number of 

iterations. 

This trial-and-error approach yields various 

solutions when a metaheuristic explores the search 

space. Some metaheuristics employ a strict 

acceptance strategy in which a new solution replaces 

an existing one only if it is superior. Others use a non-

strict acceptance approach, where the new solution 

replaces the current one without considering its 

quality. Some metaheuristics, such as simulated 

annealing, use a gentle acceptance approach, where 

worse solutions may be accepted based on a time-

based stochastic calculation. 

Ironically, some metaheuristics employ a static 

strategy during the search process. It indicates that the 

searching strategy is implemented in all 

circumstances without regard to the quality of the 

results. The inability of metaheuristics to improve the 

quality of solutions is a significant issue. Only a 

handful of metaheuristics, such as the artificial bee 

colony (ABC), implement an alternative strategy if 

the original strategy fails to improve. Utilizing a 

roulette wheel strategy, ABC conducts neighborhood 

searches [40]. Suppose multiple attempts are 

unsuccessful, the bee searches at random [40]. KMA 

is also the example of few metaheuristics that is 

enriched with adaptive strategy. Different from ABC, 

KMA modifying the population size rather than 

implementing different searching strategy when 

facing different circumstance [10]. Unfortunately, 

many ineffective metaheuristics do not employ this 

adaptive strategy.  

Numerous metaheuristics were tasked with 

solving a set of functions representing theoretical 

optimization problems. Popular and widely employed 

in the initial presentation of many metaheuristics, the 

set of 23 classic functions is widely used in the first 

introduction to these algorithms. In addition, several 

sets of functions, such as CEC 2015 [16] and CEC 

2017 [17], are also utilized as theoretical tests. Table 

1 outlines the mechanics and evaluation procedure 

utilized by several shortcoming metaheuristics. There 

are 16 shortcoming metaheuristics reviewed in Table 

1. Meanwhile, the positioning of the proposed 

metaheuristic is presented in the last row of Table 1. 

In Table 1, the main scientific contribution of this 

work is promoting metaphor-free metaheuristic and 

adaptive strategy where these contributions become 

more difficult to find in many shortcoming 

metaheuristics. 

Generally, the metaheuristics reviewed in Table 1 

are swarm-based, and many rely on metaphors. By 

abstracting the metaphors,it apparents that guided 

search is the core strategy underlying these 

metaheuristics, using the global best solution, a 

randomly selected solution, or a randomized solution. 

Nonetheless, one of the most significant opportunities 

for developing a new metaheuristic is to design an 

alternative mechanism to promote adaptability, 

particularly when the metaheuristic is facing 

stagnation. 

3. Model 

ALO is constructed based on several reasons. ALO 

should focus on intensifying the guided search. ALO 

should implement a multiple phase-multiple strategy 

approach as it becomes common in many shortcoming 

metaheuristics. ALO should not depend on only the 

global best solution but also the randomized solution 

as a reference during the guided search. Random 

search becomes the alternative when the guided 

search faces stagnation. 

ALO consists of three sequential phases. The first 

and second phases are intended for the guided search, 

whereas the third is for the random search. The first 

two phases are required, while the final phase is 

optional. After executing the guided search in the first 

and second phases, the third phase is executed if the 

agent cannot improve its current solution.  

The agent will randomly select between two 

potential guided searches in the first phase. The first 

possible search drives the current solution closer to or  
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Table 1. The mechanics of shortcoming metaheuristics and the theoretical test used in their first introduction 

No Metaheuristic Metaphor Main Strategy Alternative 

Strategy 

Theoretical 

Test 

1 COA [15] coati guided search toward the global best solution, 

guided search toward a randomized solution 

within the search space, and random search 

within the search space 

no CEC 2011, 

CEC 2017 

2 ZOA [16] zebra guided search toward the global best solution, 

neighborhood search, and guided search toward 

a randomly selected solution. 

no 23 classic 

functions, 

CEC 2015, 

CEC 2017 

3 POA [18] pelican guided search toward a randomized solution 

within the search space, and neighborhood 

search 

no 23 classic 

functions,  

4 NGO [17] Northern 

goshawk 

guided search relative to a randomly selected 

solution and neighborhood search 

no 23 classic 

functions, 

CEC 2015, 

CEC 2017 

5 MPA [9] marine 

predator 

guided search toward the local best solution, 

guided search toward two randomly selected 

solutions, and neighborhood search 

no 29 

functions 

7 KMA [10] komodo guided search toward better solutions and avoid 

worse solutions, guided search toward some best 

solutions, crossover with the best solutions 

among the population, and neighborhood search. 

increase 

population 

size 

23 classic 

functions 

8 MLBO [31] leader guided search relative to the mixture between the 

global best solution and a randomly selected 

solution. 

