
Received: February 10, 2023. Revised: March 12, 2023. 231

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

EMEMODL: Extensible Metadata Model for Big Data Lakes

Mohamed Cherradi1* Anass El Haddadi1

1Data Science and Competetive Intelligence Team (DSCI), ENSAH,

Abdelmalek Essaadi University (UAE) Tetouan, Morocco

* Corresponding author’s Email: m.cherradi@uae.ac.ma

Abstract: The evolution of the huge amount of heterogeneous data sources introduces the emergence of several fresh

new concepts. Among one of the most well-known concepts emerging as a recent and trending topic in big data is the

data lake. Which represents a central repository that stores heterogeneous data sources in its native format without any

predefined schema. In the absence of any enforced schema, effective metadata management based on metadata models

remains an active research topic to address the data lake issues knowing by a data swamp. However, the examination

of existing metadata models shows that none of them proposes a complete model. In this article, we propose a generic

and extensible metadata model that supports high flexibility and better scalability in the integration of metadata. With

these capabilities, EMEMODL enables comprehensive metadata management for data lakes. We show EMEMODL’s

feasibility through a prototypical implementation based on TPC-H datasets of different sizes to prove the scaling

feature, using MySQL and Neo4J. The findings of these experiments revealed encouraging results for big data queries

that give us a graph database, which shows an efficient ability to manage and process large amounts of data compared

to a relational database in terms of retrieval time queries and resource consumption, including cpu and memory usage.

Keywords: Big Data, Data lake, Database management, Metadata models.

1. Introduction

Nowadays, the exponential expansion of created

data has given rise to the concept of data lakes in the

big data era. Data lakes have emerged as one of the

trending topics for big data that has attracted an

increasing amount of interest from a group of

researchers. The basic idea of the data lake concept is

simple: “If you think of a warehouse as a store of

bottled water, one packaged for easy consumption,

the data lake is a great source of water in its natural

state”. It enables the storage of heterogeneous data

sources “as-is” in their native format. There is no

predetermined schema necessary for data stored in

the lake; this makes it possible to store vast amounts

of heterogeneous data quickly and easily. However,

without an effective metadata management system,

the integration of data without any rigorous structure

results in a massive collection of undocumented data

that can quickly turn a data lake into a data swamp

[1]. The term "data swamp" refers to useless,

undocumented, or inexploitable data. Therefore,

enhancing the value of big data is made possible in

large part by the data lake metadata management

system, also known as “data intelligence” or “large-

scale data” [2]. Thus, the data lake concept was first

introduced by Dixon, as an efficient solution to the

gaps introduced by data marts [3]. It is defined as a

large storage space for various data sources that

allows users to explore different data stored in the

lakes. It provides not only a means of storing various

data sources but also an efficient system of data

processing. Furthermore, the data lake quickly gained

importance and significance. Indeed, many

researchers have started to work in this direction to

address the data lake issues [4, 5]. Thus, metadata

management is one of the key topics explored in the

literature to prevent the conversion of data lakes into

data swamps [6-8].

The key subject of metadata management is to

understand the metadata model concept [9-12]. A

metadata model is defined as an abstract model to

show how the metadata associated with the data

Received: February 10, 2023. Revised: March 12, 2023. 232

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

stored in the lake is organized and related to each

other. However, most metadata model proposals are

not sufficiently generic [7, 13, 14]. It frequently

focuses on specific use cases and provides a few

details on data design. This constitutes a significant

limitation, as several important use cases require

flexibility and scalability. Therefore, defining a

metadata model for a specific use case is not realistic

because the number of use cases is something that is

not constant and varies with the requirements of each

organization.

To address the genericity issue with metadata

models that offer flexibility and scalability, which

reflect the essential components that complete a

metadata model's extensibility. Thus, analyzing the

issue of different data formats and their effectiveness

in storing and processing data using DBMS

scalability proved to be one of the best solutions for

dealing with this type of schema-less data [15].

Furthermore, our purpose aims to build a generic

model by enhancing existing metadata models with

new capabilities like flexibility and scalability, which

will help us address the issues that massive data lakes

have brought about, such as volume, variety, value,

veracity, etc. Therefore, our objective is to create a

generic model that can manage and adapt to a

collection of use cases in order to overcome the

limitations provided by a group of recent metadata

models that only concentrate on particular use cases

[16]. In this article, we propose an efficient approach

to building metadata models based on a typology of

metadata, which covers the ideal set of metadata

model functionalities. The construction of our model

passes through modeling at three levels: 1)

conceptual, 2) logical, and 3) physical. For each level,

we associate with it the list of identical concepts with

their mathematical formalization. Additionally, we

have introduced the passage of transformation from

one level to another. To assess the effectiveness of

our model, we compared it with recent metadata

models. The benchmark study reflects the highest

level of abstraction for our model, which is explained

by its genericity. The experimental evaluation

focuses on three sample TPC-H datasets of different

sizes. The experiments were carried out with MySQL

and Neo4j.

