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Abstract: The evolution of the huge amount of heterogeneous data sources introduces the emergence of several fresh 

new concepts. Among one of the most well-known concepts emerging as a recent and trending topic in big data is the 

data lake. Which represents a central repository that stores heterogeneous data sources in its native format without any 

predefined schema. In the absence of any enforced schema, effective metadata management based on metadata models 

remains an active research topic to address the data lake issues knowing by a data swamp. However, the examination 

of existing metadata models shows that none of them proposes a complete model. In this article, we propose a generic 

and extensible metadata model that supports high flexibility and better scalability in the integration of metadata. With 

these capabilities, EMEMODL enables comprehensive metadata management for data lakes. We show EMEMODL’s 

feasibility through a prototypical implementation based on TPC-H datasets of different sizes to prove the scaling 

feature, using MySQL and Neo4J. The findings of these experiments revealed encouraging results for big data queries 

that give us a graph database, which shows an efficient ability to manage and process large amounts of data compared 

to a relational database in terms of retrieval time queries and resource consumption, including cpu and memory usage. 

Keywords: Big Data, Data lake, Database management, Metadata models. 

 

 

1. Introduction 

Nowadays, the exponential expansion of created 

data has given rise to the concept of data lakes in the 

big data era. Data lakes have emerged as one of the 

trending topics for big data that has attracted an 

increasing amount of interest from a group of 

researchers. The basic idea of the data lake concept is 

simple: “If you think of a warehouse as a store of 

bottled water, one packaged for easy consumption, 

the data lake is a great source of water in its natural 

state”. It enables the storage of heterogeneous data 

sources “as-is” in their native format. There is no 

predetermined schema necessary for data stored in 

the lake; this makes it possible to store vast amounts 

of heterogeneous data quickly and easily. However, 

without an effective metadata management system, 

the integration of data without any rigorous structure 

results in a massive collection of undocumented data 

that can quickly turn a data lake into a data swamp 

[1]. The term "data swamp" refers to useless, 

undocumented, or inexploitable data. Therefore, 

enhancing the value of big data is made possible in 

large part by the data lake metadata management 

system, also known as “data intelligence” or “large-

scale data” [2]. Thus, the data lake concept was first 

introduced by Dixon, as an efficient solution to the 

gaps introduced by data marts [3]. It is defined as a 

large storage space for various data sources that 

allows users to explore different data stored in the 

lakes. It provides not only a means of storing various 

data sources but also an efficient system of data 

processing. Furthermore, the data lake quickly gained 

importance and significance. Indeed, many 

researchers have started to work in this direction to 

address the data lake issues [4, 5]. Thus, metadata 

management is one of the key topics explored in the 

literature to prevent the conversion of data lakes into 

data swamps [6-8]. 

The key subject of metadata management is to 

understand the metadata model concept [9-12]. A 

metadata model is defined as an abstract model to 

show how the metadata associated with the data 
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stored in the lake is organized and related to each 

other. However, most metadata model proposals are 

not sufficiently generic [7, 13, 14]. It frequently 

focuses on specific use cases and provides a few 

details on data design. This constitutes a significant 

limitation, as several important use cases require 

flexibility and scalability. Therefore, defining a 

metadata model for a specific use case is not realistic 

because the number of use cases is something that is 

not constant and varies with the requirements of each 

organization. 

To address the genericity issue with metadata 

models that offer flexibility and scalability, which 

reflect the essential components that complete a 

metadata model's extensibility. Thus, analyzing the 

issue of different data formats and their effectiveness 

in storing and processing data using DBMS 

scalability proved to be one of the best solutions for 

dealing with this type of schema-less data [15]. 

Furthermore, our purpose aims to build a generic 

model by enhancing existing metadata models with 

new capabilities like flexibility and scalability, which 

will help us address the issues that massive data lakes 

have brought about, such as volume, variety, value, 

veracity, etc. Therefore, our objective is to create a 

generic model that can manage and adapt to a 

collection of use cases in order to overcome the 

limitations provided by a group of recent metadata 

models that only concentrate on particular use cases 

[16]. In this article, we propose an efficient approach 

to building metadata models based on a typology of 

metadata, which covers the ideal set of metadata 

model functionalities. The construction of our model 

passes through modeling at three levels: 1) 

conceptual, 2) logical, and 3) physical. For each level, 

we associate with it the list of identical concepts with 

their mathematical formalization. Additionally, we 

have introduced the passage of transformation from 

one level to another. To assess the effectiveness of 

our model, we compared it with recent metadata 

models. The benchmark study reflects the highest 

level of abstraction for our model, which is explained 

by its genericity. The experimental evaluation 

focuses on three sample TPC-H datasets of different 

sizes. The experiments were carried out with MySQL 

and Neo4j. 