no 23 classic 

functions 

9 MLO [32] leader guided search toward the resultant of some best 

solutions and neighborhood search 

no 23 classic 

functions 

10 EBOA [25] election guided search toward a randomly selected 

solution among some best solutions or global 

best solution, and neighborhood search 

no 23 classic 

functions 

11 CBOA [24] cooking 

training 

guided search toward the global best solution, 

neighborhood search, guided search toward a 

randomly selected solution among some best 

solutions, and crossover 

no 23 classic 

functions, 

CEC 2017 

13 TIA [36] - guided search relative to all other solutions no 23 classic 

functions 

15 ASBO [34] - guided search relative to the average of best and 

worst solutions, guided search toward the 

subtraction of best solution with worst solution, 

and guided search to avoid the best solution 

no 23 classic 

functions 

16 SMA [41] slime mold full random search, moving toward the gap 

between two randomly selected solutions, or 

neighborhood search 

no CEC 2014 

17 this work - guided search toward the global best solution and 

guided search relative to a randomized solution 

random 

search within 

the search 

space 

23 classic 

functions 

 

beyond the best global solution. The second possible 

search causes the global best solution to advance and 

leave behind the corresponding solution. The first 

search is essential to find a superior solution between 

the corresponding solution and the global best 

solution. The second search, meanwhile, focuses on 

enhancing the quality of the global best solution. The 

first phase is about exploitation. 

In the second phase, there are also two possible 

guided searches from which the agent will randomly 

select one. In the first search, the reference combines 

the best global solution and a randomly chosen 

solution from the population. The reference for the 

second search is the mixture of two randomly selected 

solutions from the population. The movement 

represents the avoidance of the reference relative to 
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the corresponding solution if this reference is superior 

to the corresponding solution. In contrast, the 

movement represents avoiding the corresponding 

solution concerning the reference. The first search can 

be viewed as a combination of exploration and 

exploitation. The second search, on the other hand, 

can be viewed as a directed exploration. 

The third phase is only performed if the agent does 

not improve after guided searches. This random 

search can be viewed as a full random search rather 

than a neighborhood search due to the random 

generation of a solution within the search space rather 

than in close proximity to the current solution. This 

phase entails random exploration. 

ALO takes a strict approach to acceptance. It 

indicates that a candidate solution replaces the current 

solution only if it is superior to the current solution. 

The primary objective of this strategy is to prevent the 

agent from selecting the inferior option. However, this 

strategy harms the likelihood of finding a better 

solution close to the worse one. The formalization of 

ALO is presented in algorithm 1. Meanwhile, the 

detailed processes are performed using Eq. (1) 

through Eq. (7). 

ALO is composed of two steps as a metaheuristic. 

The first step is the initialization, specified in 

algorithm 1, lines 2 through 5. The second step is 

iteration, formalized in lines 6 through 22 of algorithm 

1. Lines 8 through 10 describe the first phase. In lines 

11 through 15, the second phase is specified. Lines 16 

to 19 constitute the official third phase. In the end, line 

24 specifies that the global best solution becomes the 

final solution. 

In the initialization step, the solution is generated 

uniformly within the search space as formalized using 

Eq. (1). x denotes the solution. U denotes the uniform 

random. xlb denotes the lower boundary, and xub 

denotes the upper boundary of the search space. Then, 

the global best solution (xb) is updated using Eq. (2). 

Eq. (2) represents the strict acceptance approach. f 

denotes the objective function. 

 

𝑥 = 𝑈(𝑥𝑙𝑏 , 𝑥𝑢𝑏)   (1) 

 

𝑥𝑏′ = {
𝑥, 𝑓(𝑥) < 𝑓(𝑥𝑏)

𝑥𝑏 , 𝑒𝑙𝑠𝑒
                (2) 

 

Eq. (3) to Eq. (7) formalizes the processes used in 

the iteration step. Eq. (3) states the search chosen in 

the first guided search where xc denotes the solution 

candidate. r1 denotes the first phase ratio. Eq. (4) 

indicates the strict acceptance approach in updating 

the corresponding solution. Eq. (5) states that the 

reference in the second phase is randomly generated  

 

algorithm 1: attack-leave optimizer 

1 begin 

2   for all x in X 

3     generate initial solution x using Eq. (1) 

4     update xb using Eq. (2) 

5   end for 

6   for t = 1 to tmax 

7     for all x in X 

8       perform a guided search using Eq. (3) 

9       update x using Eq. (4) 

10       update xb using Eq. (2) 

11       generate xs1 and xs2 using Eq. (5) 

12       generate xt using Eq. (6) 

13       perform a guided search using Eq. (7) 

14       update x using Eq. (4) 

15       update xb using Eq. (2) 

16       if improvement fails, then 

17         generate xc using Eq. (1) 

18         update x using Eq. (4) 

19         update xb using Eq. (2) 

20       end if 

21     end for 

22   end for 

23 end 

24 output: xb 

 

among the current population. Eq. (6) states the option 

of choosing the reference in the second phase (xt), 

whether the mixture of the global best solution and a 

randomly selected solution or the mixture of two 

selected solutions. r2 denotes the second phase ratio. 

