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Abstract: The unpredictable and huge data generation nowadays by smart devices from IoT and mobile crowd sensing 

(MCS) applications like sensors, and smartphones requires processing power and rapid responses in a specific time 

frame (deadline), and user cost, i.e., budget. Cloud provides these capabilities to serve organizations and customers, 

but when using cloud appear some limitations, the most important is task scheduling. Nevertheless, the most of earlier 

scheduling algorithms have focused on only one evaluation parameter such as makespan or cost and so on, as the 

scheduling process goal. Optimizing a single metric may not ensure an improvement in the cloud performance in 

general, so the need may arise for algorithms that concentrate more broadly on enhancing more than one parameter. 

Therefore, this paper presents a deadline-budget multi-objective dynamic scheduling scheme (DB-MODS) to execute 

user tasks on VMs within QoS limits in order to finish the task within the deadline and budget if possible. DB-MODS 

using K-Means based on task length and deadline for clustering incoming tasks into groups and categories VMs based 

on capacity thresholds. In addition, the task belonging to every cluster is assigned to a suitable VM in VMs groups. 

based on objective functions, which can be one for user request depending on (deadline and budget) and the second is 

for system depending on (execution time and cost). This paper used CloudSim plus to simulate and evaluate our 

approach. The DB-MODS approach performance was compared to scheduling algorithms from the previous literature. 

Both random and Google cloud jobs (GOCJ) workloads are used to evaluate the efficiency of DB-MODS. The results 

show that DB-MODS outperforms the other algorithms by minimizing makespan  by 41%, energy by 46%, and 

increasing success ratio by 35%, in comparison to existing load balancing and scheduling methods: EEVS, LAS, 

Greedy-R, DTS, Random, and Greedy-P in the first scenario. Minimizing makespan  by 46%, cost by 44%, and 

maximize throughput by 80% when compared with MOCS, Max-Min, HABC-LJF, FCFS, MOPSO, Q-learning, 

MOABCQ-FCFS, and MOABCQ-LJF in a second scenario, and minimizing makespan  by 46%, and increase 

throughput by 39% when compared with HESGA, GA, and ACO in a third scenario in average. In addition to the 

possibility of applying and employing DB-MODS for scheduling deadline-critical tasks in a heterogeneous cloud 

system. 

Keywords: Cloud computing, Resources management, Task scheduling, IoT, Mobile crowd sensing. 

 

 

1. Introduction 

Cloud computing is a developing computational 

method that relies on virtualization hardware to 

distribute resources dynamically in response to user 

requests made over the internet [1]. This 

virtualization of cloud computing improves 

accessibility while lowering maintenance costs. Task 

scheduling becomes a key problem in the cloud when 

the user requests service for efficient resource 

allocation. The purpose of scheduling is to establish 

the best relationship between tasks and machine 

resources. The scheduling process is simple when 

there are few user tasks and resources. The 

scheduling becomes complicated if a user sends out 

several requests to get the appropriate level of service 

[2, 3]. 

In the cloud context, task schedule has recently 
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been a fascinating topic that has garnered a lot of 

concentration in the research literature. Task 

scheduling is allocating tasks to the resources with 

more availability based on the specifications and 

requirements of the tasks. Cloud broker receives the 

tasks of the users and assigns them to the available 

resources, taking into account the characteristics of 

the task and the resources.  These resources must be 

used correctly and perfectly in order to allocate the 

best suitable physical resources to the task to achieve 

good quality of service (QoS) and an optimal 

allocation of resources. To address the challenge of 

user satisfaction and provider revenue [4]. Before 

using any services or renting out resources, cloud 

users always negotiate with cloud service provider 

(CSP) to ensure service-level-agreements (SLAs). In 

a computing paradigm, a user only pays for the 

services and resources they really use. The two most 

crucial aspects that affect a consumer are turnaround 

time and budget. Consequently, deadline and budget 

are the trade-off issues for task scheduling. Task 

constraints like deadlines and budgets are used to 

assign user tasks to cloud resources that differ in their 

characteristics, based on cost and time. A provider 

can reduce operating expenses and provide excellent 

QoS by guaranteeing that each user has fair access to 

resources shared by all users [5]. 

Scheduling heterogeneous resources in cloud 

relies on some characteristics such as availability of 

resources, resource utilization, workload length, 

resource capacity, and cost. like differing processor 

speeds and communication between CPUs. SLA 

negotiation as well controls the uses of resources and 

scheduling. As a result, must focus on the parameters 

mentioned above while scheduling requested tasks on 

resources to ensure user satisfaction [6]. There are 

several scheduling algorithms such as shortest job 

first (SJF), first come first serve (FCFS), min-min, 

max-min, and round robin (RR), there are existing, 

nevertheless, these are not seen as being significantly 

superior solutions to scheduling issues in cloud 

environment. To address the scheduling issue, the 

scientific community has given a variety of solutions 

[7]. Traditionally, resource management has relied on 

static policies, but these policies have limitations in 

dynamic situations. As a result, CSP have turned to 

data-driven, and machine learning. Machine learning 

is employed for various resource management 

functions to address diverse resource management 

tasks, involving estimating workloads, task 

scheduling, optimizing resources, VM consolidation 

and improving energy efficiency, among others [8]. 

The processes of clustering and task scheduling are 

commonly concentrated in federated clouds for task 

assignment based on the resources [9]. Decision 

making with multi criteria is a branch of operations 

research that studies issues with several criteria, like 

priority-based workload scheduling. This way of 

decision method provides important support for 

decision-makers (DMs) by specifying the problem, 

also formal it, and making helpful suggestions [4]. 

Dynamic scheduling methods have more flexible 

than the earlier defined types. Dynamic schedulers 

possess the capability to monitor, and estimate, in 

addition to updating the load on the VMs at the time 

of execution as the tasks are being carried out in 

either a proactive or reactive manner [10]. These 

schedulers enable the priority and migration of the 

tasks that have already been allocated. Additionally, 

dynamic scheduling methods typically have the 

capability to create new VMs, remove existing ones, 

and migrate VMs while they are running [11]. 

However, several of the current dynamic scheduling 

methods continue to use a temporal-batch of 

incoming tasks that were received during an interval 

of time. Most dynamic algorithms now in use have 

problems with Inadequate resource utilization, an 

imbalanced load, and a high rate of rejection for tasks 

with a time constraint (i.e. deadline) [12]. 

In this paper, a new approach named DB-MODS 

is proposed to address load balancing and task 

scheduling issues. DB-MODS task scheduling 

method is based on k-means algorithm for task 

clustering and thresholds for classifying virtual 

machine (VMs). The objective function of proposed 

is computed the execution time and cost of every task 

on all VMs and return the minimum value as the 

fitness value (F) and computed the objective function 

for user parameters to choose a suitable VM to 

process a given task. 

The primary contributions of this paper are 

outlined as follows:  

 

• Introduce a (multi-objective optimization) DB-

MODS approach for deadline and budget sensitive 

tasks scheduling problem in a cloud for IoT/MCS 

environment. 

• To proactively and intelligently find the optimum 

VMs for task allocation while taking time and 

money restrictions into account. 

• The proposed method focuses on two competing 

objectives, namely the shortest completion time 

within a deadline and the lowest cost within a 

budget constraint. 

• The scheduling problem is defined as a multi-

objective issue that aims to minimize of makespan, 

energy consumption, and cost. 

• To validate the results of the proposed DB-MODS 

against methods from the literature, a statistical 
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test (i.e. t-test) was used. The t-test is employed 

using a significance test. 

• A large number of tests were conducted, to show 

the superiority of DB-MODS over peers. The 

comparisons were done by measuring makespan, 

throughput, success ratio, cost, and energy 

consumption by using CloudSim plus. 

 

The rest of the paper is organized as in the 

following: section 2, presents the works related to 

resource management and scheduling problem in a 

cloud system. Section 3 presents task scheduling and 

resource management. Section 4 introduces problem 

modeling. The proposed approach of task scheduling 

based on K-means clustering is introduced in section 

5. Section 6 introduces the proposed load‑balancing 

and scheduling algorithm DB-MODS. Section 7 

introduces performance metrics. Section 8 introduces 

implementation and experimentation results. Section 

9 introduces the conclusion and future works. 

