
Received: February 16, 2023. Revised: March 10, 2023. 201

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Dynamic Cost-Optimized Resources Management and Task Scheduling with

Deadline Constraint for Mobile Crowd Sensing Environment

Abbas M. Ali Al-muqarm1,2* Naseer Ali Hussien3

1Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Iraq

2Computer Technical Engineering Department, The Islamic University, Najaf 54001, Iraq
3Alayen University, Iraq

* Corresponding author’s Email: abbasm.almuqarm@student.uokufa.edu.iq

Abstract: The unpredictable and huge data generation nowadays by smart devices from IoT and mobile crowd sensing

(MCS) applications like sensors, and smartphones requires processing power and rapid responses in a specific time

frame (deadline), and user cost, i.e., budget. Cloud provides these capabilities to serve organizations and customers,

but when using cloud appear some limitations, the most important is task scheduling. Nevertheless, the most of earlier

scheduling algorithms have focused on only one evaluation parameter such as makespan or cost and so on, as the

scheduling process goal. Optimizing a single metric may not ensure an improvement in the cloud performance in

general, so the need may arise for algorithms that concentrate more broadly on enhancing more than one parameter.

Therefore, this paper presents a deadline-budget multi-objective dynamic scheduling scheme (DB-MODS) to execute

user tasks on VMs within QoS limits in order to finish the task within the deadline and budget if possible. DB-MODS

using K-Means based on task length and deadline for clustering incoming tasks into groups and categories VMs based

on capacity thresholds. In addition, the task belonging to every cluster is assigned to a suitable VM in VMs groups.

based on objective functions, which can be one for user request depending on (deadline and budget) and the second is

for system depending on (execution time and cost). This paper used CloudSim plus to simulate and evaluate our

approach. The DB-MODS approach performance was compared to scheduling algorithms from the previous literature.

Both random and Google cloud jobs (GOCJ) workloads are used to evaluate the efficiency of DB-MODS. The results

show that DB-MODS outperforms the other algorithms by minimizing makespan by 41%, energy by 46%, and

increasing success ratio by 35%, in comparison to existing load balancing and scheduling methods: EEVS, LAS,

Greedy-R, DTS, Random, and Greedy-P in the first scenario. Minimizing makespan by 46%, cost by 44%, and

maximize throughput by 80% when compared with MOCS, Max-Min, HABC-LJF, FCFS, MOPSO, Q-learning,

MOABCQ-FCFS, and MOABCQ-LJF in a second scenario, and minimizing makespan by 46%, and increase

throughput by 39% when compared with HESGA, GA, and ACO in a third scenario in average. In addition to the

possibility of applying and employing DB-MODS for scheduling deadline-critical tasks in a heterogeneous cloud

system.

Keywords: Cloud computing, Resources management, Task scheduling, IoT, Mobile crowd sensing.

1. Introduction

Cloud computing is a developing computational

method that relies on virtualization hardware to

distribute resources dynamically in response to user

requests made over the internet [1]. This

virtualization of cloud computing improves

accessibility while lowering maintenance costs. Task

scheduling becomes a key problem in the cloud when

the user requests service for efficient resource

allocation. The purpose of scheduling is to establish

the best relationship between tasks and machine

resources. The scheduling process is simple when

there are few user tasks and resources. The

scheduling becomes complicated if a user sends out

several requests to get the appropriate level of service

[2, 3].

In the cloud context, task schedule has recently

Received: February 16, 2023. Revised: March 10, 2023. 202

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

been a fascinating topic that has garnered a lot of

concentration in the research literature. Task

scheduling is allocating tasks to the resources with

more availability based on the specifications and

requirements of the tasks. Cloud broker receives the

tasks of the users and assigns them to the available

resources, taking into account the characteristics of

the task and the resources. These resources must be

used correctly and perfectly in order to allocate the

best suitable physical resources to the task to achieve

good quality of service (QoS) and an optimal

allocation of resources. To address the challenge of

user satisfaction and provider revenue [4]. Before

using any services or renting out resources, cloud

users always negotiate with cloud service provider

(CSP) to ensure service-level-agreements (SLAs). In

a computing paradigm, a user only pays for the

services and resources they really use. The two most

crucial aspects that affect a consumer are turnaround

time and budget. Consequently, deadline and budget

are the trade-off issues for task scheduling. Task

constraints like deadlines and budgets are used to

assign user tasks to cloud resources that differ in their

characteristics, based on cost and time. A provider

can reduce operating expenses and provide excellent

QoS by guaranteeing that each user has fair access to

resources shared by all users [5].

Scheduling heterogeneous resources in cloud

relies on some characteristics such as availability of

resources, resource utilization, workload length,

resource capacity, and cost. like differing processor

speeds and communication between CPUs. SLA

negotiation as well controls the uses of resources and

scheduling. As a result, must focus on the parameters

mentioned above while scheduling requested tasks on

resources to ensure user satisfaction [6]. There are

several scheduling algorithms such as shortest job

first (SJF), first come first serve (FCFS), min-min,

max-min, and round robin (RR), there are existing,

nevertheless, these are not seen as being significantly

superior solutions to scheduling issues in cloud

environment. To address the scheduling issue, the

scientific community has given a variety of solutions

[7]. Traditionally, resource management has relied on

static policies, but these policies have limitations in

dynamic situations. As a result, CSP have turned to

data-driven, and machine learning. Machine learning

is employed for various resource management

functions to address diverse resource management

tasks, involving estimating workloads, task

scheduling, optimizing resources, VM consolidation

and improving energy efficiency, among others [8].