Eq. (7) states the search chosen in the second guided 

search. 

 

𝑥𝑐 = {
𝑥 + 𝑈(0,1)(𝑥𝑏 − 2𝑥), 𝑈(0,1) ≤ 𝑟1

𝑥𝑏 + 𝑈(0,1)(𝑥𝑏 − 2𝑥), 𝑒𝑙𝑠𝑒
    (3) 

 

𝑥′ = {
𝑥𝑐 , 𝑓(𝑥𝑐) < 𝑓(𝑥)

𝑥, 𝑒𝑙𝑠𝑒
           (4) 

 

𝑥𝑠 = 𝑈(𝑋)    (5) 

 

𝑥𝑡 = {

𝑥𝑏+𝑥𝑠1

2
, 𝑈(0,1) ≤ 𝑟2

𝑥𝑠1+𝑥𝑠2

2
, 𝑒𝑙𝑠𝑒

  (6) 

 

𝑥𝑐 = {
𝑥𝑡 + 𝑈(0,1)(𝑥𝑡 − 2𝑥), 𝑓(𝑥𝑡) < 𝑓(𝑥)

𝑥 + 𝑈(0,1)(𝑥 − 2𝑥𝑡), 𝑒𝑙𝑠𝑒
   (7) 

4. Simulation and result 

The test performed to evaluate the proposed ALO, and 

its results are presented in this section. Two tests were 

conducted in this work: the benchmark test and the 

hyperparameters test. The benchmark test was  
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Table 2. A detailed description of the set of 23 functions. 

No Function Model Dim Space Target 

1 Sphere ∑ 𝑥𝑖
2𝑑

𝑖=1   35 [-100, 100] 0 

2 Schwefel 2.22 ∑ |𝑥𝑖|
𝑑
𝑖=1 + ∏ |𝑥𝑖|

𝑑
𝑖=1   35 [-100, 100] 0 

3 Schwefel 1.2 ∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )

2𝑑
𝑖=1   35 [-100, 100] 0 

4 Schwefel 2.21 max{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑}  35 [-100, 100] 0 

5 Rosenbrock ∑ (100(𝑥𝑖+1 + 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)𝑑−1

𝑖=1   35 [-30, 30] 0 

6 Step ∑ (𝑥𝑖 + 0.5)2𝑑−1
𝑖=1   35 [-100, 100] 0 

7 Quartic ∑ 𝑖𝑑
𝑖=1 𝑥𝑖

4 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1]  35 [-1.28, 1.28] 0 

8 Schwefel ∑ −𝑥𝑖 sin(√|𝑥𝑖|)𝑑
𝑖=1   35 [-500, 500] -12,569 

9 Ratsrigin 10𝑑 + ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))𝑑

𝑖=1   35 [-5.12, 5.12] 0 

10 Ackley 
−20 ⋅ 𝑒𝑥𝑝 (−0.2 ⋅ √

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) −

𝑒𝑥𝑝 (
1

𝑑
∑ cos 2𝜋𝑥𝑖

𝑑
𝑖=1 ) + 20 + 𝑒𝑥𝑝(1)  

35 

[-32, 32] 0 

11 Griewank 
1

4000
∑ 𝑥𝑖

2𝑑
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑑

𝑖=1 +1 35 [-600, 600] 0 

12 Penalized 

𝜋

𝑑
{10 sin(𝜋𝑦1) + ∑ ((𝑦𝑖 − 1)2(1 +𝑑−1

𝑖=1

10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1))) + (𝑦𝑑 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10,100,4)𝑑
𝑖=1   

35 

[-50, 50] 0 

13 Penalized 2 

0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ ((𝑥𝑖 − 1)2(1 +𝑑−1
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑑 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑑))} +

∑ 𝑢(𝑥𝑖 , 5,100,4)𝑑
𝑖=1   

35 

[-50, 50] 0 

14 
Shekel 
Foxholes (

1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗)
62

𝑖=1

25
𝑗=1 )

−1

  2 [-65, 65] 1 

15 Kowalik ∑ (𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

)
2

11
𝑖=1   4 [-5, 5] 0.0003 

16 
Six Hump 
Camel 

4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4  2 [-5, 5] -1.0316 

17 Branin (𝑥2 −
5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos(𝑥1) + 10  2 [-5, 5] 0.398 

18 
Goldstein-
Price 

(1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 +

6𝑥1𝑥2 + 3𝑥2
2)). (30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 +

12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2))  

2 [-2, 2] 3 

19 Hartman 3 − ∑ (𝑐𝑖𝑒𝑥𝑝 (− ∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

)𝑑
𝑗=1 ))4

𝑖=1   3 [1, 3] -3.86 

20 Hartman 6 − ∑ (𝑐𝑖𝑒𝑥𝑝 (− ∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

)𝑑
𝑗=1 ))4

𝑖=1   
6 

[0, 1] -3.32 

21 Shekel 5 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
5
𝑖=1   

4 [0, 10] -10.153 

22 Shekel 7 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
7
𝑖=1   

4 [0, 10] -10.402 

23 Shekel 10 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
10
𝑖=1    

4 [0, 10] -10.536 
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Table 3. Fitness score comparison in solving high-dimension unimodal functions. 