2. Related work 

This section of this paper presents various works 

related to resource management and task scheduling 

issues in different environments like IoT and cloud. 

Some benefits and drawbacks of each related study 

are discussed and analyzed. 

Task scheduling is an NP-hard, and considered a 

complex aspect when designing cloud computing 

systems. It plays a crucial role in achieving high 

performance and maximizing resource utilization by 

utilizing the best features from available resources. 

This paper's key contribution is to present a novel 

approach called DRRHA that focuses on the classic 

RR algorithm's drawbacks via optimizing the metrics 

of performance by reducing the average response 

time, waiting time and turn-around time. But it 

contains a lot of calculations, in addition to their use 

of the FCFS and SJR algorithms [13]. 

In this paper, the authors introduced a new 

framework called learning automata scheduling (LAS) 

which is an adaptive decision-making unit to deal with 

tasks sensitive to deadline in the cloud environment. 

They formulated the issue of scheduling tasks as a bi-

objective to decrease makespan and energy consumption, 

but they did not use a real dataset and did not consider 

user budget [14]. 

In [15] an energy-efficient-scheduling algorithm 

(EEVS) was proposed, in the cloud by considering the 

deadline and supporting dynamic voltage and frequency 

scaling (DVFS) well. The EEVS involves dividing the 

process into distinct scheduling periods. During each 

period, virtual machines are assigned to appropriate 

physical machines, and the active cores run at the most 

efficient frequency. To achieve even greater energy 

savings, the cloud needs to be reconfigured after each 

period to consolidate computing resources. Despite its 

ability to process a greater number of virtual machines 

while consuming less energy, the EEVS approach has 

some limitations. The authors did not take into account 

the performance and power penalties associated with 

processor status transitions and VM migrations. These 

assumptions may not hold in real-world cloud 

environments, which underscores the need for practical 

testing using actual workloads. 

In [16] The authors introduced a novel method called 

MOABCQ that applies optimization as multi-objective 

for scheduling issue. This approach employs artificial 

bee-colony (ABC) algorithm, which has been enhanced 

by incorporating Q-learning, a reinforcement learning 

mechanism, that enables the ABC to achieve faster 

performance. The primary goal of MOABCQ is to 

decrease both the makespan, and cost associated with the 

scheduling problem. This approach combined with the 

FCFS named ''MOABCQ_FCFS'' and largest-job first 

(LJF) named ''MOABCQ_LJF''. However, the authors 

cannot provide a guarantee that the MOABCQ_LJF 

algorithm achieves optimal results and they don't 

consider the user deadline and budget constraints. 

This paper proposed task scheduling with an ABC 

named (HABC) which is a combination of ABC with 

heuristic algorithms (FCFS, SJF, and LJF) to improve 

VMs scheduling in cloud by minimizing makespan and 

balancing the loads. The result shows that the HABC 

with LJF (HABC_LJF) offers the best performance in 

scheduling and load balancing compared to ACO, PSO, 

and IPSO. So, we compared our work with HABC_LJF. 

The authors did not take into account the use of real-

world datasets or the ability of the HABC algorithm to 

handle the scheduling of multiple jobs with varying 

priorities [17]. 

This paper proposed an approach based on a two-

stage strategy called dynamic cloud task scheduling 

(DTS). First, the task classification process involves 

using a bayes classifier that leverages historical 

scheduling data to categorize tasks. Various types of VMs 

are consequently formed. Then, tasks are matched with 

specific VMs dynamically. Tasks are assigned to 

compatible VMs dynamically. The results show that 

achieving effectively improves the load balancing of the 

cloud. The authors don't consider energy consumption 

and do not test on real dataset [18]. 

This article introduced a new approach called hybrid 

electro search with a genetic algorithm (HESGA) to 

enhance the performance of task scheduling by 

considering various parameters such as makespan, load 

balancing, resource utilization, and multi-cloud costs. By 

combining the benefits of a genetic algorithm and an 

electro-search algorithm. GA to find the top local optimal 
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solution, whereas ESA provides the best global optimal 

solutions. But the authors do not test by using a real 

dataset and did not consider energy as a parameter [19]. 

The authors of this paper suggested a scheduling 

technique CBTS by using k-means algorithm and 

taking only the length of task and VM capacity. In this 

case, tasks are clustered only according to their length, 

whereas VMs are grouped depending on their 

processing capabilities. The proposed enhanced the 

performance of cloud data centers by reducing 

execution time and makespan. But, a task may be 

restricted by deadline. As a result, the deadline may 

be a significant additional property of the tasks to 

include when creating task clusters [7]. 

An in-depth examination of associated works 

reveals that the most of the current task scheduling 

algorithms are tested using tiny datasets, that are 

insufficient to demonstrate their performance and 

work in static rather than dynamic environment, 

scheduling the tasks based on user preferences 

without considering the system capabilities. In 

addition, cluster tasks are based on length only. So, 

these studies still there is a need for new solutions. To 

overcome these limitations a new approach has been 

proposed, we have set a relationship between the 

budget and the deadline required by the user, as well 

as the time of implementation and costs by the system 

to create a balance between what the user requests 

and what can be provided by the cloud by formulating 

a multi-objective function that was overlooked by 

previous research. Also, the length and deadline of 

the task it has a close relationship in the scheduling, 

however, most studies did not consider them. 

Therefore, we worked on setting a relationship 

between them by using a clustering algorithm, 

relying on these two parameters rather than a single 

perimeter. 

3. Resource management and tasks 

scheduling 

In processing large-scale data, applications and 

workloads are initially split up into smaller units 

known as tasks. Scheduler allocate a collection of 

tasks with their characteristics to a group of VMs 

nodes. The primary objective of scheduling is 

decision-making, and it is one of the problems that 

are classified under the NP-hard problem. Due to its 

dynamic nature, determining the best computing 

node for task scheduling is a big issue. Along with 

assigning physical resources to the tasks. Scheduler 

also has to fulfil the demands of the service- 

providers, and the customers. Clearly, its primary 

objectives are reducing waiting time for tasks, time 

for execution tasks, makespan, and improve  
 

 
Figure. 1 Scheme of task scheduling 

 

utilization of resources. Some of them concerned 

with QoS and satisfying the needs of consumers, 

while others are concerned with maximizing supplier 

profits [20]. 

Task scheduling methods place a strong emphasis on 

how to select resources that minimize the time of 

execution and waiting. Because virtualization is essential 

to cloud, scheduling approaches are typically developed 

in accordance with two tiers of the cloud system. first, at 

host level, where VMs are distributed according to a 

group of policies. The second is at the VM level, where 

allocation tasks to VMs are controlled and necessitate a 

particular set of policies. The benefits of task scheduling 

algorithms include improving QoS, increasing resource 

usage memory, CPU, network, etc., and improving 

performance, high system throughput, enhanced load 

balancing, a higher number of finished tasks, etc. [21]. 

Task scheduling is basically a key process that is 

managed by datacenter brokers. The broker is crucial 

in mapping the task-to-VMs It maintains track of the 

list of available VMs while preserving their QoS. 

When a user submits a request to a broker, it is the 

broker's duty to assign a suitable VM to the requested 

task in a way that doesn't violate the SLA or degrade 

the QoS. High QoS is ensured in a cloud computing 

environment by the high performance of VMs. When 

a low-performing VM is assigned to a high-

performance task, the available resources are not 

fully utilized, which leads to poor performance and 

throughput, ultimately, a breach of SLA. Therefore, 

implementing extremely effective scheduling 

techniques at the broker level has become necessary, 

in addition to opening up new opportunities for 

research into task scheduling algorithms for cloud 

computing [22]. 

Two methods of the task scheduling process, are 

static or dynamic. In static method, whole tasks are 

initially statically assigned to VMs before they  begin to 

execution. As a consequence, tasks given to any resource 

cannot be changed during run time. Because static task 
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scheduling techniques have less scheduling overhead, 

their performance for a single parameter may be superior 

to dynamic task scheduling algorithms. However, static 

algorithms still are incapable of dynamically adjusting to 

changing situations [23]. Fig. 1 shows the task scheduling 

system. 