The remainder of this article is organized as

follows: section 2, examines related literature on data

lake metadata management. In section 3, we

investigate the methodology followed by our

metadata models. In section 4, we report the results

and discussion of our study. Finally, section 5,

concludes the paper and suggests future research

perspectives.

Figure. 1 Metadata categorization in data lakes

2. Related works

A literature review was carried out to provide us

with an overview of metadata management for data

lake information systems. In fact, metadata

management plays a significant role, contributing to

maximizing the value of the data stored in the lake.

Within this section, we examine recent literature

reviews about metadata categorization and metadata

models for data lakes.

2.1 Metadata categorization

Metadata management plays a significant role in

allowing users to efficiently analyze and explore

various data sources collected in the lake. Indeed, as

shown in Table 1, a variety of approaches aid in

differentiating metadata categorisation. Other works

exist that are not listed in Table 1. For example, J.

Riley [17] categorizes metadata according to three

types: structural, descriptive, and administrative

metadata. Structural metadata describes the types,

versions, and relationships between subsets of data

and how these belong together. Descriptive metadata

describes data sources with the aim of discovery and

identification. It can contain items such as the author,

title, keywords, etc. Lastly, the administrative

metadata provides information that aids in resource

management, such as when and how data is created

and who can access it.

In this article, we address metadata categorization

by adapting the existing classification of [18], which

we have extended by adding a data catalog at the

content metadata category level, as shown in Fig. 1.

Concern level metadata category represents the

metadata typology adopted by Diamantini [13]. It

encompasses three types of metadata: business,

Received: February 10, 2023. Revised: March 12, 2023. 233

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

Table 1. The two main approaches for creating metadata

models for data lakes.

Metadata

(MD)

Models

1st approach

MD Categorization

2nd approach

List of MD

Management

Features

GEMMS[26]
Semantic MD

Structure MD
-

Ground [10]

Behaviour MD

Application MD

Versioning MD

-

Diamantini

[13]

Technical MD

Business MD

Operational MD

-

Ravat and

Zhao [11]

Inter-MD

Intra-MD
-

MEDAL

[12]

Inter-MD

Intra-MD

Data Indexing,

Semantics,

enrichment,

lineage, linkage,

versioning,

polymorphisme

HANDLE

[27]
-

Multiple

granularity

levels,

Zone MD,

MD properties

goldMEDAL

[28]

Inter-MD

Intra-MD

Global-MD

Data Linkage,

Semantic

enrichment,

Usage tracking

technical and operational metadata. Business

metadata provides meaning and contexts to technical

metadata [18], for example, book title, publisher,

authors, etc. Technical metadata provides

information on the technical aspects of data, for

example, size, type, table name, column name, etc.

Finally, operational metadata describes details of the

accessing and processing of data, for example, access

rights, provenance, quality requirements, etc.

For the typology metadata category, this is the

metadata typology adopted by MEDAL [12]. It

divides metadata into three types: intra-metadata,

inter-metadata, and global metadata. Intra-metadata

points to a specific data source (or object in the jargon

of MEDAL). It includes sex functionalities, such as

semantic enrichment (SE), data indexing (DI), link

generation and conservation (LG), data

polymorphism (DP), data versioning (DV), and usage

tracking (UT). Inter-metadata types represent the

links or relationships between different objects. It

contains the following functionalities: Object

groupings, similarity links, and parenthood

relationships. Finally, global metadata is defined by

its name, i.e., neither intra-metadata nor inter-

metadata. It concerns the entire resource stored in the

lake.

Lastly, for the content metadata category, this

category groups together two types, namely: data

profile and data catalog. Following [19-21] through

big data profile, we can investigate a posteriori data

analysis and data discovery. Hence, the main

characteristic of the data lake is "schema-on-read",

i.e., the analysis performed when needed. We cannot

talk about the metadata content category without

citing a data catalog. A data catalog is defined as a

collection of metadata combined with data

management that helps different users to find data

that they need. Furthermore, data catalogs have

increasingly become the standard for metadata

management in the big data era and self-service

analytics.

2.2 Metadata models

Several approaches have been proposed to handle

metadata in data lakes. Nonetheless, the majority of

them provide a few details on how data is

conceptually designed [22, 23]. Furthermore, a

review of all recently proposed metadata models in

the literature is absolutely essential. Yet, metadata

models serve as a broad framework for organizing

metadata [24, 25]. Thus, each metadata model is

unique from other models in terms of the concepts it

has presented, the functionalities it offers, or a variety

of other variables. GEMMS [26] is an illustration of

a generic metadata model that can be utilized with

data lakes, despite the fact that this was not its

intended usage. When considering the concepts of the

metadata models, GEMMS provides two concepts:

the data file and the data unit. Nevertheless, GEMMS

needs data structure information, which is

incompatible with unstructured data. Ground [10] is

suggested as a way to manage unstructured data

without being aware of its structure. Despite its

greater significance in depicting the relationship

between the various data sources, Ground does not

support data linkage. In order to address this issue,

Diamantini [13] added similarity linkages despite the

fact that they lacked data versioning and tracking.