The remainder of this article is organized as 

follows: section 2, examines related literature on data 

lake metadata management. In section 3, we 

investigate the methodology followed by our 

metadata models. In section 4, we report the results 

and discussion of our study. Finally, section 5, 

concludes the paper and suggests future research 

perspectives. 

 

 
Figure. 1 Metadata categorization in data lakes 

2. Related works 

A literature review was carried out to provide us 

with an overview of metadata management for data 

lake information systems. In fact, metadata 

management plays a significant role, contributing to 

maximizing the value of the data stored in the lake. 

Within this section, we examine recent literature 

reviews about metadata categorization and metadata 

models for data lakes. 

2.1 Metadata categorization 

Metadata management plays a significant role in 

allowing users to efficiently analyze and explore 

various data sources collected in the lake. Indeed, as 

shown in Table 1, a variety of approaches aid in 

differentiating metadata categorisation. Other works 

exist that are not listed in Table 1. For example, J. 

Riley [17] categorizes metadata according to three 

types: structural, descriptive, and administrative 

metadata. Structural metadata describes the types, 

versions, and relationships between subsets of data 

and how these belong together. Descriptive metadata 

describes data sources with the aim of discovery and 

identification. It can contain items such as the author, 

title, keywords, etc. Lastly, the administrative 

metadata provides information that aids in resource 

management, such as when and how data is created 

and who can access it. 

In this article, we address metadata categorization 

by adapting the existing classification of [18], which 

we have extended by adding a data catalog at the 

content metadata category level, as shown in Fig. 1. 

Concern level metadata category represents the 

metadata typology adopted by Diamantini [13]. It 

encompasses three types of metadata: business,  
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Table 1. The two main approaches for creating metadata 

models for data lakes. 

Metadata 

(MD) 

Models 

1st approach 

MD Categorization 

2nd approach 

List of MD 

Management 

Features 

GEMMS[26] 
Semantic MD 

Structure MD 
- 

Ground [10] 

Behaviour MD 

Application MD 

Versioning MD 

- 

Diamantini 

[13] 

Technical MD 

Business MD 

Operational MD 

- 

Ravat and 

Zhao [11] 

Inter-MD 

Intra-MD 
- 

MEDAL 

[12] 

Inter-MD 

Intra-MD 

Data Indexing, 

Semantics, 

enrichment, 

lineage, linkage, 

versioning, 

polymorphisme 

HANDLE 

[27] 
- 

Multiple 

granularity 

levels,  

Zone MD, 

MD properties 

goldMEDAL 

[28] 

Inter-MD 

Intra-MD 

Global-MD 

Data Linkage, 

Semantic 

enrichment, 

Usage tracking 

 

technical and operational metadata. Business 

metadata provides meaning and contexts to technical 

metadata [18], for example, book title, publisher, 

authors, etc. Technical metadata provides 

information on the technical aspects of data, for 

example, size, type, table name, column name, etc. 

Finally, operational metadata describes details of the 

accessing and processing of data, for example, access 

rights, provenance, quality requirements, etc. 

For the typology metadata category, this is the 

metadata typology adopted by MEDAL [12]. It 

divides metadata into three types: intra-metadata, 

inter-metadata, and global metadata. Intra-metadata 

points to a specific data source (or object in the jargon 

of MEDAL). It includes sex functionalities, such as 

semantic enrichment (SE), data indexing (DI), link 

generation and conservation (LG), data 

polymorphism (DP), data versioning (DV), and usage 

tracking (UT). Inter-metadata types represent the 

links or relationships between different objects. It 

contains the following functionalities: Object 

groupings, similarity links, and parenthood 

relationships. Finally, global metadata is defined by 

its name, i.e., neither intra-metadata nor inter-

metadata. It concerns the entire resource stored in the 

lake. 