4. Problem modeling 

Tasks scheduling in the could be efficient and 

achieve high performance if tasks are assigned to 

cloud VMs properly. This definition assumes that the 

cloud system is housed in a datacenter with a 

heterogeneous of servers, which hosts a number of 

VMs. Assume that there are n tasks, 𝑇 =
{𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛} , the tasks are access to the cloud 

from the IoT devices and MCS applications. The 

cloud system consists of cloud nodes, each of which 

has many characteristics, including various processor 

capacities, memory sizes, and communication links 

with varying bandwidths and storage capacities. 

Assume that a collection of N cloud nodes can be 

represented as follows: 

 

𝑁 = {𝑁1, 𝑁2, 𝑁3, … , 𝑁𝑚} 

 

where 𝑁𝑗  is represents the 𝑗th  processing of 

physical node. Every task 𝑇𝑖 would be allocated to a 

single computing node 𝑁𝑗 , and is expressed as 𝑇𝑖
𝑗
 . 

Each computing node may be assigned a number of 

tasks, 𝑁𝑗(𝑗 =  1,2,3, … , 𝑚) as in the expression: 

 

𝑁𝑗
𝑇 = {𝑇𝑥

𝑗
, 𝑇𝑦

𝑗
, … , 𝑇𝑧

𝑗
} 

 

In this proposed approach, the model contains a 

finite group of m heterogeneous VMs or multi-core 

computing nodes, with a variable capacity to run a 

particular task. 

The time of execution task 𝑖 on 𝑣𝑚𝑗 is 𝐸𝑇𝑖𝑗 and 

can be computed as in the following equation: 

 

                 𝐸𝑇𝑖𝑗 =
𝐿(𝑡𝑎𝑠𝑘𝑖)

𝑁𝑃𝐸 𝑗× 𝑉𝑀𝑀𝐼𝑃𝑆 𝑗
                           (1) 

      

where 𝐿(task𝑖)  is a tasks length expressed in 

million -instructions (MI), 𝑁𝑃𝐸 𝑗  is the number of 

processing elements of VM, and 𝑉𝑀𝑀𝐼𝑃𝑆 𝑗 refers to 

the speeds of the VM measured in million-

instructions-per-second (MIPS). 

The total execution time 𝑇𝐸𝑇𝑉𝑀𝑗
  of running 

collocation of tasks in VM𝑗 node is computed as in Eq. 

(2): 

 

                 𝑇𝐸𝑇𝑉𝑀𝑗
= ∑  𝑛

𝑖=0 𝐸𝑇𝑖𝑗                       (2) 

 

Assume that makespan represents the overall 

amount of time needed to perform all tasks in T. The 

makespan may be computed by the following 

equation: 

 

Makespan = 𝑀𝑎𝑥1≤𝑗≤𝑚[𝑇𝐸𝑇𝑉𝑀𝑗
 (𝑁𝑗)]              (3) 

 

Let's define Cost (𝑇𝑖
𝑗
) as the quantity of money 

required to finish the task 𝑇𝑖
𝑗
  in cloud node 𝑁𝑗 , 

including the processing cost 𝐶𝑝(𝑇𝑖
𝑗
) , cost of 

memory usage 𝐶𝑚(𝑇𝑖
𝑗
) , and bandwidth usage cost 

𝐶𝐵(𝑇𝑖
𝑗
) ⋅  Calculate the Cost (𝑇𝑖

𝑗
)  as in the 

following: 

 

𝐶𝑜𝑠𝑡 (𝑇𝑖
𝑗
) = 𝐶𝑝(𝑇𝑖

𝑗
) + 𝐶𝑚(𝑇𝑖

𝑗
) + 𝐶𝐵(𝑇𝑖

𝑗
).         (4) 

 

The above three costs can be defined as: 

 

     𝐶𝑝(𝑇𝑖
𝑗
) =  𝐶𝑜𝑠𝑡𝐶𝑃𝑈−𝑗 × 𝐸𝑇𝑖𝑗(𝑇𝑖

𝑗
),                  (5) 

 

   𝐶𝑚(𝑇𝑖
𝑗
) =  𝐶𝑜𝑠𝑡𝑀−𝑗 × 𝑀𝑒𝑚𝑜𝑟𝑦 (𝑇𝑖

𝑗
),              (6) 

 

   𝐶𝐵(𝑇𝑖
𝑗
) =  𝐶𝑜𝑠𝑡𝐵−𝑗 ×  Bandwidth (𝑇𝑖

𝑗
),          (7) 

 

where 𝐶𝑜𝑠𝑡𝐶𝑃𝑈−𝑗 is the cost of using CPU to 

execute task in node 𝑁𝑗 within time, 𝐶𝑜𝑠𝑡𝑀−𝑗 is the 

cost of use memory in  𝑁𝑗 node , Memory (𝑇𝑖
𝑗
) is the 

amount of memory consumed by  a task 𝑇𝑖 in node j, 

𝐶𝑜𝑠𝑡𝐵−𝑗 is the bandwidth cost, and bandwidth (𝑇𝑖
𝑗
) 

is the value required to transfer task 𝑇𝑖 to be executed 

in node 𝑁𝑗. The cost of running whole tasks in a cloud 

can be represented as follows: 

 

             Total Cost = ∑  
𝑇𝑖

𝑗
∈𝑇node 𝐶𝑜𝑠𝑡 (𝑇𝑖

𝑗
).           (8) 

 

We assume that there are N  tasks, i.e., 𝑇 =
{𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛} are received from IoT/MCS users 

to schedule into m of VM , i.e., {N1, N2, N3, … , Nm}.  

4.1 Defining parameters 

Table 1 shows the fundamental notations, 

terminologies, and concepts that are used in 

mathematical formulations of the proposed 

scheduling approach. 

5. Proposed work 

This section presents the proposed approach DB- 
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Table 1. DB-MODS schedulers notations 

Notations Description 

Cloudlet Refers to task in CloudSim plus 

VMs Virtual Machines in cloud 

MI Million-Instructions data of cloudlet 

MIPs Million-Instructions Per Second 

𝐸𝑇𝑖𝑗  Time of running task T𝑖 on VM𝑗 

𝑇𝐸𝑇𝑉𝑀𝑗
 Total execution time of tasks on jth VM 

𝑁𝑃𝐸 𝑗 Number of processing elements of VM. 

𝑉𝑀𝑀𝐼𝑃𝑆 𝑗 Refers to the speeds of the VM. 

deadline 

(𝑇𝑖) 

is the user-specified time for execution 

task Ti 

budget (Ti) is the user-specified cost for execution 

task Ti 

𝑉𝑀id  Is the identification number of VM. 

VMj-class  Class which VM belongs to. 

Tid  Identification number of cloudlet. 

Ti−class Class which task belongs to (i.e. SLHD 

class). 

𝐶𝐾 K represents cluster number. 

𝛿 
is the trade-off coefficient between 

deadline and budget. 

𝑇𝐹  The number of cloudlets finished with a 

specific deadline and budget. 

𝑇𝑈 The number of user tasks 

µ𝑎𝑗
 Energy that consumes by VM 𝑣𝑗  in 

active state. 

ɳ𝑖𝑗
 Energy that consumes by VM 𝑣𝑗 in idle 

state. 

£𝑗 Total energy consumption.  

 

 

MODS. It is a task management and scheduling 

approach implemented for IoT/MCS in a cloud-based 

environment. The main goal of the DB-MODS 

approach is to meet time of response, balance the load, 

reduce delay, reduce the number of missed critical 

tasks, and increase the throughput. To achieve this, 

we emphasize two constraints deadline  , and 

budget   in scheduling issue, to enhance the QoS in 

relation to the two primary parameters (i.e., reduce 

the cost and time of execution task), and finally 

increase service gain while also making better use of 

the hosts and VMs resources. 

The proposed approach used the machine learning K-

means clustering algorithm to categorize the tasks based 

on length and deadline, and grouping VMs based on 

capacity of MIPS, Bandwidth (BW), RAM  using 

thresholds. Our scheduling model represents the users 

task parameters consist the task length, budget, and 

deadline. 

In DB-MODS, two measures, ready time and load 

of VM are dynamically updated. The key objective of 

the DB-MODS scheduler is to maximize resource use 

and satisfy deadlines for recently coming tasks, cost,  
 

 
Figure. 2 Architecture of DB-MODS proposed model 

 

and reduce makespan. In our work, the objective 

function presented aims to minimize makespan and 

cost for IoT applications (MCS users tasks). 