According to the Diamantini model, Ravat and Zhao

[11] suggest that each step is connected to a particular

zone in the metadata zone. Yet, data granularity

aspects are not under the control of Ravat and Zhao.

Therefore, MEDAL [12] is suggested to evaluate

granularity features but does not handle various data

granularity levels. Then, HANDLE [27] is proposed

as a solution to overcome this gap. However,

HANDLE is incomplete due to the fact that its

architecture does not permit data lineage. As a result,

Received: February 10, 2023. Revised: March 12, 2023. 234

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

Table 2. Ideal features supported by data lakes metadata models

Features

Models
SE

DP

&

MZ

DV MGL UT DC SL MP DS Total

GEMMS [26] √ √ √ √ 4/9

Ground [10] √ √ √ √ √ 5/9

Diamantini [13] √ √ √ √ 4/9

Ravat and Zhao [11] √ √ √ √ √ √ √ 7/9

MEDAL [12] √ √ √ √ √ √ √ 7/9

HANDLE [27] √ √ √ √ √ √ √ 7/9

goldMEDAL [28] √ √ √ √ √ √ √ √ 8/9

EMEMODL’s √ √ √ √ √ √ √ √ √ 9/9

goldMEDAL [28] is proposed to cover the gaps left

by MEDAL and HANDLE. Subsequently,

goldMEDAL is not considered generic in the sense

that it doesn't provide data scalability. This feature

will be the major asset of our article.

However, to keep things straightforward and so

that everyone can understand how metadata models

are created, HANDLE [27] describes the metadata

model building according to the most common and

widely used ways in the literature. The first approach

is based on the metadata classification, while the

second is based on the functionalities supported by

each metadata model. Table 1, summaries these two

approaches.

3. Methodology

In this section, we illustrate our proposed

metadata model called "EMEMODL". To carry out

this study, we have presented a methodology that will

describe the main stages in the realization of our

contribution. Such proposition of a metadata model

for data lakes needed some requirements, like the set

of ideal requirements for a generic and extensible

metadata model defined in section 3.1. Further, the

design of our metadata model, and for more sake of

precision, the list of concepts which will be designed

based on the conceptual and logical models described

in section 3.2.

3.1 Ideal requirements for a generic and

extensible metadata model

After examining the metadata models in the

related work section, it appears none of the existing

models propose a generic and extensible model. Thus,

a generic metadata model should be flexible and

scalable to support different data lake use cases. In

this article, we address the genericity aspect gap by

exploiting existing models and their shortcomings.

Indeed, we consider the most abundant features that

are not taken into consideration by a metadata model

to be the generic aspect of such a model. Therefore,

features supported by different models are a suitable

way to compare them [12].

The generic degree of the existing models yields

results that are not sufficiently generic and cannot

handle different use cases. Thus, the need for a

generic and extensible metadata model remains a real

challenge in data management. For this reason, we

offer generic requirements supported by recent

existing metadata models and ones that are not

supported. This is a significant add-on makes it very

generic and extensible. It can support and handle any

data lake use case. To the best of our knowledge,

there are eight features proposed by the recent generic

metadata models in the literature. These

characteristics are used to compare various models.

They are as follows: data categorization (DC),

semantic enrichment (SE), data

polymorphism/multiple zones (DP&MZ), data

versioning (DV), similarity links (SL), metadata

properties (MP), usage tracking (UT) and multiple

granularity levels (MGL).

However, existing generic models don't take into

consideration Data Scalability (DS), even though this

feature has been identified as relevant and adds to the

model more extensibility and genericity. Nonetheless,

data scalability accommodates rapid changes in the

growth of data. Therefore, for a large-scale metadata

system to perform well, distributed metadata

management must be flexible and scalable [22]. In

addition to that, according to [25], metadata

management systems need a scalable feature as a

Received: February 10, 2023. Revised: March 12, 2023. 235

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

Table 3. Symbols used for the annotations of conceptual

models

Notations Meaning

DE
Data Entity: represents the raw dataset

stored in the lake.

G

Group (or Category): represents a set of

entities that are grouped according to a

similarity measure (intra-group

relationship).

Gr

Grouping: represents a relationship

between two groups (inter-group

relationship)

DP

Data Processing: represents the process

applicable to the data to make them

interoperable.

Rel
Relationship: represents intra-group

and inter-group relationship.

relevant requirement to provide consistent storage

scalability and performance. Furthermore, by adding

data scalability to the eight relevant features

identified in the paragraph above, it appears none of

all the models reviewed support all of them. Table 2

highlights the exemplary features shared by the

models examined in section 2.2.

3.2 Proposed metadata model

Within this subsection, we describe the design of

our metadata model to manage heterogeneous data

sources stored in the lake. Section 3.2.1 describes the

conceptual model, which proposes the list of concepts

to model the data lake. Section 3.2.2 describes the

logical model, transformation rules, and a

comparison with recent metadata models in terms of

the proposed concepts. Thus, in order to evaluate the

performance of our model, a list of evaluation

measures is proposed in Section 3.2.3.