Lastly, for the content metadata category, this 

category groups together two types, namely: data 

profile and data catalog. Following [19-21] through 

big data profile, we can investigate a posteriori data 

analysis and data discovery. Hence, the main 

characteristic of the data lake is "schema-on-read", 

i.e., the analysis performed when needed. We cannot 

talk about the metadata content category without 

citing a data catalog. A data catalog is defined as a 

collection of metadata combined with data 

management that helps different users to find data 

that they need. Furthermore, data catalogs have 

increasingly become the standard for metadata 

management in the big data era and self-service 

analytics. 

2.2 Metadata models 

Several approaches have been proposed to handle 

metadata in data lakes. Nonetheless, the majority of 

them provide a few details on how data is 

conceptually designed [22, 23]. Furthermore, a 

review of all recently proposed metadata models in 

the literature is absolutely essential. Yet, metadata 

models serve as a broad framework for organizing 

metadata [24, 25]. Thus, each metadata model is 

unique from other models in terms of the concepts it 

has presented, the functionalities it offers, or a variety 

of other variables. GEMMS [26] is an illustration of 

a generic metadata model that can be utilized with 

data lakes, despite the fact that this was not its 

intended usage. When considering the concepts of the 

metadata models, GEMMS provides two concepts: 

the data file and the data unit. Nevertheless, GEMMS 

needs data structure information, which is 

incompatible with unstructured data. Ground [10] is 

suggested as a way to manage unstructured data 

without being aware of its structure. Despite its 

greater significance in depicting the relationship 

between the various data sources, Ground does not 

support data linkage. In order to address this issue, 

Diamantini [13] added similarity linkages despite the 

fact that they lacked data versioning and tracking. 

According to the Diamantini model, Ravat and Zhao 

[11] suggest that each step is connected to a particular 

zone in the metadata zone. Yet, data granularity 

aspects are not under the control of Ravat and Zhao. 

Therefore, MEDAL [12] is suggested to evaluate 

granularity features but does not handle various data 

granularity levels. Then, HANDLE [27] is proposed 

as a solution to overcome this gap. However, 

HANDLE is incomplete due to the fact that its 

architecture does not permit data lineage. As a result, 
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Table 2. Ideal features supported by data lakes metadata models 

Features  

Models 
SE 

DP 

& 

MZ 

DV MGL UT DC SL MP DS Total 

GEMMS [26] √   √  √  √  4/9 

Ground [10] √  √  √ √  √  5/9 

Diamantini [13] √ √  √   √   4/9 

Ravat and Zhao [11] √ √ √  √ √ √ √  7/9 

MEDAL [12] √ √ √  √ √ √ √  7/9 

HANDLE [27] √ √  √ √ √ √ √  7/9 

goldMEDAL [28] √ √ √ √ √ √ √ √  8/9 

EMEMODL’s √ √ √ √ √ √ √ √ √ 9/9 

 

goldMEDAL [28] is proposed to cover the gaps left 

by MEDAL and HANDLE. Subsequently, 

goldMEDAL is not considered generic in the sense 

that it doesn't provide data scalability. This feature 

will be the major asset of our article. 

However, to keep things straightforward and so 

that everyone can understand how metadata models 

are created, HANDLE [27] describes the metadata 

model building according to the most common and 

widely used ways in the literature. The first approach 

is based on the metadata classification, while the 

second is based on the functionalities supported by 

each metadata model. Table 1, summaries these two 

approaches. 

3. Methodology 

In this section, we illustrate our proposed 

metadata model called "EMEMODL". To carry out 

this study, we have presented a methodology that will 

describe the main stages in the realization of our 

contribution. Such proposition of a metadata model 

for data lakes needed some requirements, like the set 

of ideal requirements for a generic and extensible 

metadata model defined in section 3.1. Further, the 

design of our metadata model, and for more sake of 

precision, the list of concepts which will be designed 

based on the conceptual and logical models described 

in section 3.2. 

3.1 Ideal requirements for a generic and 

extensible metadata model 

After examining the metadata models in the 

related work section, it appears none of the existing 

models propose a generic and extensible model. Thus, 

a generic metadata model should be flexible and 

scalable to support different data lake use cases. In 

this article, we address the genericity aspect gap by 

exploiting existing models and their shortcomings. 

Indeed, we consider the most abundant features that 

are not taken into consideration by a metadata model 

to be the generic aspect of such a model. Therefore, 

features supported by different models are a suitable 

way to compare them [12]. 