The proposed is comprised of two stages, namely 

pre-processing and scheduling algorithm. 

5.1 DB-MODS system architecture  

We propose DB-MODS as a dynamic multi 

objective task scheduling approach. The primary aim 

is to execute user requested tasks immediately. In 

proposed, several algorithms and mechanisms are 

used to reduce cost and makespan, and these 

techniques are employed to minimize the average 

cluster run time as well as the task waiting time. 

In DB-MODS, K-means was employed to 

grouping the tasks depending on length and deadline, 

which there is a clear relationship between them 

(between the length of the task and the time required 

by the user to finish it). In addition, using the 

proposed algorithm DB-MODS scheduler, where an 

attempt was made to improve the overall time that 

tasks take to complete. Finally, the clusters of tasks 

are then sent to hosts whose computing capacity is 

appropriate for the task cluster constraints. Fig. 2 

illustrates the architecture of the proposed DB-

MODS model. 

5.2 Tasks constraints types 

In the DB-MODS approach Each task has one or 

more constraints depending on the parameters 

specified by the user, there are two types of constraint 

are deadline and budget. 

Fig. 3 shows the relation between Makespan and 

Cost which is an inverse relationship as in Eq. (9): 

 

                    𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =  
1

𝐶𝑜𝑠𝑡
                             (9) 
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(a) 

 
(b) 

Figure. 3 several strategies for achieving deadlines and 

budget. (a) An example of scheduling that decreases costs 

while fulfilling deadlines and (b) An example of 

scheduling that decreases a makespan but satisfies the 

budget restraint 

 

Were if user deadline is low this means that the 

task must be executed within the specified time, and 

this requires a VM with a fast CPU, so the cost here 

is important as in Fig. 3 where if the user has enough 

budget he can provide him with the service as he 

wants, if user deadline is high this means the task is 

not urgent (need slow CPU) and can execute with low 

budget but high makespan as shown in Fig. 3 (a), an 

increase in cost versus a decrease in makespan (Fig. 

3 (b)). 

Every task needs to be scheduled with a deadline 

that reflects the fastest possible response time from 

cloud service providers to requests from users. Cloud 

providers must react to user requests in a fair amount 

of time; otherwise, an SLA violation occurs, and the 

cloud provider must pay the penalty to the users. The 

task execution time should not be longer than the 

deadline, as displayed in the following equation: 

 

                𝐸𝑇 (𝑖, 𝑗) < 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (𝑇𝑖)                (10) 

 

In cloud systems, cloud providers must pay for 

using the host/VMs. The consumer is required to pay 

the price that is determined by cloud providers based 

on the resources consumed by the consumer.  The 

amount that pays by a consumer per hour/second for 

using a resource provider's virtual machine must be 

determined, and the consumer specifies the 

maximum cost that can be paid as in following: 

 

                   𝐶𝑜𝑠𝑡 (𝑇𝑖
𝑗
) <  𝑏𝑢𝑑𝑔𝑒𝑡 (𝑇𝑖)                (11) 

5.3 Tasks classification 

Initially, each task has a set of characteristics, 

Task = {ID, deadline, length, budget}. To carefully 

select the suitable computing node, need to use task 

information, status of computing node, and resource 

availability [20]. Tasks are clustered depending on 

their length and deadline by K-means method. The 

prime aim of this proposal is to minimize the time of 

processing huge data size, which is achieved by less 

makespan and minimizing overall cost. Therefore, in 

DB-MODS, for the purpose of load balancing among 

clusters, task migration between clusters is 

implemented for purpose of establishing load 

balancing between groups. 

In the proposed approach, clustering is made 

using K-means algorithm. Applying K-means 

prevents task clustering from falling into the local 

optimum problem due it converges readily. The 

elbow curve method is applied to choose the K value. 

K-means is an unsupervised learning clustering 

algorithm. To cluster the tasks by K-means needs to 

train the model based on features of the tasks and 

workload type used to determine task clusters. 

Afterward, the newly arriving task is assigned to the 

cluster having similar features of tasks. Two features 

of the task, length  and  deadline  are considered for 

task classification. The Euclidean distance is used to 

decide the closest centroid assuming four clusters, 

𝐶𝐾 , where (k =  1, 2, 3, 4). 

 

𝑑(𝑡𝑗 − 𝑐𝑘) = √(𝑇𝑙𝑒𝑛𝑔𝑡ℎ 𝑗
− 𝑐𝑘)

2

+ (𝑇𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑗
− 𝑐𝑘)

2

 

(12) 

 

The tasks that are allocated to clusters can be 

illustrated in matrix form as displays in Fig. 4. The 

column, and row represent a task Ti  and a cluster 

respectively. Digit 1 , in the 𝑖𝑡ℎ  row, and 𝑗𝑡ℎ  column 

of matrix refers to the task 𝑖  allocated to cluster 𝑗 . 

Each column in the matrix only contains single (1). 

This means that each task belongs only to a single 

cluster. 

Similar tasks are not always having the same 

characteristics. However, tasks are clustered 

according to their length  and deadline. Consequently, 

there is 𝑛  number of small-length tasks with low -

deadline in cluster, 𝑛 of big-length tasks with high-

deadline in another cluster, 𝑛 of big-length tasks with 

low-deadline in another one, and 𝑛  of small-length  
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 t1 t2 t3 t4 

     

C1 0 0 1 0 

C2 1 0 0 1 

C3 0 1 0 0 

Figure. 4 An example of assigned tasks to clusters in G 

generation matrix 

 

 
Figure. 5 Cluster analysis of proposed approach 

 
Table 2. Categories of proposed clusters tasks 

DB-MODS 

Queues 

Task 

Class 
Description 

(LCI)T2 SLHD Light Compute Intensive 

(HCI)T1 SLLD Heavy Compute  Intensive 

(HCI)T1 BLLD Heavy Compute  Intensive 

(LCI)T2 BLHD Light Compute Intensive 

 

 

tasks with high-deadline in cluster as a result of 

clustering of 1000 tasks with length between 

100 ~ 300,000 MI , and with deadline between 

30 ~ 120 second as shown in Fig. 5. Despite cluster 

with smaller-tasks being mapped to the computing 

node with lower computing capacity as well as vice 

versa. However, the two clusters average processing 

times are substantially dissimilar. As previously 

mentioned, relevant tasks are clustered in a similar 

group to prevent the exchange of data among other 

nodes. Table 2 shows the classes of tasks and power 

requirements. 

Where: T1, T2 are type one and two respectively, 

where T1 for LD and T2 for HD. HCI is the tasks of 

cluster requires high computing power. LCI is the 

tasks of cluster requires low computing power. 

SLHD: the first letter  refers to small and second is 

length of tasks, third is refer to high and fourth is 

deadline. 

SLLD: Small length and high deadline. BLLD: 

Big length and low deadline. BLHD: Big length and 

high deadline. 

After classifying the tasks into four categories 

and viewing the results of the clustering process, we 

conclude that the SLLD and SLLD categories can be 

merged because they need the same computing 

capacity, and thus it becomes three categories. 

5.4 Physical nodes classification 

After the phase of task classification, tasks are 

categorized into groups and distributed among 

distinct clusters. To categorize the VMs, firstly, it is 

necessary to compute the total capacity of each VM 

depending on the following formulation: 

 

         Capacity 
𝑉𝑀𝑗

= 𝐶𝑃𝑈𝑗 + 𝑅𝐴𝑀𝑗 + 𝐵𝑊𝑗        (13) 

 

where CPU𝑗, RAMj  and BW𝑗  are CPU  speed in 

MIPS, the size of memory and bandwidth capacity of 

VM𝑗, respectively. Additionally, we compute capacity 

of each VM class through the sum capacity of each 

VMs in a specific class as in the following equation: 

 

 Capacity Class 𝑘 = ∑  𝑉𝑀𝑗∈ Class 𝑘  Capacity 𝑉𝑀𝑗
    (14) 

 

Depending on the capacity calculated by Eq. (14), 

we arrange the available VMs in a list. Next step in 

the proposed model, the group of the VMs is 

determined in relation to the type of task class as 

shown in Table 3. Therefore, the proposed groups of 

VMs based on their capacity by using thresholds as 

shown in Fig. 6. The resulting VMs classes are VMHC, 

VMMC, and VMLC.  