F Parameter MLBO [31] SMA [41] GSO [35] COA [15] ZOA [16] ALO 

1 mean 1.1041x104 2.7774x104 1.0582x104 0.0000 0.0000 0.0000 

st dev 2.0277x103 6.3390x103 2.3287x103 0.0000 0.0000 0.0000 

min 6.5627x103 1.4393x104 6.2995x103 0.0000 0.0000 0.0000 

max 1.4513x104 3.7251x104 1.4835x104 0.0001 0.0000 0.0000 

mean rank 5 6 4 1 1 1 

2 mean 3.1565x1020 0.0000 0.0000 0.0000 0.0000 0.0000 

st dev 1.4805x1021 0.0000 0.0000 0.0000 0.0000 0.0000 

min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

max 6.9443x1021 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 6 1 1 1 1 1 

3 mean 2.3327x104 8.3962x104 1.9500x104 3.6800x101 0.0145 0.0000 

st dev 9.8174x103 2.1132x104 6.6162x103 4.4598x101 0.0274 0.0000 

min 1.1874x104 4.8148x104 1.0697x104 0.0241 0.0000 0.0000 

max 5.0327x104 1.2873x105 3.8757x104 1.7670x102 0.1017 0.0000 

mean rank 5 6 4 3 2 1 

4 mean 3.7564x101 6.7273x101 3.7849x101 0.0451 0.0000 0.0000 

st dev 4.9217 6.8186 3.8682 0.0276 0.0000 0.0000 

min 2.7736x101 4.0000x101 3.1105x101 0.0107 0.0000 0.0000 

max 4.8563x101 7.5000x101 4.4781x101 0.1009 0.0000 0.0000 

mean rank 4 6 5 3 1 1 

5 mean 7.0458x106 6.8417x107 7.5194x106 3.3933x101 3.3904x101 3.3929x101 

st dev 3.4508x106 2.8784x107 4.4168x106 0.0575 0.0458 0.0250 

min 1.9697x106 7.3345x106 2.7617x106 3.3694x101 3.3794x101 3.3881x101 

max 1.4708x107 1.1583x108 2.0912x107 3.3975x101 3.3948x101 3.3960x101 

mean rank 4 6 5 3 1 2 

6 mean 1.0211x104 2.3517x104 1.0791x104 6.9839 6.3068 6.8256 

st dev 2.1187x103 6.6797x103 2.6193x103 0.4775 0.5981 0.3318 

min 6.2812x103 1.3597x104 7.2930x103 5.7624 5.2201 6.1439 

max 1.4570x104 3.7446x104 1.7229x104 7.9519 7.3329 7.6304 

mean rank 4 6 5 3 1 2 

7 mean 4.2438 2.1004x102 3.9706 0.0208 0.0051 0.0075 

st dev 3.0119 3.2388x101 1.6190 0.0096 0.0026 0.0047 

min 0.8877 1.5617x102 1.4139 0.0057 0.0011 0.0000 

max 1.4507x101 2.8647x102 7.1755 0.0481 0.0106 0.0166 

mean rank 5 6 4 3 1 2 

 

performed to compare the performance of ALO with 

other metaheuristics. In contrast, the hyperparameters 

test evaluated the sensitivity of ALO's adjusted 

parameters to improve the final solution quality. In 

this test, decimal points less than 10-4 were rounded to 

10-4. 

The optimization problem used in the tests 

consisted of a set of 23 functions, which can be 

divided into three groups: high-dimensional unimodal 

functions (functions 1-7), high-dimensional 

multimodal functions (functions 8-13), and fixed-

dimensional multimodal functions (functions 14-23). 

A detailed description of this set of functions is 

presented in Table 2. 

The first test benchmarked ALO against five other 

metaheuristics: MLBO, Slime Mold Algorithm 

(SMA), GSO, COA, and ZOA. MLBO, COA, and 

ZOA are metaheuristics that implement the strict 

acceptance approach, while SMA and GSO do not. 

The population size was generally set to 10, and the 

maximum iteration was set to 35. No other parameters 

needed to be set for MLBO, COA, and ZOA. 

Meanwhile, in SMA, variable z was set to 0.3, and 

both ratios in ALO were set to 0.5. The comparison 

results for the first, second, and third groups of 

functions are presented in Tables 3, 4, and 5, 

respectively. Each table includes five indicators 

related to the fitness score: mean, standard deviation, 

minimum, maximum, and mean rank.  