The generic degree of the existing models yields 

results that are not sufficiently generic and cannot 

handle different use cases. Thus, the need for a 

generic and extensible metadata model remains a real 

challenge in data management. For this reason, we 

offer generic requirements supported by recent 

existing metadata models and ones that are not 

supported. This is a significant add-on makes it very 

generic and extensible. It can support and handle any 

data lake use case. To the best of our knowledge, 

there are eight features proposed by the recent generic 

metadata models in the literature. These 

characteristics are used to compare various models. 

They are as follows: data categorization (DC), 

semantic enrichment (SE), data 

polymorphism/multiple zones (DP&MZ), data 

versioning (DV), similarity links (SL), metadata 

properties (MP), usage tracking (UT) and multiple 

granularity levels (MGL). 

However, existing generic models don't take into 

consideration Data Scalability (DS), even though this 

feature has been identified as relevant and adds to the 

model more extensibility and genericity. Nonetheless, 

data scalability accommodates rapid changes in the 

growth of data. Therefore, for a large-scale metadata 

system to perform well, distributed metadata 

management must be flexible and scalable [22]. In 

addition to that, according to [25], metadata 

management systems need a scalable feature as a  
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Table 3. Symbols used for the annotations of conceptual 

models 

Notations Meaning 

DE 
Data Entity: represents the raw dataset 

stored in the lake. 

G 

Group (or Category): represents a set of 

entities that are grouped according to a 

similarity measure (intra-group 

relationship). 

Gr 

Grouping: represents a relationship 

between two groups (inter-group 

relationship) 

DP 

Data Processing: represents the process 

applicable to the data to make them 

interoperable. 

Rel 
Relationship: represents intra-group 

and inter-group relationship. 

 

relevant requirement to provide consistent storage 

scalability and performance. Furthermore, by adding 

data scalability to the eight relevant features 

identified in the paragraph above, it appears none of 

all the models reviewed support all of them. Table 2 

highlights the exemplary features shared by the 

models examined in section 2.2. 

3.2 Proposed metadata model 

Within this subsection, we describe the design of 

our metadata model to manage heterogeneous data 

sources stored in the lake. Section 3.2.1 describes the 

conceptual model, which proposes the list of concepts 

to model the data lake. Section 3.2.2 describes the 

logical model, transformation rules, and a 

comparison with recent metadata models in terms of 

the proposed concepts. Thus, in order to evaluate the 

performance of our model, a list of evaluation 

measures is proposed in Section 3.2.3. 

3.2.1. Conceptual model 

In this part, we illustrate our conceptual model, 

which provides the entire process of data modeling. 

It aims to define the list of concepts that will be used 

by our model to establish the relationship between 

them. Thus, the type of this model describes what the 

system contains. In EMEMODL, we propose a list of 

concepts and their formalization that will be used for 

data modeling. However, we used the concept of a 

data entity as being generic to represent the different 

data sources. Indeed, several concepts have been 

proposed in the literature to reference data sources 

such as data units, datasets, raw data, etc. To 

standardize them, we have adopted the same concept 

used by goldMEDAL [28] to denote raw data. It is 

formalized, as we can see in Eq. (1). Therefore, each 

data entity must be scaled to support data scalability, 

which refers to a system's ability to evolve in order to 

process data of various types in large sizes and at ever 

quicker speeds. 

 

                         DE = {di /i ∈N}                           (1) 

 

Eventually, we introduced the categorization 

concept to denote a set of entities that are grouped 

according to common points of intersection, such as 

similar properties between them. We can formalize 

this concept as follows:  

 

                        G = {gi /i ∈N}                        (2) 

 

With: 

 

      gi={Clusterij / j∈N and Clusterij ⊆ DE}       (2.1) 

 

Afterward, we have defined the concept of 

grouping as being a collection of homogeneous 

groups or clusters. It is defined by the formalization 

below: 

 

                     Gr = {(gi, gj)/gi,j ⊆ G}                 (3) 

 

However, we cannot talk about all of these 

concepts without going through the process of 

defining the relationship between them and the 

process applicable to the data in order to make them 

interoperable. These last two concepts, data 

preparation process and relationship, are formalized 

as follows: 

 

DP={(Processinp, Processout)/Processinp,out ⊆ DE} (4) 

 

                                     And: 

 

                          Rel: DE, G →DE, G               (5) 

 

Next, Table 3 summarizes the symbols and 

notations considered in the conceptual model to 

facilitate its reading. 