Where: VMHC, VMMC and VMLC are VM with high 

capacity, VMs with medium capacity and VMs with 

low capacity respectively. 

Table 3 shows the allocation of the task groups to 

suitable VMs groups that meet task cluster 

requirements. 

6. Proposed load‑balancing and scheduling 

algorithm DB-MODS 

The proposed DB-MODS scheduling approach is 

discussed in this section. which has three algorithms 

the first is for clustering tasks, the second for 

grouping VMs and the last is for a scheduler. DB-

MODS scheduler allocates user tasks to VMs nodes 

relying on minimum execution time (MET) and cost, 

then updates status of the task and VMs.      
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Figure. 6 An example of VMs classification depending on 

capacity and by using threshold values 

 
Table 3. Allocate the classes of tasks to types of VM 

groups 

Task types in 

received queue  
VM types 

BLLD 
Type-1 (Large - CPU, BW, RAM 

intensive). 

SLLD+ BLHD 
Type-2 (Medium- CPU, BW, 

RAM intensive). 

SLHD 
Type-3 (Small - CPU, BW, RAM 

intensive) 

 

6.1 DB-MODS scheduler algorithm 

To perform a process of mapping tasks on virtual 

machines, DB-MODS scheduler receives task  𝑇𝑖 

with its characteristic’s deadline (Ti) in second as well 

task length in (MIs) as in algorithm 1. Then by using 

k-means, the outputs of algorithm 1 include 

distributing incoming tasks into clusters as 

mentioned in section 5.3. Algorithm 2 includes a 

number of VMs and their processing power in MIPS, 

RAM, and BW as input parameters. The output of 

algorithm 2 includes grouping VMs into three classes 

based on the threshold as mentioned in section 5.4. 

Algorithm 3 is DB-MODS scheduler algorithm to 

coordinate the process  of mapping clusters of tasks 

on VMs groups using objectives functions. 

The objective function (ObjF) of DB-MODS 

focuses on minimizing the makespan and cost, which 

is displayed as follows: 

 

          ObjF = Min {Makespan, 𝐶𝑜𝑠𝑡 (𝑇𝑖
𝑗
)}        (15) 

 

The Quality Measure Objective Function (QOF) 

of the proposed work is presented here: 

 

QOF = 𝑀𝑖𝑛 (𝛿 ×  𝐸𝑇𝑖𝑗  + (1 − 𝛿) ×  𝐶𝑜𝑠𝑡 (𝑇𝑖
𝑗
)) 

 (16) 

 

 
Algorithm 1: Task Classification Function (TCF)  

and VMs Classification Function (VMCF) 

1 Input: List of unmapped tasks which have 
constraints (ID, length in MIPS and deadline D in 
sec.), set of VMs with their characteristics 
(MIPS, CPU, RAM and BW) 

2   Output:  cluster tasks (Ti), and grouping VMs 
Algorithm 1:  Task Classification Function (TCF) 

3  Begin { 

4  M← Number of input tasks 

5  K← Number of   Cluster 
6 k-Mean (T) // for tasks classification 

7  for All Task tj do 

8       get Metric Variables of task for clustering process   

          Task ID, Task length and Deadline 
9 Normalization for data 
10 Start the K-Means Clustering and divide them 
             into 4 clusters 
11 Assume Centroid A, B, C, D 
12 for each Cloudlet k in CL do 
13 Calculate Euclidean Distance of k with A, B, C  
                    and D based on Eq. (12) 
14 if previous distance = new distance then 
15 Stop Iterations 
16 else 
17 Add Ck into minimum clustered distance 
18 Again Compute the Centroids 
19 end 
20 end 
21 end 
 22    get four clusters of tasks LLHD, LLLD, HLLD and  
        HLHD  

 

And calculate the objective function for user 

parameter to  compare with Eq. (16) as follow: 

 

𝑈 − 𝑂𝑏𝑗𝐹 = 𝛿 × 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑇𝑖) + (1 − 𝛿) ×
𝑏𝑢𝑑𝑔𝑒𝑡(𝑇𝑖)        (17) 

 

Where: deadline (Ti)  is a largest amount user-

assigned time allowed to execute task Ti in the cloud, 

which if exceeded, will be violated SLA. budget (Ti) 

is the highest permitted cost determined by the cloud 

user. which if exceeded, will be violated SLA.  𝛿 is 

the trade-off coefficient between the deadline (Ti) 

and  budget (Ti) and its ∈ [0,1]. If the value of 𝛿 >
 0.5 , the task assignment technique prioritizes 

reducing execution time over overall operating costs. 

If the value of 𝛿 <  0.5 , execution time is less 

significant than operating costs. The value of 𝛿 

depends on the value of the budget or the level of the 

needed response time. 

The proposed includes these attributes for each 

task: {TID, task length, data file size, number of PES. 

budget and deadline}. While, each task 𝑇𝑖   has the 

constraint parameter can be defined as Ti =
{𝐿(𝑡𝑎𝑠𝑘𝑖), deadline (Ti) , budget (Ti), Ti−class} ,   
 

T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

X= 0.30

Medium Capacity

Class 2 

X= 0.30

Low Capacity

Class 3 

X= 0.40

High Capacity

Class 1 
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Algorithm 2: VMs Classification Function (VMCF) 

23 Create number of PHi with their characteristics 

24   Create list of (VMs, PHi) with different CPUj +  

PEj + BWj  and  determine all required parameters 

25  for each Virtual Machine VMj on host P Hi do 

26   compute capacity of all VMs in VM List [ ] based: 

VMC=vm.getRam().getCapacity()+vm.getMips()+ 

              vm.getBw().getCapacity() 

27 Arrange the list of VMs in decreasing order 

28 VMs classNO. = number of VMs%k   //NO. of  VMs  

class =  NO. of cloudlet class 

29 if V Ms class NO.  mode k = 1 then 

30 Class 1=class 1+ 1 

31 end 

32 if V Ms class NO.  mode k = 2 then 

33 class1=class1+ 1 

34 class2=class2+ 1 

35 end 

36 Group VMs based on the 

threshold (ψ, φ and ε) into three Class (high-cap., 

medium-cap., low-cap.),   (Class1, ..Classn) 

37 Create number list of type VM == VMs classNO. , 

                (V L1,  V L2, V L3) 

38 if V M ∈ ψ then 

39 Set vm.class == VMC1 

40 Add.vm to vm VL1 

41 end 

42 else if vm ∈ φ then 

43 Set vm.class == VMC2 

44 Add.vm to vm VL2 

45 else  

46 Set vm.class == VMC3 

47 Add.vm to vm VL3 

48 end 

49 end 

       where: 

50 V MC1 capacity >  V MC2 capacity and V MC2 capacity    

> V  MC3 capacity  
 

where L(taski)  refers to task length measured in 

(MI), deadline (Ti) The time limit for completing the 

user task in second, budget (Ti) is the cost specific 

by user in dollar and Ti−class  is a class which task 

belongs to. Similarly, each VMi is also characterized 

as VMi = {VMID , VMIPS , VMRAM , VMBW  , VMj-class } , 

where VMj-class  is a class which VM belongs to. 

The execution-time ETij  ,and cost of task T𝑖  is 

calculated during run and each task has 

deadline (Ti) , and budget (Ti) to execute from user. 

To select the most suitable processor for the current 

task, the QOF for each processor 𝑝𝑗 ∈  list 1 is 

computed based on Eq. (16), and then calculate the 

objective function for user UserObjF parameter 

based on Eq. (17), then calculate the minimum value 

can return from QOF with 𝑉𝑀ID , then compare 

UserObjF with QOF. And mapped cloudlet to VM 

has a minimum value, then task and VM status lists 

are updated. If UserObjF is greater than QOF, DB-

MODS scheduler migrates task to next group. 

7. Performance metrics 

In the context of testing and evaluation the DB-

MODS performance  based scheduling of the task in 

cloud environment includes makespan, cost, success 

rate, throughput, energy consumption, and 

performance improvement ratio (PIR) are considered 

as analytical performance metrics. In the literature, 

the majority of researchers use the makespan or cost 

as the single criterion to assess the efficiency of their 

algorithm. The DB-MODS approach is evaluated 

using the following metrics: 

 

• Makespan 

One of the most popular metrics for evaluating 

the effectiveness of scheduling in cloud environment. 