Table 3 indicates the superiority of ALO among 

other metaheuristics. ALO is four times (Sphere, 

Schwefel 2.22, Schwefel 1.2, and Schwefel 2.21) on 

the first and three times on the second (Rosenbrock, 

Step, and Quartic). Meanwhile, other metaheuristics 

are also on the first rank in solving three functions  
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Table 4. Fitness score comparison in solving high-dimension multimodal functions 

F Parameter MLBO [31] SMA [41] GSO [35] COA [15] ZOA [16] ALO 

8 mean -3.7040x103 -5.4247x103 -3.8952x103 -5.0538x103 -2.6241x103 -3.8520x103 

st dev 7.0996x102 3.9399x102 7.0568x102 5.6921x102 4.7529x102 4.7839x102 

min -5.7019x103 -6.3320x103 -5.4766x103 -6.4397x103 -3.5720x103 -5.2734x103 

max -2.8687x103 -4.7354x103 -2.7333x103 -3.9613x103 -1.8446x103 -3.1506x103 

mean rank 5 1 3 2 6 4 

9 mean 2.5086x102 8.5678x101 2.5306x102 0.0005 0.0000 0.0000 

st dev 3.0289x101 1.9417x101 2.7290x101 0.0011 0.0000 0.0000 

min 1.8483x102 4.6002x101 2.0644x102 0.0000 0.0000 0.0000 

max 3.0346x102 1.2701x102 2.9256x102 0.0050 0.0000 0.0000 

mean rank 5 4 6 3 1 1 

10 mean 1.5013x101 1.5605x101 1.5180x101 0.0014 0.0000 0.0000 

stdev 0.7470 0.5009 0.8745 0.0008 0.0000 0.0000 

min 1.3615x101 1.4626x101 1.3596x101 0.0005 0.0000 0.0000 

max 1.6308x101 1.6596x101 1.6695x101 0.0036 0.0000 0.0000 

mean rank 4 6 5 3 1 1 

11 mean 9.7373x101 2.2982x102 9.7472x101 0.0278 0.0015 0.0000 

st dev 2.7975x101 5.9770x101 2.1867x101 0.1013 0.0070 0.0000 

min 5.7267x101 1.2684x102 5.5135x101 0.0000 0.0000 0.0000 

max 1.6675x102 3.4254x102 1.4170x102 0.4713 0.0330 0.0000 

mean rank 4 6 5 3 2 1 

12 mean 1.0532x106 1.0750x108 2.5069x106 0.4892 0.8156 0.8798 

st dev 1.4062x106 5.0940x107 2.3589x106 0.1332 0.1030 0.1719 

min 1.7242x104 2.2288x106 5.5821x104 0.2634 0.6480 0.5105 

max 6.3908x106 2.3493x108 7.7657x106 0.6993 0.9746 1.1976 

mean rank 4 6 5 1 2 3 

13 mean 1.0431x107 2.4634x108 1.2590x107 3.0740 2.9665 3.1046 

st dev 7.4544x106 1.1841x108 1.0165x107 0.0845 0.1183 0.0418 

min 4.8351x105 7.0763x107 2.0530x106 2.8471 2.6066 3.0017 

max 3.1107x107 5.4621x108 4.6446x107 3.2427 3.1281 3.1411 

mean rank 4 6 5 2 1 3 

 

Table 5. Fitness score comparison in solving fixed dimension multimodal functions 

F Parameter MLBO [31] SMA [41] GSO [35] COA [15] ZOA [16] ALO 

14 mean 6.8537 3.3819 5.3771 3.4697 8.4571 1.8140 

st dev 5.4470 2.4416 2.8177 2.6787 3.4077 1.1451 

min 0.9980 0.9980 1.0132 0.9980 0.9981 0.9980 

max 2.1988x101 7.8740 1.1719x101 1.0763x101 1.2670x101 4.9667 

mean rank 5 2 4 3 6 1 

15 mean 0.0093 0.1065 0.0114 0.0032 0.0039 0.0028 

st dev 0.0081 0.0401 0.0077 0.0060 0.0141 0.0050 

min 0.0014 0.0220 0.0017 0.0003 0.0003 0.0006 

max 0.0224 0.1484 0.0245 0.0222 0.0667 0.0227 

mean rank 4 6 5 2 3 1 

16 mean -1.0270 -0.0530 -1.0178 -1.0316 -0.9923 -1.0267 

st dev 0.0077 0.2052 0.0257 0.0000 0.0853 0.0053 

min -1.0316 -0.9618 -1.0316 -1.0316 -1.0316 -1.0316 

max -1.0054 0.0000 -0.9459 -1.0313 -0.6957 -1.0128 

mean rank 2 6 4 1 5 3 

17 mean 0.3996 0.6347 0.4023 0.3981 0.8492 0.4463 

st dev 0.0041 0.0426 0.0068 0.0000 0.6775 0.0465 

min 0.3981 0.4439 0.3981 0.3981 0.3981 0.4064 

max 0.4170 0.6438 0.4217 0.3984 2.6056 0.5938 

mean rank 2 5 3 1 6 4 

18 mean 5.5318 3.0000 3.0957 3.2568 1.7196x101 3.8003 

st dev 7.8480 0.0000 0.1929 1.1970 1.9873x101 1.3374 

min 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 
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max 3.3764x101 3.0000 3.5877 8.6160 8.4000x101 8.7115 