Further, to illustrate these concepts well and make 

them more understandable, we have designed a 

model based on UML class diagrams, as shown in Fig. 

2. Thus, it is relevant to point out that we have 

introduced the concept of scalability. Yet, as we can 

notice in the conceptual diagram each data entity is 

linked to a set of metadata entity in which it is 

characterized by a set of attributes, among the set of 

attributes we find the size which designates the 

scalability to grow, evolves with future needs which 

are directed by data-driven. Data is constantly 

multiplying; Thinking about scalability from the start 
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Table 4. Metadata models assessment in terms of concepts 

Models Concepts 

Ravat and 

Zhao [11] 
Dataset Grouping Relationship Process 

Multiple 

zone 

granularity 

- 

MEDAL [12] 
Version, 

Presentation 
Grouping 

Similarity 

link 

Update, 

Transformation 

 

- 
- 

HANDLE [27] 
Data elements, 

Data units 

Categorization, 

Zone indicator 

Link and/or 

Relationship 

 

- 

 

- 
- 

goldMEDAL 

[28] 
Data entity Grouping Link Process 

Granularity 

zone 
- 

EMEMODL’s Data entity Grouping Relationship Data preparation Granularity Scalability 

 

 

 
Figure. 2 The UML class diagram for the conceptual metadata model 

 

 

of a data processing project is very beneficial and 

adapts with big data projects. 

From the conceptual metadata model designed 

above, data lake users can effectively understand, 

search, and navigate different data and their 

relationships. Indeed, the metadata collected from 

datasets are stored in the "metadata" class and 

undergoes a pre-treatment process. To enable 

semantics between heterogeneous data sources, the 

class "relationship" was created for this need. Based 

on the "Zone_Enumeration" class, datasets can be 

assigned to one of the three zones: raw data, process, 

or access zone. 

 

3.2.2. Logical model 

In this sub-subsection, we present a logical model 

that describes the data in as much detail as possible, 

regardless of how the data will be physically 

implemented. Yet, we evaluate our model by 

comparing it with the complete metadata models in 

terms of concepts. When a particular concept has no 

equivalent, in this case, it will be marked by a dash. 

As illustrated in the Table 4, through the six concepts 

proposed by our metadata model, we will be able to 

generalize the different concepts suggested by other 

models, like [11, 12, 27, 28]. Indeed, for instance, the 

concept of data entity represents the basic unit of our 
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model. It is representative, standardized, and flexible 

in terms of multiple data granularity. 

Similarly, for the other concepts such as grouping, 

relationship, data preparation, multiple data 

granularity, and scalability. Furthermore, 

establishing extensible terminologies and 

determining the relationship between these different 

concepts is considered one of the major requirements 

in modeling a metadata model. Without forgetting the 

scaling of the data, which represents the main asset 

that favors EMEMODL compared to the proposed 

models. 

However, when working with a relational 

database, the logical data model refers to a relational 

model, abbreviated LRDM, which stands for logical 

relational data model. On the other hand, when 

working with an oriented graph database, this refers 

to a graphic model, denoted by LGDM, which stands 

for logic graph data model. Nonetheless, it is crucial 

to recognize that the conceptual model cannot be 

directly implemented in a database; therefore, it is 

mandatory to transform the data model. Faced with 

this finding, we define in Table 5, the passage of the 

transformation rules from the conceptual data model 

to the logical data model. 

3.2.3. Evaluation metrics 

The performance of RDMBS and GDBMS is 

assessed using the following metrics: 

- Processing time for a query: a CQL and 

SQL queries execution time.  

- Resources consumption such as RAM 

and CPU. 

We execute each graph and SQL query ten times, 

and then we calculate the average memory and CPU 

consumption. 

 
Table 5. Transformation rules from conceptual into 

logical model. 

UML Element RDBMS GDBMS 

Interface, Class Table Vertex 

Attributes Fields 
Node 

properties 

Simple 

Association 

Foreign key in the 

table with minimum 

cardinalities 

Edge 

Composition  

(Or aggregation) 

relationship 

Additional class 

contains primary keys 

of related tables 

Inheritance 

relationship 

Foreign key in child 

classes 

(Transformation by 

reference) 

 

 

Table 6. Experimental machine specification. 