It can be characterized as the finish time of execution 

latest task. If the makespan value is small, this refers 

that the cloud broker correctly assigning workloads 

to the relevant VMs. The definition of makespan as 

in Eq. (3) [24].  

• Success rate 

The success rate is used to determine the fault 

tolerance approach's effectiveness. It is a crucial 

performance indicator that is used to evaluate the 

reliability of the cloud's systems. This is the ratio 

between the number of tasks finished and the time 

limit allotted by users (deadline and budget). It is 

computed using Eq. (18) [25]:  

 

   𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =  
𝑇𝐹

𝑇𝑈
 𝑥 100                       (18) 

 

Where: 

𝑇𝐹 Number of tasks finished within user deadline 

and budget. 𝑇𝑈is a number of users tasks. 

• Cost 

The cost of processing a task in cloud is defined 

as the demand cost to process the incoming task to 

cloud and can be computed from the cost of the CPU, 

memory cost, and cost of bandwidth consumption. To 

calculate cost when 𝑡𝑖  executes at 𝑣𝑗  can be 

computed by Eq. (4), and total cost by Eq. (8) [16]. 

• Throughput 

The term throughput denotes the number of tasks 

a virtual machine completes in a certain period of 

time [25]. 

 

         𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑇𝑆𝑒

Makespan
                           (19) 
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k

  

 

Algorithm 3: DB-MODS Scheduler Algorithm 

1 Input: List of unmapped tasks which have 

constraints (ID, length in MIPS and deadline D 

in sec.), set of VMs with their characteristics 

(MIPS, CPU, RAM and BW) 

2 Output: Map (Ti, VMj) with Minimizing the 

Makespan and expenditure cost for these 

tasks 

3   ETij = 0, Cost(𝑇𝑘
𝑖 )=0, VMId = 0, U-ObjF = 0,  

       minQOF= 0 Timespan = 0,  α = 0  

4  while Ti != null do 

5 for  𝑗 = 1 𝑡𝑜 𝑚 do 

6 if  cloudlet class LLHD || LLLD class  then 

7 maxTries1 = VL1.size(); 

8 For each 

machine VM (i) 

[] VL1 [ ] 

Resource list 

and¡ maxTries1 

do 

9 ETij = computeET ij (Ti, VMj ) based Eq.(1) 

   10                          Cost (𝑇𝑘
𝑖 ) =compute Cost (Ti, VMj ) based Eq.(4) 

11 QOF = compute (α × ETij  + (1 − α) × Cost (𝑇𝑘
𝑖 )) 

12 M-QOF = Min (QOF) 

13 list.add (VMId, M-QOF) //Get minimum 

value  

                                   of QOF function from list of vmgroup1with vmid 

14 end 

15 end 

16 U-ObjF = compute (α × deadline (T i) + (1 − α) ×  

                  budget (T i)) 

17 if  U-Obj <= M-QOF  then 
18 Map.add (Ti, VMj )   //return cloudlet id that  

                        allocated to VMid 
19 update VMs status (utilities) 
20 updateVm list (VL1) 
21 end 

22 else 

23 set cloudlet class = 2 

24 migrate cloudlet to next group 

25 end 

26  end 
27  Note: repeat steps from 5-26 for each class of 

task, but with different values of α 

Computation performance 

 Calculate the metrics: 

28 Makespan based on the Equation 3. 

29 Success Rate based on the Equation 18. 

30 Energy consumed based on the Equation 24. 

31 Throughput based on the Equation 19. 

32 Cost based on the Equation 8. 

33 PIR based on the Equation 25. 

  
 

Where NTSe  is a number of tasks successfully 

executed. 

In a cloud context, throughput represents 

productivity or overall system performance i.e. the 

higher value of throughput refers to the better the 

system performs. 

• Energy modeling 

The amount of energy that cloud nodes consume 

is generally due to the execution process , power 

conditioning, and cooling of the system. VM is the 

foundation of our energy model in execution 

environment. mostly, the energy consumption is 

depending on VM state. A virtual machine state can 

either be in active mode, or idle. Here, we suppose 

the VM will be in an active state when executed it, 

otherwise, a VM considers idle. Typically, the energy 

taken up by a VM in idle mode is between 60-70% of 

the active state. Let, µ𝑎𝑗
 and   ɳ𝑖𝑗

 indicate the energy 

that consumes by VM 𝑣𝑗  in both states active, and 

idle consecutively. while total consumption of energy 

(£𝑗)  of VM 𝑣𝑗  is calculated by taking into account 

active and idle states together and calculation is as in 

Eq. (20) [14, 26].  

 

           £𝑗 = (µ𝑎𝑗
+ ɳ𝐼𝑗

) × 𝑀𝐼𝑃𝑆𝑗                        (20) 

 

Calculate the total execution time (£𝑗) for every 

task allocated to 𝑣𝑗 as in the following expression: 

 

𝑇𝐸𝑇𝑉𝑀𝑗
= ∑  𝑛

𝑖=1 𝑋𝑖
𝑗

× 𝐸𝑇𝑖𝑗                           (21) 

 

Where binary value  𝑋𝑖
𝑗

= 1, if 𝑡𝑖 is allotted to 𝑣𝑗. 

If 𝑡𝑖 is not allotted to 𝑣𝑗 then 𝑋𝑖
𝑗

= 0. The energy that 

is consumed by 𝑣𝑗  in active, and idle mode is 

computed as follows: 

 

              µ𝑎𝑗
= 𝑇𝐸𝑇𝑉𝑀𝑗

× ß𝑗                                (22) 

 

ɳ𝑖𝑗
= (Makespan − 𝑇𝐸𝑇𝑉𝑀𝑗

) × 0.6 × ß𝑗          (23) 

 

Where: ß𝑗 = 10−8 × (𝑀𝐼𝑃𝑆𝑗)
2
 in Joules/MI.  

The overall energy -consumption (𝛿)  for cloud 

VMs is computed as: 

 

𝑜𝑣£𝑗
= ∑  𝑚

𝑗=1 £𝑗                                        (24) 

 

• Performance improvement ratio (PIR%) 

PIR metric employed to indicate the effectiveness 

of a DB-MODS algorithm depending on the decrease 

in time of execution. Therefore, it is considered one 

of the crucial measures that benefit to determine the  
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Figure. 7 Composition of GOCJ realistic workload 
 

Table 4. Parameters of simulation environment 

version of 

simulator 

CloudSimPlus v7.3.0 

Experimental 

environment 

Intel(R) Core(TM) i7-10750H 

CPU @ 2.6 GHz   2.59 GHz. 

Memory 16.00 GB HD 1 TB 

 

 

effectiveness of the work. It is calculated as follows 

[27]. 

 

𝑃𝐼𝑅% =
 Makespan𝑟− Makespan- proposed 

 Makespan𝑟
× 100         (25) 

 

where Makespan
r
  and Makespan

proposed 
  is refer 

to makespan acquired from the rth algorithm also 

from proposed algorithm. 

8. Implementation and experimentation 

results 

8.1 Experimental setup 

To simulate DB-MODS we used the 

CloudSimPlus platform for simulating, modulization, 

and testing the performance of our proposed DB-

MODS scheduling approach. which include several 

models, and algorithms, such as heuristic-algorithms, 

VM migration approach, scalability, more precision, 

and ease to operate [28]. Additionally provides 

fundamental classes for characterizing cloud system 

ingredients such as datacenters, brokering policy, 

computational resources, VMs and cloudlet [29].  

8.2 Benchmark datasets  

To assess the effectiveness of our scheduling 

method, two distinct datasets are used: first) random 

dataset, second) Google cloud jobs (GOCJ) dataset. 

workload datasets are be described in the following: 

8.2.1. Random dataset 

We generated tasks with length varying from 1k-

100k MIs. There is a total of 1k tasks in randomly 

generated dataset. The dataset contains task ID, task 

length, deadline and budget. 