3.2.1. Conceptual model

In this part, we illustrate our conceptual model,

which provides the entire process of data modeling.

It aims to define the list of concepts that will be used

by our model to establish the relationship between

them. Thus, the type of this model describes what the

system contains. In EMEMODL, we propose a list of

concepts and their formalization that will be used for

data modeling. However, we used the concept of a

data entity as being generic to represent the different

data sources. Indeed, several concepts have been

proposed in the literature to reference data sources

such as data units, datasets, raw data, etc. To

standardize them, we have adopted the same concept

used by goldMEDAL [28] to denote raw data. It is

formalized, as we can see in Eq. (1). Therefore, each

data entity must be scaled to support data scalability,

which refers to a system's ability to evolve in order to

process data of various types in large sizes and at ever

quicker speeds.

 DE = {di /i ∈N} (1)

Eventually, we introduced the categorization

concept to denote a set of entities that are grouped

according to common points of intersection, such as

similar properties between them. We can formalize

this concept as follows:

 G = {gi /i ∈N} (2)

With:

 gi={Clusterij / j∈N and Clusterij ⊆ DE} (2.1)

Afterward, we have defined the concept of

grouping as being a collection of homogeneous

groups or clusters. It is defined by the formalization

below:

 Gr = {(gi, gj)/gi,j ⊆ G} (3)

However, we cannot talk about all of these

concepts without going through the process of

defining the relationship between them and the

process applicable to the data in order to make them

interoperable. These last two concepts, data

preparation process and relationship, are formalized

as follows:

DP={(Processinp, Processout)/Processinp,out ⊆ DE} (4)

 And:

 Rel: DE, G →DE, G (5)

Next, Table 3 summarizes the symbols and

notations considered in the conceptual model to

facilitate its reading.

Further, to illustrate these concepts well and make

them more understandable, we have designed a

model based on UML class diagrams, as shown in Fig.

2. Thus, it is relevant to point out that we have

introduced the concept of scalability. Yet, as we can

notice in the conceptual diagram each data entity is

linked to a set of metadata entity in which it is

characterized by a set of attributes, among the set of

attributes we find the size which designates the

scalability to grow, evolves with future needs which

are directed by data-driven. Data is constantly

multiplying; Thinking about scalability from the start

Received: February 10, 2023. Revised: March 12, 2023. 236

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

Table 4. Metadata models assessment in terms of concepts

Models Concepts

Ravat and

Zhao [11]
Dataset Grouping Relationship Process

Multiple

zone

granularity

-

MEDAL [12]
Version,

Presentation
Grouping

Similarity

link

Update,

Transformation

-
-

HANDLE [27]
Data elements,

Data units

Categorization,

Zone indicator

Link and/or

Relationship

-

-
-

goldMEDAL

[28]
Data entity Grouping Link Process

Granularity

zone
-

EMEMODL’s Data entity Grouping Relationship Data preparation Granularity Scalability

Figure. 2 The UML class diagram for the conceptual metadata model

of a data processing project is very beneficial and

adapts with big data projects.

From the conceptual metadata model designed

above, data lake users can effectively understand,

search, and navigate different data and their

relationships. Indeed, the metadata collected from

datasets are stored in the "metadata" class and

undergoes a pre-treatment process. To enable

semantics between heterogeneous data sources, the

class "relationship" was created for this need. Based

on the "Zone_Enumeration" class, datasets can be

assigned to one of the three zones: raw data, process,

or access zone.

3.2.2. Logical model

In this sub-subsection, we present a logical model

that describes the data in as much detail as possible,

regardless of how the data will be physically

implemented. Yet, we evaluate our model by

comparing it with the complete metadata models in

terms of concepts. When a particular concept has no

equivalent, in this case, it will be marked by a dash.

As illustrated in the Table 4, through the six concepts

proposed by our metadata model, we will be able to

generalize the different concepts suggested by other

models, like [11, 12, 27, 28]. Indeed, for instance, the

concept of data entity represents the basic unit of our

Received: February 10, 2023. Revised: March 12, 2023. 237

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

model. It is representative, standardized, and flexible

in terms of multiple data granularity.

Similarly, for the other concepts such as grouping,

relationship, data preparation, multiple data

granularity, and scalability. Furthermore,

establishing extensible terminologies and

determining the relationship between these different

concepts is considered one of the major requirements

in modeling a metadata model. Without forgetting the

scaling of the data, which represents the main asset

that favors EMEMODL compared to the proposed

models.

However, when working with a relational

database, the logical data model refers to a relational

model, abbreviated LRDM, which stands for logical

relational data model. On the other hand, when

working with an oriented graph database, this refers

to a graphic model, denoted by LGDM, which stands

for logic graph data model. Nonetheless, it is crucial

to recognize that the conceptual model cannot be

directly implemented in a database; therefore, it is

mandatory to transform the data model. Faced with

this finding, we define in Table 5, the passage of the

transformation rules from the conceptual data model

to the logical data model.

3.2.3. Evaluation metrics

The performance of RDMBS and GDBMS is

assessed using the following metrics:

- Processing time for a query: a CQL and

SQL queries execution time.