Hardware Specifications Software Specifications 

CPU: Intel(R) Core(TM) 

i7-10510U CPU @ 

1.80GHz 

Operating System (OS) : 

Windows 10 

RAM: 8GB 
DBMS:  

MYSQL & Neo4j 

DISK (HDD): 1TO Query language: SQL & CQL 

GPU: NVIDIA GeForce 

MX250 

Category: (Row & Graph) 

Storage engine 

 
Table 7. TPC-H dataset description 

Datasets 

Name 
Size Description 

TPCH-SF1 100M 
Consists of the base row size 

(several million elements). 

TPCH-SF10 500M 
Consists of the base row 

size x 10. 

TPCH-SF100 1G 

Consists of the base row size  

x 100 (several hundred 

million elements). 

 

4. Experimental results and discussions 

In this section, we begin by describing the 

experimental setup. Then, we assess EMEMODL 

relevance based on RDBMS and GDBMS over the 

TPC-H datasets under the evaluation metrics defined 

in Section 3.2.3. Finally, we'll discuss our findings. 

4.1 Experiment setup 

The experiments are carried out on a machine 

with the hardware and software specifications 

summarized in Table 6. 

4.2 Experiment datasets 

To assess the performance of our proposed 

metadata model, we performed the test on a suite of 

business-oriented ad-hoc TPC-H datasets of different 

sizes, varying from 100 MB to 1 GB, as we can see 

in Table 7. The TPC-H datasets consists of 

concurrent data modifications and a suite of business 

ad-hoc queries. The database's queries and data have 

been chosen for their broad industry relevance. This 

benchmark exemplifies decision support systems that 

analyze substantial amounts of data, carry out queries 

with a high level of complexity, and provide solutions 
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(a) 

 
(b) 

Figure. 3 MySQL and Neo4j TPC-H Schema 

 

 

to important business concerns. Thus, it allows us to 

test our SQL and CQL queries with a small set of 

records, and then execute the same queries on a 

bigger set of records to test scalability and flexibility 

capabilities for large-scale datasets as part of showing 

the strength of EMEMODL. There are eight tables 

that make up the TPC-H dataset. The relational and 

graph schema are illustrated in Fig. 3. 

Following Fig. 3 (a), the prefix of the table's 

column names is shown in the figure by the 

parenthesis after each table name. Thus, the arrows 

pointing in the direction reflect the one-to-many link 

between tables. Yet, the number or formula under 

each table name indicates the number of records in 

that table. Some are scaled by SF, or scale factor, 

which is used to identify the appropriate database 

based on its size. 

Even though the TPC-H data model contains 

eight entities. In Fig. 3 (b), we have only defined 

seven node labels (customer, supplier, nation, region, 
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Table 8. Mapping between MySQL and Neo4j Queries 

 
MySQL RDBMS 

(SQL) 
Neo4j GDBMS (CQL) 

L
D

D
 

CREATE TABLE 

table_name 

(property type 

[constraint], 

…); 

CREATE (node:label 

{key: value}); 

DROP TABLE 

table_name; 

MATCH (node:label 

{key: value}) 

DELETE node; 

ALTER TABLE 

table_name 

[ADD, MODIFY, or 

DROP](property 

type 

[constraint], 

…); 

MATCH (node:label 

{properties}) SET 

node.property1 = 

node.property2 

RETURN node 

L
M

D
 

INSERT INTO 

table_name 

VALUES(value1, 

…); 

MATCH 

(node1:label1), 

(node2:label2) 

WHERE 

node1.property1 = 

valueX AND 

node2.property2=va

lueY CREATE 

(node1)-[r: 

relation_type]-

>(node2) RETURN 

node1, node2; 

DELETE FROM 

table_name 

WHERE Condition; 

MATCH 

(node:label{proper

ties}) DETACH 

DELETE node; 

UPDATE 

table_name 

SET attribut = 

value 

WHERE Condition; 

MATCH (node {key: 

value}) SET 

node:newLabel 

RETURN node.key, 

labels(node) AS 

labels 

L
ID

 

SELECT 

column1, ... 

FROM table_name 

WHERE key=value 

ORDER BY 

column1, ...; 

MATCH (node:label) 

WHERE node.key = 

value RETURN 

node.property AS 

propertyLable 

ORDER BY 

propertyLable; 

 

order, lineitem, and part) because the Partsupp entity 

has been replaced by a relationship. Thus, we have 

defined six relationship types (Contains, 

Supplied_By, Has_details, Created_By, Located_in, 

and From) to capture all of the relationships between 

the various entities in the TPC-H. The Has_details 

relationship type in the TPC-H data model substitutes 

the Partsupp entity, and we store the availqty and 

supplycost values from the Partsupp entity inside the 

relationship. 