8.2.2. GOCJ dataset 

GOCJ is regarded as Google such a real dataset 

produced as a result from workload that reflects 

behaviors of Google cluster evaluation employing 

bootstrapped (i.e. Monte-Carlo). simulation, a widely 

used simulation technique. In the GOCJ dataset, tasks 

length lies between range from 15x103 - 900 x103 MIs, 

then, dataset is categorized as: jobs with small size 

(15 x103-55 x103 MIs), medium size jobs (59 x103-99 

x103 MIs), large size jobs (101 x103 - 135 x103 MIs), 

extra size jobs (150 x103 - 337.5 x103 MIs), and huge-

size jobs(525x103-900x103MIs) as shown in Fig. 7 

[16,30], and available on: 

https://data.mendeley.com/datasets/b7bp6xhrcd/1   

8.3 Implementation environment  

The experimental environment includes CPU 

Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 

GHz, memory (16.0 GB) HD 1 TB, and uses Eclipse 

IDE 2022‑09, jdk-17.0.1, and CloudSim Plus v7.3.0 

as shown in Table 4. 

Simulated the dynamic arrival of cloudlets 

randomly during simulation runtime. At any time, the 

simulation clock updates, a new cloudlet will be 

created from dataset based normal distribution 

equation. 

To cluster cloudlets, cloudlets values need to be 

normalized. The normalization procedure reduces a 

variety of values to a narrow range, such as 0 and 1, 

and is used as a pre-processing, mapping, and scaling 

method to turn severely skewed results into a new 

values range [31]. 

In order to evaluate efficiency of proposed DB-

MODS algorithm, we compared with other methods 

in the literature such as LA-based scheduling (LAS), 

Greedy-R and Greedy-P [14], EEVS [15], and 

random in scenario 1. And compared it with well-

known methods based on FCFS scheduling algorithm, 

(MOABCQ-FCFS), (MOABCQ_LJF), Q-learning 

method, multi-objective PSO (MO-PSO), Max-Mi, 

and multi-objective-cuckoo search (MO-CS) [16], 

artificial-bee-colony (ABC) algorithm, and the 

largest-job-first (HABC-LJF) [17] in scenario 2, and 

HESGA, GA, and ACO [19] in scenario 3. 

Various numbers of cases that are acquired by the 

generation of a different count of tasks are between 

200 and 1000 whose length is ranging from 1000 MI 
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to 900,000 MI and varies number of VMs from (40) 

to (100). Therefore, for simulation the proposed, we 

have carried out three scenarios as in the following 

section. 

8.4 Experimentation results and discussion 

This section shows the experiments of the 

proposed DB-MODS scheduling approach and 

discusses the results. 

 

Scenario 1: 

For simulation scenario 1, the following specific 

settings and parameters are provided: 

• The VMs are modeled to have processing capacity 

with value lying in range [3k-6k] MIPS. 

• A tasks creation is modeled to simulate the tasks 

with the behavior of arrival in real-time to the 

cloud system. 

•  The poisson distribution is used to simulate task 

arrival, and the time of arrival is distributed in an 

exponential manner. 

• Deadline of tasks is defined as: deadline (Ti) =
ari + baseD , where ari  is the task arrival time, 

baseD  is in uniform distribution form in range 

between U(5,10). 

•  Task length is specified to be between [1000 

to10000] MI. 

•  To prevent the impact of uncertainty factors on 

the experimental outcomes, each experiment is 

run 20 times, and the average is calculated. 

 

In this scenario, we have taken 40 VMs which are 

constant in number and varying in processing 

capacity needed to complete the user task allocated to 

its. The collection of tasks generated in a random way 

whose numbers are different from 200 to 1000 in 

intervals of 200 based on a random dataset is 

considered for the evaluation of the proposed 

approach. 

To evaluate the effectiveness of the proposed DB-

MODS in this scenario several metrics are considered. 

These parameters include makespan, success ratio, 

and total energy consumed. 

A comparison result of proposed DB-MODS 

method performance in terms of makespan is shown 

in Fig. 8. There were 40 VMs used in this experiment, 

and the system was given 200, 400, 600, 800, and 

1000 tasks. After testing the random dataset, the 

experimental findings in Fig. 8 show that the DB-

MODS approach reduced the average makespan 

more effectively than the LAS, EEVS, Greedy-R, 

Greedy-P, and random.          

In our tests, we used a value of δ = 0.5, indicating 

that time and cost are equally important in the 

objective. The DB-MODS model achieves the 

shortest makespan by minimizing the time required 

to complete tasks within the given budget and 

deadline constraints. This results in a higher 

performance level for the DB-MODS model, 

achieved through clustering the tasks, and assigning 

large tasks to high-capacity VMs and small tasks to 

low-capacity VMs. By reducing the average 

execution time, this approach minimizes the 

makespan. We conclude, the DB-MODS model's 

performance is optimized by prioritizing task 

completion within the specified time and cost 

constraints, accomplished through intelligent task 

clustering. 

Fig. 9 illustrates that for all the compared 

methods. There is little difference in success rate, 

regardless of the number of tasks. While it is clear 

that when increasing the number of tasks leads to an 

increase in the failure rate for all tested methods.  This 

is because of the inefficient distribution of tasks on 

the VMs, which leads to an increase in execution time, 

and therefore it is not possible to meet the negotiated 

deadline between the service provider and the user. 

whereas DB-MODS maintained the success rate of 

tasks even when increasing them, and the reason is 

the efficient distribution of tasks on the VMs, this is 

due to use the K-means algorithm, which groups 

tasks depending on their length and deadline, where 

we conclude from our work that the large tasks and 

with short deadline, they were executed on VMs with 

high resources to ensure their execution is within the 

specified time which.   

Fig. 10 illustrates the performance analysis of 

DB-MODS algorithm in term of consumption of 

energy for the various task combinations. Fig. 10 

shows that DB-MODS conserves energy better than 

other approaches, and this tendency is evident as the 

number of tasks increases. This experimental finding 

indicates that the DB-MODS scheduler aids the 

efficient use of VM nodes, which contributes to 

energy conservation low as possible compared with 

others methods. The results indicate that our work 

optimizes the processing time through distributed 

tasks on VMs in an efficient way and this means 

decreasing the idle time (ɳ𝐼𝑗
). The main reason is due 

to the objective function presented in Eq. (16), which 

tried to reduce the makespan. Minimizing the 

makespan of a system is equivalent to conserving 

energy, since the makespan is directly related to the 

energy consumption of the system. By reducing the 

makespan, the idle time of virtual machines is 

reduced as well. As a consequence, the energy 

consumed by the system is lower when virtual 

machines have less idle time. 
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Figure. 8 Makespan under scenario 1 using random 

dataset 

 

 
Figure. 9 Success rate comparison under scenario 1 using 

random dataset 

 

 
Figure. 10 Total energy consumption under scenario 1 

using random dataset 

 

In this paper, we used the statistical analysis t-test 

to conduct according to the makespan values on the 

same random dataset with 200 tasks, but one on 40 

VMs and another on 60 VMs as shown in Fig. 8 and 

Fig. 11 respectively. 

The null hypothesis assumes that the success rate 

for all implemented algorithms is 75%. we applied a 

(t-test) using 200 tasks, and the number of VMs is 40 

for (Test-1) whereas, 60 for (Test-2). For Test-1 the 

mean calculated value = 61.76,  Std. deviation = 

32.32, and N equal to 7. Whereas Test-2, the mean 

value = 61.6, Std. deviation = 35.0, and N equal to 7.  
 

 
Figure. 11 Makespan under scenario 1 using random 

dataset (60 VMs) 
 

Table 5. Simulation environment (scenario 2) 

Type Parameter Value 

Host Host Number 20 

 MIPS 177.73 ْ x103 

 Storage capacity  2TB 

 Bandwidth 10GB/s 

 RAM 16GB 

 VM-Monitor Xen 

Data Center DC Number 1 

 VM-Scheduler Time Shared 

 Memory Cost 0.1 − 1.0 

 Storage Cost 0.1 − 1.0 

VM VMs number  5 − 100 

 Speed of 

processor 

3.5x103 – 100x103 

MIPS 

 Memory 1 − 4 GB  

 Bandwidth 1,000 − 10,000 

 Cost per 

Memory 
0.1 − 1.0 

 Cost per Storage 0.1 − 1.0 

 Cloudlet 

Scheduler 

Time Shared 

 PEs Number 1 

 VM Monitor Xen 

Cloudlet/Task Length of Tasks 1x103-900x103 

 Tasks number  200 − 1000 

 

 

The value of t is (0.01) and (degree-of-freedom) 

(df)=12. The value of t(p) at 12 df is 0.993  when 

significance is 5% (value is 0.05) for 12 df in (two-

tailed). At a 5% level of significance, the null-

hypothesis may be to accepted because the estimated 

t-value is smaller than 0.993.  