- Resources consumption such as RAM

and CPU.

We execute each graph and SQL query ten times,

and then we calculate the average memory and CPU

consumption.

Table 5. Transformation rules from conceptual into

logical model.

UML Element RDBMS GDBMS

Interface, Class Table Vertex

Attributes Fields
Node

properties

Simple

Association

Foreign key in the

table with minimum

cardinalities

Edge

Composition

(Or aggregation)

relationship

Additional class

contains primary keys

of related tables

Inheritance

relationship

Foreign key in child

classes

(Transformation by

reference)

Table 6. Experimental machine specification.

Hardware Specifications Software Specifications

CPU: Intel(R) Core(TM)

i7-10510U CPU @

1.80GHz

Operating System (OS) :

Windows 10

RAM: 8GB
DBMS:

MYSQL & Neo4j

DISK (HDD): 1TO Query language: SQL & CQL

GPU: NVIDIA GeForce

MX250

Category: (Row & Graph)

Storage engine

Table 7. TPC-H dataset description

Datasets

Name
Size Description

TPCH-SF1 100M
Consists of the base row size

(several million elements).

TPCH-SF10 500M
Consists of the base row

size x 10.

TPCH-SF100 1G

Consists of the base row size

x 100 (several hundred

million elements).

4. Experimental results and discussions

In this section, we begin by describing the

experimental setup. Then, we assess EMEMODL

relevance based on RDBMS and GDBMS over the

TPC-H datasets under the evaluation metrics defined

in Section 3.2.3. Finally, we'll discuss our findings.

4.1 Experiment setup

The experiments are carried out on a machine

with the hardware and software specifications

summarized in Table 6.

4.2 Experiment datasets

To assess the performance of our proposed

metadata model, we performed the test on a suite of

business-oriented ad-hoc TPC-H datasets of different

sizes, varying from 100 MB to 1 GB, as we can see

in Table 7. The TPC-H datasets consists of

concurrent data modifications and a suite of business

ad-hoc queries. The database's queries and data have

been chosen for their broad industry relevance. This

benchmark exemplifies decision support systems that

analyze substantial amounts of data, carry out queries

with a high level of complexity, and provide solutions

Received: February 10, 2023. Revised: March 12, 2023. 238

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

(a)

(b)

Figure. 3 MySQL and Neo4j TPC-H Schema

to important business concerns. Thus, it allows us to

test our SQL and CQL queries with a small set of

records, and then execute the same queries on a

bigger set of records to test scalability and flexibility

capabilities for large-scale datasets as part of showing

the strength of EMEMODL. There are eight tables

that make up the TPC-H dataset. The relational and

graph schema are illustrated in Fig. 3.

Following Fig. 3 (a), the prefix of the table's

column names is shown in the figure by the

parenthesis after each table name. Thus, the arrows

pointing in the direction reflect the one-to-many link

between tables. Yet, the number or formula under

each table name indicates the number of records in

that table. Some are scaled by SF, or scale factor,

which is used to identify the appropriate database

based on its size.

Even though the TPC-H data model contains

eight entities. In Fig. 3 (b), we have only defined

seven node labels (customer, supplier, nation, region,

Received: February 10, 2023. Revised: March 12, 2023. 239

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

Table 8. Mapping between MySQL and Neo4j Queries

MySQL RDBMS

(SQL)
Neo4j GDBMS (CQL)

L
D

D

CREATE TABLE

table_name

(property type

[constraint],

…);

CREATE (node:label

{key: value});

DROP TABLE

table_name;

MATCH (node:label

{key: value})

DELETE node;

ALTER TABLE

table_name

[ADD, MODIFY, or

DROP](property

type

[constraint],

…);

MATCH (node:label

{properties}) SET

node.property1 =

node.property2

RETURN node

L
M

D

INSERT INTO

table_name

VALUES(value1,

…);

MATCH

(node1:label1),

(node2:label2)

WHERE

node1.property1 =

valueX AND

node2.property2=va

lueY CREATE

(node1)-[r:

relation_type]-

>(node2) RETURN

node1, node2;

DELETE FROM

table_name

WHERE Condition;

MATCH

(node:label{proper

ties}) DETACH

DELETE node;

UPDATE

table_name

SET attribut =

value

WHERE Condition;

MATCH (node {key:

value}) SET

node:newLabel

RETURN node.key,

labels(node) AS

labels

L
ID

SELECT

column1, ...

FROM table_name

WHERE key=value

ORDER BY

column1, ...;

MATCH (node:label)

WHERE node.key =

value RETURN

node.property AS

propertyLable

ORDER BY

propertyLable;

order, lineitem, and part) because the Partsupp entity

has been replaced by a relationship. Thus, we have

defined six relationship types (Contains,

Supplied_By, Has_details, Created_By, Located_in,

and From) to capture all of the relationships between

the various entities in the TPC-H. The Has_details

relationship type in the TPC-H data model substitutes

the Partsupp entity, and we store the availqty and

supplycost values from the Partsupp entity inside the

relationship.