4.3 Experiment results analysis 

In this section, we summarize the experimental 

findings and analyze them. Based on the 

experimental setup and datasets, we perform four 

experimental scenarios. Before starting the different 

performance scenarios of our model, we have 

summarized some of the correspondence queries 

between the relational and graphical models, as 

illustrated in Table 8. 

After having defined the correspondence 

between the SQL and CQL query languages of the 

two database management systems, we have chosen 

four queries from the TPCH benchmarks to test the 

scalability performance of our metadata model in 

MySQL, which ensures the requesting of data via an 

easy-to-implement navigation language, thus 

ensuring a high-security level. In addition, we 

implemented the queries on Neo4j, which ensures 

scalability and flexibility. 

To test our hypothesis, we setup an experiment 

on three different TPC-H datasets, using MySQL and 

Neo4j. For the preliminary evaluation, four different 

queries are run on the objects of the mentioned 

schema using both tools, i.e., two SGBDs. The 

queries are listed in Table 9. The queries in MySQL 

were implemented using SQL, whereas the queries in 

Neo4j were implemented using CQL. The results of 

our experiment assess the performance of our queries 

in terms of the evaluation criteria defined in Section 

3.2.3. Show the mean response time of MySQL and 

Neo4J in milliseconds (ms) for each of the four 

queries across the three datasets used; also, resource 

consumption and the ability of the model to be 

scalable and flexible. 

Experiments have shown that Neo4j performs well in 

most queries for the TPC-H data set in a reasonable 

amount of time, especially for large datasets, i.e., 

scaling. Fig. 4 shows the time taken by each query in 

milliseconds. In simple queries cases such as query 1 

and 2, MySQL outperforms Neo4J. But, Neo4J 

outperforms MySQL when multiple joins between 

tables are involved. Indeed, query 4 is likely the most 

complex in terms of data that needs to be related, as 

it requires five joins across six tables as well as an 

ordering operation (order by clause), indicating that 

data size has an impact on query performance when 

queries are complex. Because joins are known to be 

expensive operations in relational databases, we can 

expect performance to suffer as data (table) size 

grows in the presence of multiple joins. Similarly, for 

query 3, MySQL performs worse than Neo4j, and this 

query also has four joins and an ordering operation. 

Thus, Neo4j eliminates expensive computation like 
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Table 9. Tested Queries 

Query 

ID 
Business Queries 

Query 

With Join 

Query 

Without 

Join 

No# of 

tables joins 

uses primitive 

clauses (order 

by, group 

by, ...) 

Q1 

Revenue Change Forecasting: 

quantifies the amount of revenue increase 

that would have occurred if certain 

companywide discounts were eliminated 

in a given percentage range in a given 

year 

 X   

Q2 

Pricing Summary Report: provides a 

pricing summary report for line items 

shipped in a specified date 

 X  X 

Q3 

Supplier with the Lowest Cost: 

determines which supplier should be 

chosen to place an order for a given part 

in a given region at the lowest possible 

cost 

X  5 X 

Q4 

Volume of Local Suppliers: lists the 

revenue volume generated by local 

suppliers 

X  6 X 

 

 
(a)  

 
(b) 

 
(c) 

Figure. 4 Queries execution time (ms): (a) TPCH_1 

dataset, (b) TPCH_10, and (c) TPCH_100 

join operations. Furthermore, increasing the number 

of join tables implies an exponential decrease in 

execution time for neo4j. When the dataset size 

grows, the graph database outperforms relational 

databases. 

Fig. 5 (a) and 5 (b) show the average CPU and 

main memory usage rates. From the figure, we can 

observe that Neo4j also outperforms MySQL in terms 

of CPU and main memory usage. When the data size 

increases, the RDBMS requires a lot of resources to 

consume. Furthermore, it remains inefficient in terms 

of resource consumption. 