Scenario 2: 

In this scenario, simulated a virtual environment 

to evaluate efficiency of DB-MODS in terms of 

cloud-based load balancing and scheduling. The 

parameters used in this scenario for the simulation are 

defined as shown in Table 5. We have considered four 

objectives in scenario 2 are makespan, throughput, 

cost and PIR as follows: 
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Fig. 12 when comparing DB-MODS against 

MOABCQ-FCFS, MOABCQ-LJF, Max_Min 

method, HABC_LJF, FCFS, Q-learning, MO-PSO, 

and MOCS algorithms, the results show clear 

superiority in reducing makespan. The reason for this 

is due to the mechanism of dividing tasks and 

resources into clusters and groups and then 

distributing them in several levels. Fig. 13 shows the 

number of virtual machines in each group with the 

total capacity. Thus, the clustered tasks will be 

submitted according to their cluster to the appropriate 

groups of VMs. As the number of tasks increases, the 

makespan of DB-MODS becomes significantly 

smaller compared to the other algorithms because our 

algorithm selects the resource based on the task class. 

This approach has the capability to improve the 

convergence speed and the effectiveness of 

optimization in the DB-MODS algorithm. The 

proposed demonstrates a high capability to reduce the 

makespan and determine the optimal resources for 

processing incoming tasks, and arrive at the best 

decision even when the task count increases. 

Fig. 14 compares the effectiveness of the DB-

MODS method using important throughput metric, 

can be defined is the number of tasks finished in a 

specific time which is calculated using Eq. (19). 

Proposed algorithm processes more tasks in a 

given time due to better balancing. The GOCJ dataset 

used in this experiment. The result of simulation 

indicates that DB-MODS outperformed all other 

algorithms in terms of throughput. And higher 

throughput value achieved at 800 tasks, DB-MODS 

gave higher values than the others at 195%, 163%, 

88%, 86%, 86%, 77%, 26% and 22% when compared 

to Max-Min method, FCFS algorithm, Q-Learning 

method, HABC-LJF approach, MOPSO technique, 

MOCS, MOABCQ-FCFS and MOABCQ-LJF 

respectively. The result indicate that proposed is 

stable at each number of tasks 200, 400, 600, 800 and 

1000. From the result, based on our examination, it 

can be inferred that the proposed method can perform 

load balancing effect to ensure that no single server 

is overloaded. Because resources and tasks are 

properly grouped and divided in the pre-processing 

process which leads to increased overall cloud 

throughput. 

In Fig. 15, the performance from a cost 

perspective is calculated for scheduled tasks, which 

are assigned to 100 VMs under GOCJ dataset. The 

maximum costs for 200, 400, 600, 800, and 1000 

number of the task are 117.733, 229.773, 368.108, 

446.081, and 581.574 which are less compared to 

existing algorithms such as MOABCQ-FCFS, 

MOABCQ-LJF, Max_Min method, FCFS algorithm, 

HABC-LJF, Q-learning, MO-PSO, and MOCS  
 

 
Figure. 12 Comparison of makespan under scenario 2 

on GOCJ dataset 

 

 
Figure. 13 VMs number comparison of the different 

classes 

 

 
Figure. 14 Comparison of throughput under scenario 2 

on GOCJ dataset 

 

techniques.  Because the DB-MODS reduce tasks 

execution time due to better distribution of tasks on 

VMs by running the task with large length on high 

VM capacity and this led to reducing in execution 

time, since the total cost depends upon the CPU, BW,  
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Figure. 15 Cost comparison under scenario 2 on GOCJ 

dataset 

 

 
Figure. 16 PIR (%) on makespan comparison under 

scenario 2 on GOCJ dataset 
 

and RAM usage cost multiply by execution time, thus, 

the total cost decreases. Also, we concentrate in our 

objective function on minimizing user cost by set 𝛿 = 

0.5 through selecting a VM with a small cost, and this 

leads to executing a task on a VM that returns a 

minimal cost. 

The PIR (%) of the DB-MODS approach based 

on makespan as it relates to the MOABCQ-FCFS, 

MOABCQ-LJF, Max-Min, FCFS, HABCLJF, 

Q_learning, MO_PSO, and finally MOCS algorithm 

is presented in Fig. 1. For the GOCJ workload, the 

results show that the DB-MODS algorithm produces 

82.60%–60.48%, 72.02%–55.54%, 65.76%–43.09%, 

64.64%–37.05%, 66.12%-39.46, 64.24%-30.60, 

62.14%-20.96% and 54.03%–18.71% makespan time 

improvements over the (Max-Min), FCFS, 

Q_Learning, HABC_LJF, MO-PSO, MOCS, MO-

ABCQFCFS and MO-ABC-QLJF algorithms, 

respectively. 

Scenario 3: 

In this scenario, simulating is to evaluate the 

effectiveness of DB-MODS in makespan and 

throughput to show a performance of our proposed 

when a huge number of tasks. In this scenario, the 

parameters used for the simulation are: length of the 

task 1000-20000 MI, number of tasks from 1000 to 

5000, number of VMs is 1000, MIPS is 500-2500, 

BW is 500-1500, RAM from 256 to 2048 and PEs 

from 1 to 4. 

In Fig. 17, a comparison of makespan is shown 

for various algorithms (DB-MODS), HESGA, GA, 

and ACO with different numbers of tasks. The 

findings indicate that the DB-MODS algorithm has 

minimize the makespan by 46% in average. This 

proves that our proposal is better when compared 

even with a large number of tasks, and it becomes 

clear that the time decreases with the growth in tasks 

number significantly, and this is due to the balanced 

distribution of tasks on VMs and the speed of 

adaptation, in addition to finding the appropriate 

VMs better as a result of the clustering and dynamism 

provided by the algorithm. 

Fig. 18 the algorithm we developed has improved 

task scheduling throughput in cloud environments 

when compared to HESGA, GA, and ACO by 

maximize throughput by 39% in average. The 

algorithm may be better at allocating resources in a 

way that maximizes utilization and reduces wastage. 

The algorithm may be better at placing tasks on the 

most appropriate servers or VMs, based on factors 

such as execution time, and the ability to faster 

decision-making based on real-time data about 

resource availability and task requirements. This can 

reduce the time required for scheduling and improve 

overall throughput. 

9. Conclusion and future works 

Resource management and task scheduling are 

crucial challenging of the cloud-based IoT/MCS 

ecosystem. the challenging represented  in select the 

optimal processing node. because users want to 

complete their application in given time and within 

specified budget, whereas the service provider wants 

to utilizing the resource to gain maximum profit. In 

this paper, we proposed deadline-budget multi-

objective dynamic scheduling scheme (DB-MODS). 

The proposed approach employs the K-means to 

cluster tasks based length and deadline to assigning 

to appropriate computing nodes, and grouping VMs 

based on capacity using thresholds. DB-MODS 

depend on objective function which consider user 

task constraint i.e. deadline and budget to minimizing 

the rejection rate of tasks. Two scenarios were 

conducted on random and real GOCJ dataset using 

CloudSim plus. The proposed approach facilitates 

balancing load workload across the system's existing 

resources. in addition, is clear effective in improving 

user QoS and save SLA through reduction makespan, 

cost, energy consumption, failure task ratio, and  
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Figure. 17 Makespan under scenario 3 

 

 
Figure. 18 Comparison of throughput under scenario 3 

 

maximize throughput when compared to the EEVS, 

Random, Greedy-R, Greedy-P, LAS, and DTS in first 

scenario. HABC-LJF, Max-Min, Q-Learning, 

MOPSO, MOCS, FCFS, MOABCQ-FCFS and 

MOABCQ-LJF in second scenario, and HESGA, GA, 

and ACO in third scenario. 

Task scheduling in Cloud/Fog for IoT and MCS 

environments might be an issue and it could be our 

future study. We will propose a scheduling method in 

multi-environments and planning to apply meat-

heuristic algorithms and other machine learning 

techniques. Furthermore, the proposed approach will 

be evaluated in a real-world scenario. 
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