4.3 Experiment results analysis

In this section, we summarize the experimental

findings and analyze them. Based on the

experimental setup and datasets, we perform four

experimental scenarios. Before starting the different

performance scenarios of our model, we have

summarized some of the correspondence queries

between the relational and graphical models, as

illustrated in Table 8.

After having defined the correspondence

between the SQL and CQL query languages of the

two database management systems, we have chosen

four queries from the TPCH benchmarks to test the

scalability performance of our metadata model in

MySQL, which ensures the requesting of data via an

easy-to-implement navigation language, thus

ensuring a high-security level. In addition, we

implemented the queries on Neo4j, which ensures

scalability and flexibility.

To test our hypothesis, we setup an experiment

on three different TPC-H datasets, using MySQL and

Neo4j. For the preliminary evaluation, four different

queries are run on the objects of the mentioned

schema using both tools, i.e., two SGBDs. The

queries are listed in Table 9. The queries in MySQL

were implemented using SQL, whereas the queries in

Neo4j were implemented using CQL. The results of

our experiment assess the performance of our queries

in terms of the evaluation criteria defined in Section

3.2.3. Show the mean response time of MySQL and

Neo4J in milliseconds (ms) for each of the four

queries across the three datasets used; also, resource

consumption and the ability of the model to be

scalable and flexible.

Experiments have shown that Neo4j performs well in

most queries for the TPC-H data set in a reasonable

amount of time, especially for large datasets, i.e.,

scaling. Fig. 4 shows the time taken by each query in

milliseconds. In simple queries cases such as query 1

and 2, MySQL outperforms Neo4J. But, Neo4J

outperforms MySQL when multiple joins between

tables are involved. Indeed, query 4 is likely the most

complex in terms of data that needs to be related, as

it requires five joins across six tables as well as an

ordering operation (order by clause), indicating that

data size has an impact on query performance when

queries are complex. Because joins are known to be

expensive operations in relational databases, we can

expect performance to suffer as data (table) size

grows in the presence of multiple joins. Similarly, for

query 3, MySQL performs worse than Neo4j, and this

query also has four joins and an ordering operation.

Thus, Neo4j eliminates expensive computation like

Received: February 10, 2023. Revised: March 12, 2023. 240

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

Table 9. Tested Queries

Query

ID
Business Queries

Query

With Join

Query

Without

Join

No# of

tables joins

uses primitive

clauses (order

by, group

by, ...)

Q1

Revenue Change Forecasting:

quantifies the amount of revenue increase

that would have occurred if certain

companywide discounts were eliminated

in a given percentage range in a given

year

 X

Q2

Pricing Summary Report: provides a

pricing summary report for line items

shipped in a specified date

 X X

Q3

Supplier with the Lowest Cost:

determines which supplier should be

chosen to place an order for a given part

in a given region at the lowest possible

cost

X 5 X

Q4

Volume of Local Suppliers: lists the

revenue volume generated by local

suppliers

X 6 X

(a)

(b)

(c)

Figure. 4 Queries execution time (ms): (a) TPCH_1

dataset, (b) TPCH_10, and (c) TPCH_100

join operations. Furthermore, increasing the number

of join tables implies an exponential decrease in

execution time for neo4j. When the dataset size

grows, the graph database outperforms relational

databases.

Fig. 5 (a) and 5 (b) show the average CPU and

main memory usage rates. From the figure, we can

observe that Neo4j also outperforms MySQL in terms

of CPU and main memory usage. When the data size

increases, the RDBMS requires a lot of resources to

consume. Furthermore, it remains inefficient in terms

of resource consumption.

4.4 Discussion

Neo4j database management systems typically

process data faster than relational ones, due mainly to

their simpler data models and the fact that they are

not required to commit to certain restrictions imposed

by the ACID properties. Furthermore, relationship

modeling is not appropriate in relational databases;

because, they use foreign keys to link one piece of

information to another. Further, Neo4j is used to

efficiently manage and process large amounts of

unstructured data. As the size of the dataset grows,

graph databases outperform relational databases. Due

to constraints, a relational database follows a rigid

schema structure and it is difficult to manage changes

when dealing with multiple tables. Certainly, graph

databases are a good choice for applications that

involve a large number of data relationships. The

retrieval times for big data queries give us a

conclusion that graph databases are suitable for

EMEMODL.

Received: February 10, 2023. Revised: March 12, 2023. 241

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

(a)

(b)

Figure. 5 Resource consumption for query execution (%):

(a) CPU Usage and (b) RAM Usage

Our contribution demonstrates the importance of

high flexibility and better scalability as major

features, giving more extensibility and genericity,

which is not supported by recent models such as [9-

13, 26-28]. Although the NoSQL paradigm will never

completely replace the relational paradigm, it may

become a better option for projects that require

scalability and work with unstructured data. NoSQL

databases are horizontally scalable databases that can

be expanded by adding new servers to a cluster

environment. In the cluster, commodity hardware is

used to store big data. When selecting a database

management system for our software application, we

must consider the DBMS's scalability. Relational

databases use vertical scalability, which allows the

existing node's storage and processing capabilities to

grow as the volume of data does. This type of

scalability is costly due to increased hardware failure

risk and hardware costs for future upgradability. As a

result, the overall implementation cost will rise as

data volumes increase. Whereas, NoSQL databases

use horizontal scalability, which allows the system to

grow by adding more nodes for data storage and

processing power when the volume of data is high.