4.4 Discussion 

Neo4j database management systems typically 

process data faster than relational ones, due mainly to 

their simpler data models and the fact that they are 

not required to commit to certain restrictions imposed 

by the ACID properties. Furthermore, relationship 

modeling is not appropriate in relational databases; 

because, they use foreign keys to link one piece of 

information to another. Further, Neo4j is used to 

efficiently manage and process large amounts of 

unstructured data. As the size of the dataset grows, 

graph databases outperform relational databases. Due 

to constraints, a relational database follows a rigid 

schema structure and it is difficult to manage changes 

when dealing with multiple tables. Certainly, graph 

databases are a good choice for applications that 

involve a large number of data relationships. The 

retrieval times for big data queries give us a 

conclusion that graph databases are suitable for 

EMEMODL. 
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(a) 

 
(b) 

Figure. 5 Resource consumption for query execution (%): 

(a) CPU Usage and (b) RAM Usage 
 

Our contribution demonstrates the importance of 

high flexibility and better scalability as major 

features, giving more extensibility and genericity, 

which is not supported by recent models such as [9-

13, 26-28]. Although the NoSQL paradigm will never 

completely replace the relational paradigm, it may 

become a better option for projects that require 

scalability and work with unstructured data. NoSQL 

databases are horizontally scalable databases that can 

be expanded by adding new servers to a cluster 

environment. In the cluster, commodity hardware is 

used to store big data. When selecting a database 

management system for our software application, we 

must consider the DBMS's scalability. Relational 

databases use vertical scalability, which allows the 

existing node's storage and processing capabilities to 

grow as the volume of data does. This type of 

scalability is costly due to increased hardware failure 

risk and hardware costs for future upgradability. As a 

result, the overall implementation cost will rise as 

data volumes increase. Whereas, NoSQL databases 

use horizontal scalability, which allows the system to 

grow by adding more nodes for data storage and 

processing power when the volume of data is high. 

As a result, horizontal scalability is a less expensive 

solution than vertical scalability. Thus, NoSQL 

databases support auto-sharding by distributing data 

across multiple servers, which improves database 

performance. 

Additionally, the ability to change the database 

schema during the development or evolution of a 

software application is not a feature provided by all 

DBMS. Then, the static database schema for SQL 

databases must be pre-defined before data injection. 

Therefore, modification of the database schema 

should be considered precisely, because frequent 

changes may result in performance degradation, 

service failure, or even call for maintenance and 

further investments to adjust application components. 

However, NoSQL databases do not require a pre-

defined schema because they have a dynamic one. 

Thanks of their dynamic schema design, NoSQL 

databases can quickly adapt to changes in the data 

structure. The data structure is another issue that 

affects the database's flexibility. SQL databases only 

handle well-structured data. As data volume grows, 

this can have an impact on database performance. 

While NoSQL databases can handle all types of data, 

including structured, semi-structured, and 

unstructured data; they are used for agile and scalable 

environments that are constantly developing and 

evolving due to their data modeling. When compared 

to relational databases, NoSQL databases have a 

more flexible model, making it easier to organize 

large amounts of data in various formats and with 

flexible growth over time. NoSQL is the ideal 

solution for large datasets, the need for constant 

schema change, and the need for performance and 

flexibility. 

5. Conclusion 

In this contribution, we investigate the limits of 

recent metadata models by introducing EMEMODLs 

as a new extensible, generic metadata model for data 

lakes that supports data flexibility and scalability to 

fit the challenges of big data projects such as volume, 

variety, value, veracity, etc. Indeed, our model is 

based on a set of features and a list of concepts. 

Moreover, the proposed concepts encompass almost 

all the concepts suggested by the literature, as shown 

in subsection 3.2.2. Eventually, EMEMODLS 

supports all the ideal features identified in the 

comparison between the different metadata models. 

If this indicates something, it means the extensibility 

and genericity aspects induced by our model. 

However, analyzing the issue of different data 

formats and their effectiveness in storing and 

processing requires a database with a flexible and 

scalable DBMS. Thus, Neo4j proved to be one of the 

best solutions for dealing big data with an adjustable 

schema, in contrary to MySQL, which requires a 
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predefined schema. Therefore, Neo4j is less 

expensive in computation for the case of joins. It is 

capable of handling large amounts of data at a low 

cost and with minimal overhead. Furthermore, 

GDBMS is more suitable for EMEMODL. Finally, to 

the best of our knowledge, designing a metadata 

model for data lakes remains a very active research 

topic open to all researchers. An essential future 

perspective concerns comparison with other NoSQL 

database types, such as column-oriented HBase, 

document-oriented Cassandra, and key-value 

databases like Redis. 
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