mean rank 5 1 2 3 6 4 

19 mean -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

st dev 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

min -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

max -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

mean rank 1 1 1 1 1 1 

20 mean -3.0108 -1.1433 -3.0897 -3.2282 -2.7282 -2.7893 

st dev 0.2269 0.6027 0.1566 0.0639 0.3590 0.2359 

min -3.1926 -2.6914 -3.3056 -3.3127 -3.2005 -3.1180 

max -2.1833 -0.2985 -2.6743 -3.1074 -1.8374 -2.2192 

mean rank 3 6 2 1 5 4 

21 mean -3.0156 -2.8450 -3.9857 -8.6455 -4.8695 -2.3631 

st dev 1.9124 3.0227 2.3509 1.4844 2.3500 1.0256 

min -9.3354 -1.0153x101 -9.0130 -1.0126x101 -8.4505 -4.9718 

max -1.0106 -0.5099 -1.3702 -4.8191 -1.7392 -0.7532 

mean rank 4 5 3 1 2 6 

22 mean -4.2014 -5.2307 -4.5314 -8.4132 -4.8429 -2.9188 

st dev 2.9412 3.9320 2.6870 1.5438 2.3781 1.3791 

min -1.0221x101 -1.0403x101 -9.2841 -1.0332x101 -9.1936 -7.5892 

max -1.5689 -0.6591 -2.0634 -5.0096 -1.7021 -1.2333 

mean rank 5 2 4 1 3 6 

23 mean -3.3278 -3.8977 -3.6730 -8.6204 -4.0117 -2.4825 

st dev 1.9788 2.6000 1.8425 1.6747 2.1175 0.6174 

min -1.0039x101 -1.0536x101 -8.4964 -1.0484x101 -1.0176x101 -4.6240 

max -1.4031 -1.4314 -1.8474 -4.0317 -1.8541 -1.8307 

mean rank 5 3 4 1 2 6 

 

(Sphere, Schwefel 2.22, and Schwefel 2.21). This 

result indicates fierce competition in solving the high-

dimension unimodal functions.  

The competition for solving high-dimensional 

unimodal functions can be divided into two groups 

according to the proximity of the results. Three 

metaheuristics comprise the first group: ALO, COA, 

and ZOA. Also comprising three metaheuristics, the 

second group includes MLBO, SMA, and GSO. The 

metaheuristics in the first group produce superior final 

solutions than those in the second group. In general, 

this gap is substantial, and it exists in nearly all 

functions. In all functions belonging to the first group, 

MLBO, SMA, and GSO belong to the best of the three. 

Table 3 also indicates that ALO can find the 

optimal global solution or is near the optimal global 

solution. ALO can find the global optimal in solving 

four functions (Sphere, Schwefel 2.22, Schwefel 1.2, 

Schwefel 2.21, and Quartic). Meanwhile, the average 

fitness score produced by ALO is near the global 

optimal in solving Quartic. Moreover, the minimum 

fitness score of ALO is the global optimal in solving 

Quartic. The average fitness score produced by ALO 

is not so near to the global optimal in solving 

Rosenbrock and Step. However, this score is still 

much better than the average fitness score produced 

by MLBO, SMA, and GSO. 

Table 4 indicates that ALO can solve multimodal 

functions with high dimensions. ALO ranks first in 

the solution of three functions (Rastrigin, Ackley, and 

Griewank), third in the solution of two functions 

(Penalized and Penalized 2), and fourth in the 

solution of one function (Schwefel). ZOA also holds 

the top spot for solving Rastrigin and Ackley in this 

group. Similar to the first group, these six 

metaheuristics can be divided into two groups within 

this second group. The members of the first group are 

ALO, ZOA, and COA. 

In contrast, the second group includes MLBO, 

SMA, and GSO. In solving Schwefel, the 

performance gap between the first and second groups 

is narrow. In solving other functions, however, the 

performance gap between the first and second groups 

is substantial. 