As a result, horizontal scalability is a less expensive

solution than vertical scalability. Thus, NoSQL

databases support auto-sharding by distributing data

across multiple servers, which improves database

performance.

Additionally, the ability to change the database

schema during the development or evolution of a

software application is not a feature provided by all

DBMS. Then, the static database schema for SQL

databases must be pre-defined before data injection.

Therefore, modification of the database schema

should be considered precisely, because frequent

changes may result in performance degradation,

service failure, or even call for maintenance and

further investments to adjust application components.

However, NoSQL databases do not require a pre-

defined schema because they have a dynamic one.

Thanks of their dynamic schema design, NoSQL

databases can quickly adapt to changes in the data

structure. The data structure is another issue that

affects the database's flexibility. SQL databases only

handle well-structured data. As data volume grows,

this can have an impact on database performance.

While NoSQL databases can handle all types of data,

including structured, semi-structured, and

unstructured data; they are used for agile and scalable

environments that are constantly developing and

evolving due to their data modeling. When compared

to relational databases, NoSQL databases have a

more flexible model, making it easier to organize

large amounts of data in various formats and with

flexible growth over time. NoSQL is the ideal

solution for large datasets, the need for constant

schema change, and the need for performance and

flexibility.

5. Conclusion

In this contribution, we investigate the limits of

recent metadata models by introducing EMEMODLs

as a new extensible, generic metadata model for data

lakes that supports data flexibility and scalability to

fit the challenges of big data projects such as volume,

variety, value, veracity, etc. Indeed, our model is

based on a set of features and a list of concepts.

Moreover, the proposed concepts encompass almost

all the concepts suggested by the literature, as shown

in subsection 3.2.2. Eventually, EMEMODLS

supports all the ideal features identified in the

comparison between the different metadata models.

If this indicates something, it means the extensibility

and genericity aspects induced by our model.

However, analyzing the issue of different data

formats and their effectiveness in storing and

processing requires a database with a flexible and

scalable DBMS. Thus, Neo4j proved to be one of the

best solutions for dealing big data with an adjustable

schema, in contrary to MySQL, which requires a

Received: February 10, 2023. Revised: March 12, 2023. 242

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

predefined schema. Therefore, Neo4j is less

expensive in computation for the case of joins. It is

capable of handling large amounts of data at a low

cost and with minimal overhead. Furthermore,

GDBMS is more suitable for EMEMODL. Finally, to

the best of our knowledge, designing a metadata

model for data lakes remains a very active research

topic open to all researchers. An essential future

perspective concerns comparison with other NoSQL

database types, such as column-oriented HBase,

document-oriented Cassandra, and key-value

databases like Redis.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

“Conceptualization, MC and AE; methodology,

MC and AE; software, MC; validation, AE; formal

analysis, AE; resources, MC and AE; data curation,

MC; writing—original draft preparation, MC;

writing—review and editing, AE; visualization, MC;

supervision, AE”.

References

[1] I. Suriarachchi and B. Plale, “Crossing Analytics

Systems: A Case for Integrated Provenance in

Data Lakes”, In: Proc. of International Conf. On

eScience, 2017.

[2] M. A. Hussein and E. K. Hamza, “Secure

Mechanism Applied to Big Data for IIoT by

Using Security Event and Information

Management System (SIEM)”, International

Journal of Intelligent Engineering and Systems,

Vol. 15, No. 6, pp. 667-681, 2022, doi:

10.22266/ijies2022.1231.59

[3] C. Quix and R. Hai, “Data Lake”, In: Proc. of

International Conf. on Big Data Technologies,

2018.

[4] C. Madera and A. Laurent, “The next

information architecture evolution: the data lake

wave”, In: Proc. of International Conf. on

Management of Digital EcoSystems, pp. 174-

180, 2016.

[5] N. G. Miloslavskaya and A. Tolstoy, “Big Data,

Fast Data and Data Lake Concepts”,

International Journal of Procedia Computer

Science, Vol. 88, pp. 300-305, 2016.

[6] B. Inmon, “Designing the Data Lake and

Avoiding the Garbage Dump”, Academic Press,

pp. 169-231, 2016.

[7] P. P. Khine and Z. S. Wang, “Data lake: a new

ideology in big data era”, In: Proc. of

International Conf. On ITM Web Conferences,

Vol. 17, pp. 203-225, 2018.

[8] P. Sawadogo and J. Darmont, “On data lake

architectures and metadata management”,

International Journal of Intelligent Information

Systems, Vol. 56, pp. 97-124, 2021.

[9] I. Megdiche, F. Ravat, and Y. Zhao, “Metadata

Management on Data Processing in Data Lakes”,

In: Proc: of International Conf. on Theory and

Practice of Computer Science, 2021.

[10] J. M. Hellerstein, V. Sreekanti, J. E. Gonzalez, J.

Dalton, A. Dey, S. Nag, K. Ramachandran, S.

Arora, A. Bhattacharyya, S. Das, M. Donsky, G.

Fierro, C. She, C. Steinbach, V. Subramanian,

and E. Sun, “Ground: A Data Context Service”,

In: Proc. of International Conf. on Innovative

Data Systems Research, 2017.

[11] F. Ravat and Y. Zhao, “Metadata Management

for Data Lakes”, In: Proc. of International Conf.

on Databases and Information Systems,

Communications in Computer and Information

Science, pp. 37-44, 2019.

[12] P. Sawadogo, E. Scholly, C. Favre, E. Ferey, S.

Loudcher, and J. Darmont, “Metadata Systems

for Data Lakes: Models and Features”, In: Proc.

of International Conf. on BI and Big Data

Applications, pp.440-451, 2019.

[13] C. Diamantini, P. L. Giudice, L. Musarella, D.

Potena, E. Storti, and D. Ursino, “A New

Metadata Model to Uniformly Handle

Heterogeneous Data Lake Sources”, In: Proc. of

International Conf. on Databases and

Information Systems, pp. 165–177, 2018.

[14] A. Beheshti, B. Benatallah, R. Nouri, and A.

Tabebordbar, “CoreKG: a knowledge lake

service”, In: Proc. of International Conf. on The

VLDB Endowment, Vol. 11, No. 12, pp. 1942-

1945, 2018.

[15] M. Cherradi and A. E. Haddadi “Grover’s

Algorithm for Data Lake Optimization Queries”,

International Journal of Advanced Computer

Science and Applications, Vol. 13, No. 8, pp.

568-576, 2022.

[16] R. Hai, C. Quix, and D. Wang, “Relaxed

Functional Dependency Discovery in

Heterogeneous Data Lakes”, In: Proc. of

International Conf. on Computer Science, pp.

225-239, 2019.

[17] J. Riley, “Understanding metadata”, Information

Standards Organization, Vol. 2, 2017.

[18] H. Mehmood, E. Gilman, M. Cortés, P.

Kostakos, A. Byrne, K. Valta, S. Tekes, and J.

Riekki, “Implementing Big Data Lake for

Heterogeneous Data Sources”, In: Proc. of

Received: February 10, 2023. Revised: March 12, 2023. 243

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.18

International Conf. on Data Engineering, pp.

37-44, 2019.

[19] M. Manur, A. K. Pani, and P. Kumar, “Big Data

Analysis Using Fuzzy Deep Convolution

Network Based Model for Heart Disease

Classification”, International Journal of

Intelligent Engineering and Systems, Vol. 14,

No. 2, 2021, doi: 10.22266/ijies2021.0430.13.

[20] A. Alserafi, A. Abelló, O. Romero, and T.

Calders, “Towards Information Profiling: Data

Lake”, In: Proc. of International Conf. on Data

Mining Workshops, pp. 178-185, 2017.

[21] M. Cherradi, A. E. Haddadi, and H. Routaib,

“Data Lake Management Based on DLDS

Approach”, In: Proc: of International Conf. on

Networking, Intelligent Systems and Security, pp.

679-690, 2022.

[22] M. Cherradi and A. E. Haddadi, “Data Lakes: A

Survey Paper”, In: Proc. of International Conf.

On Innovations in Smart Cities Applications,

Vol. 5, pp. 823-835, 2022.

[23] M. R. Llave, “Data lakes in business

intelligence: reporting from the trenches”,

International Journal of Procedia Computer

Science, Vol. 138, pp. 516-524, 2018.

[24] D. Loshin, “Data governance for big data

analytics”, Morgan Kaufmann, 1st Edition, 2013.

[25] M. Cherradi and A. E. Haddadi, “A Scalable

framework for data lakes ingestion”,

International Journal of Procedia Computer

Science, Vol. 215, pp. 809-814, 2022.

[26] C. Quix, R. Hai, and I. Vatov, “GEMMS: A

Generic and Extensible Metadata Management

System for Data Lakes”, In: Proc. of

International Conf, on Advanced Information

Systems Engineering, pp. 130-136, 2016.

[27] R. Eichler, C. Giebler, C. Groger, H. Schwarz,

and B. Mitschang, “HANDLE - A Generic

Metadata Model for Data Lakes”, In: Proc. on

International Conf. on Big Data Analytics and

Knowledge Discovery, pp. 7-16, 2020.

[28] E. Scholly, P. Sawadogo, P. Liu, J. A. E. Oviedo,

C. Favre, S. Loudcher, J. Darmont, and C. Noûs,

“Coining goldMEDAL: A New Contribution to

Data Lake Generic Metadata Modeling”, In:

Proc. of International Conf. on Design,

Optimization, Languages and Analytical

Processing of Big Data, pp. 31-40, 2021.