Table 5 shows intense competition among the 

metaheuristics in solving the fixed dimension 

multimodal functions. ALO achieved the first rank in 

solving three functions (Shekel Foxholes, Kowalik, 

and Hartman 3), the third rank in solving one function 

(Six Hump Camel), the fourth rank in solving three 

functions (Branin, Goldstein-Price, and Hartman 6), 

and the sixth rank in solving three functions (Shekel 

5, Shekel 7, and Shekel 10). The narrow gap in the 

metaheuristics' average fitness scores shows the  
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Table 6. Group-based superiority of ALO 

Group Number of Functions Where ESCO is 

Better 

MLBO 

[31] 

SMA 

[41] 

GSO 

[35] 

COA 

[15] 

ZOA 

[16] 

1 7 6 6 5 1 

2 6 5 5 3 2 

3 3 5 3 2 6 

Total 16 16 14 10 9 

 
Table 7. Relation between r1 and the average fitness score 

F Average Fitness Score Which r1 is 

Significantly 

Better? 
r1 = 0.2 r1 = 0.8 

1 0.0000 0.0000 none 

2 0.0000 0.0000 none 

3 0.0000 0.0000 none 

4 0.0000 0.0000 none 

5 3.3952x101 3.3924x101 none 

6 6.9768 6.8266 none 

7 0.0131 0.0062 low 

8 -3.4881x103 -3.7167x103 none 

9 0.0000 0.0000 none 

10 0.0000 0.0000 none 

11 0.0000 0.0000 none 

12 0.8967 0.9174 none 

13 3.1156 3.0711 none 

14 1.9044 3.6088 high 

15 0.0051 0.0035 none 

16 -1.0279 -1.0236 none 

17 0.4746 0.4692 none 

18 3.5931 4.0419 none 

19 -0.0495 -0.0495 none 

20 -2.8029 -2.8508 none 

21 -2.6516 -3.2277 none 

22 -2.7144 -3.2269 none 

23 -2.5167 -2.6192 none 

 

intense competition among them. In addition, all 

metaheuristics achieved the same average fitness 

score in solving Hartman 3. The wider gap was 

observed in Shekel Foxholes, Shekel 5, Shekel 7, and 

Shekel 10, where a metaheuristic showed a 

significantly better performance than the others. 
Tables 3 to 5 show an intense competition among 

metaheuristics, particularly between ALO and the 

other five. ALO performs better than MLBO, 

especially in solving high-dimensional functions. 

ALO is superior to MLBO in solving high-

dimensional unimodal and multimodal functions. 

However, ALO is inferior to MLBO in solving fixed-

dimension multimodal functions. ALO outperforms 

SMA in almost all high-dimensional functions, 

unimodal or multimodal. At the same time, ALO is 

slightly superior to SMA in solving fixed-dimension 

multimodal functions. ALO is also superior to GSO, 

 

Table 8. Relation between r2 and the average fitness score 

F Average Fitness Score Which r2 is 

Significantly 

Better? 
r2 = 0.2 r2 = 0.8 

1 0.0000 0.0000 none 

2 0.0000 0.0000 none 

3 0.0000 0.0000 none 

4 0.0000 0.0000 none 

5 3.3909x101 3.3907x101 none 

6 6.6657 6.7970 none 

7 0.0076 0.0067 none 

8 -3.7820x103 -3.6294x103 none 

9 0.0000 0.0000 none 

10 0.0000 0.0000 none 

11 0.0068 0.0000 none 

12 0.9029 0.8750 none 

13 3.0887 3.1032 none 

14 2.2824 2.8987 none 

15 0.0034 0.0045 none 

16 -1.0247 -1.0281 none 

17 0.4468 0.4700 none 

18 3.7711 3.3609 none 

19 -0.0495 -0.0495 none 

20 -2.7828 -2.7737 none 

21 -2.4600 -2.7652 none 

22 -2.7639 -2.8616 none 

23 -2.6183 -2.7476 none 

 

especially in solving high dimensional functions, 

where it outperforms GSO in almost all these 

functions. ALO is comparable to COA, as ALO 

performs better than COA in 10 functions, is equal in 

3 functions, and is worse in three functions. The 

superiority of ALO over COA is primarily observed 

in solving high dimensional unimodal functions. 

Finally, ALO is slightly superior to ZOA, as it 

performs better than ZOA in 9 functions, is equal in 

6 functions, and is worse than ZOA in 8. 

The second test is the hyperparameters evaluation. 

Two sub-tests are performed in this work. The first 

subtest aims to determine the relationship between 

the first ratio and the mean fitness score. The 

objective of the second subtest is to determine the 

relationship between the second ratio and the average 

fitness score. Each subtest contains two values 

representing a low-ratio and a high-ratio scenario. 

Table 7 displays the outcome of the first subtest. In 

the meantime, the results of the second subtest are 

shown in Table 8.  

Table 7 indicates that, in general, there is no 

significant influence of the first ratio on the 

performance of the proposed ALO. In solving almost 

all functions, there is no significant performance 

difference between the low first ratio scenario and the 

high first ratio scenario. The low first ratio scenario 

is significantly better in solving Quartic. On the other 
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hand, the high first ratio scenario is significantly 

better in solving Shekel Foxholes. 

Table 8 indicates that there is not any significant 

difference between the low r2 scenario and the high 

r2 scenario. This circumstance occurs in all functions, 

whether high-dimension unimodal, high-dimension 

multimodal, or fixed-dimension multimodal 

functions. 

5. Discussion 

This section discusses significant aspects of this 

work, such as ALO, the results, and metaheuristics in 

general. ALO has demonstrated intense exploitation 

and exploration capabilities. Its exploitation 

capability has been evaluated based on its 

performance in solving unimodal functions [10], 

while its exploration capability has been evaluated 

based on its performance in solving multimodal 

functions [10]. In solving unimodal functions, ALO 

has shown the ability to find the optimal global 

solution in four functions and quasi-optimal solutions 

in three functions. ALO has found the optimal global 

solution in three functions and quasi-optimal 

solutions for high-dimensional multimodal functions 

in two out of six evaluated functions. Additionally, 

for fixed-dimension multimodal functions, ALO has 

found six quasi-optimal solutions. 

The benchmark test result indicates the 

competitiveness of ALO compared to the benchmark 

metaheuristics. ALO is superior to MLBO, SMA, and 

GSO, especially in solving high-dimension functions. 

ALO is still competitive compared to ZOA and COA 

as the newest metaheuristics among these five 

benchmarks. The fierce competition takes place in 

solving the fixed dimension multimodal functions. In 

this group, the performance gap among these 

metaheuristics is narrow. 

This result indicates two essential findings. First, 

this result strengthens the no-free-lunch theory [24]. 

ALO is not superior in solving all these 23 functions. 

On the other hand, although MLBO, SMA, and GSO 

fall behind in solving high-dimension functions, they 

are very competitive in solving fixed-dimension 

multimodal functions.  

The hyperparameters test indicates essential 

findings regarding the dominant strategy deployed in 

ALO. The less significance of the r1 ratio indicates 

the less significance of starting point of the guided 

search relative to the global best solution. Whether 

this guided search starts from the corresponding 

solution or the global best solution is not essential. 

The more important thing is the existence of the 

guided search toward the global best solution as it is 

also deployed in various metaheuristics. The less 

significance of the r2 ratio also indicates that the 

mixture of the randomly generated reference in the 

second guided search is not essential. It is not 

important whether this second target is the mixture of 

the global best solution and a randomly selected 

solution or the mixture of two selected solutions. The 

more important thing is also the existence of the 

guided search relative to a randomized reference.  

In ALO, several parameters contribute to its 

complexity. They determine the looping process in 

the iteration phase. The outer loop runs until the 

maximum iteration is reached. The intermediate loop 

iterates over the entire population, while the inner 

loop iterates over all decision variables (also known 

as the dimension). The number of solutions in the 

population and the number of moves or jumps in each 

iteration also affect the algorithm's complexity. They 

can be adjusted to balance the algorithm's exploration 

and exploitation capabilities and convergence speed. 

The algorithm's complexity is also affected by the 

optimized function, affecting the number of function 

evaluations required to find the optimal solution. 

Meanwhile, there are three steps performed inside the 

looping. Based on this explanation, the algorithm 

complexity of ALO can be presented as 

O(3tmax.n(X).n(d)). 

Regarding this work and the proposed 

metaheuristics, there are limitations. The set of 23 

functions is selected as the theoretical problems. 

Other sets of functions, such as CEC 2015 [16] or 

CEC 2017 [15] can be used to evaluate a variety of 

metaheuristics. In addition, ALO has not been tested 

to solve real-world optimization problems. ALO only 

supports five strategies, including four guided and 

one random search. Many strategies have not yet 

been accommodated due to the inherent inability of 

metaheuristics to deal with diverse strategies. They 

can serve as a baseline for future development. 

6. Conclusion 

This work presents the concept, formalization, and 

evaluation of a new metaheuristic known as an attack-

leave optimizer (ALO). It is intended to move toward 

the reference and abandon the current solution if it is 

no longer productive. ALO has been tested to solve a 

theoretical optimization problem with a set of 23 

classic functions as the problem. This test 

demonstrates the effectiveness of ALO in locating 

global optimal or quasi-optimal solutions. It 

demonstrates that ALO has excellent exploration and 

exploitation abilities. ALO is competitive among the 

benchmarked metaheuristics, outperforming MLBO, 

SMA, GSO, COA, and ZOA in the solution of 16, 16, 

14, 10, and 9 functions respectively. 
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Proposing ALO opens up several avenues for 

future research. ALO should be further tested to solve 

many real-world optimization problems. Additionally, 

the competition between ALO and two other 

metaheuristics, COA and ZOA, can be leveraged to 

explore hybridization strategies that combine the 

strengths of these algorithms to create more powerful 

ones.  
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