The processes of clustering and task scheduling are

commonly concentrated in federated clouds for task

assignment based on the resources [9]. Decision

making with multi criteria is a branch of operations

research that studies issues with several criteria, like

priority-based workload scheduling. This way of

decision method provides important support for

decision-makers (DMs) by specifying the problem,

also formal it, and making helpful suggestions [4].

Dynamic scheduling methods have more flexible

than the earlier defined types. Dynamic schedulers

possess the capability to monitor, and estimate, in

addition to updating the load on the VMs at the time

of execution as the tasks are being carried out in

either a proactive or reactive manner [10]. These

schedulers enable the priority and migration of the

tasks that have already been allocated. Additionally,

dynamic scheduling methods typically have the

capability to create new VMs, remove existing ones,

and migrate VMs while they are running [11].

However, several of the current dynamic scheduling

methods continue to use a temporal-batch of

incoming tasks that were received during an interval

of time. Most dynamic algorithms now in use have

problems with Inadequate resource utilization, an

imbalanced load, and a high rate of rejection for tasks

with a time constraint (i.e. deadline) [12].

In this paper, a new approach named DB-MODS

is proposed to address load balancing and task

scheduling issues. DB-MODS task scheduling

method is based on k-means algorithm for task

clustering and thresholds for classifying virtual

machine (VMs). The objective function of proposed

is computed the execution time and cost of every task

on all VMs and return the minimum value as the

fitness value (F) and computed the objective function

for user parameters to choose a suitable VM to

process a given task.

The primary contributions of this paper are

outlined as follows:

• Introduce a (multi-objective optimization) DB-

MODS approach for deadline and budget sensitive

tasks scheduling problem in a cloud for IoT/MCS

environment.

• To proactively and intelligently find the optimum

VMs for task allocation while taking time and

money restrictions into account.

• The proposed method focuses on two competing

objectives, namely the shortest completion time

within a deadline and the lowest cost within a

budget constraint.

• The scheduling problem is defined as a multi-

objective issue that aims to minimize of makespan,

energy consumption, and cost.

• To validate the results of the proposed DB-MODS

against methods from the literature, a statistical

Received: February 16, 2023. Revised: March 10, 2023. 203

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

test (i.e. t-test) was used. The t-test is employed

using a significance test.

• A large number of tests were conducted, to show

the superiority of DB-MODS over peers. The

comparisons were done by measuring makespan,

throughput, success ratio, cost, and energy

consumption by using CloudSim plus.

The rest of the paper is organized as in the

following: section 2, presents the works related to

resource management and scheduling problem in a

cloud system. Section 3 presents task scheduling and

resource management. Section 4 introduces problem

modeling. The proposed approach of task scheduling

based on K-means clustering is introduced in section

5. Section 6 introduces the proposed load‑balancing

and scheduling algorithm DB-MODS. Section 7

introduces performance metrics. Section 8 introduces

implementation and experimentation results. Section

9 introduces the conclusion and future works.

2. Related work

This section of this paper presents various works

related to resource management and task scheduling

issues in different environments like IoT and cloud.

Some benefits and drawbacks of each related study

are discussed and analyzed.

Task scheduling is an NP-hard, and considered a

complex aspect when designing cloud computing

systems. It plays a crucial role in achieving high

performance and maximizing resource utilization by

utilizing the best features from available resources.

This paper's key contribution is to present a novel

approach called DRRHA that focuses on the classic

RR algorithm's drawbacks via optimizing the metrics

of performance by reducing the average response

time, waiting time and turn-around time. But it

contains a lot of calculations, in addition to their use

of the FCFS and SJR algorithms [13].

In this paper, the authors introduced a new

framework called learning automata scheduling (LAS)

which is an adaptive decision-making unit to deal with

tasks sensitive to deadline in the cloud environment.

They formulated the issue of scheduling tasks as a bi-

objective to decrease makespan and energy consumption,

but they did not use a real dataset and did not consider

user budget [14].

In [15] an energy-efficient-scheduling algorithm

(EEVS) was proposed, in the cloud by considering the

deadline and supporting dynamic voltage and frequency

scaling (DVFS) well. The EEVS involves dividing the

process into distinct scheduling periods. During each

period, virtual machines are assigned to appropriate

physical machines, and the active cores run at the most

efficient frequency. To achieve even greater energy

savings, the cloud needs to be reconfigured after each

period to consolidate computing resources. Despite its

ability to process a greater number of virtual machines

while consuming less energy, the EEVS approach has

some limitations. The authors did not take into account

the performance and power penalties associated with

processor status transitions and VM migrations. These

assumptions may not hold in real-world cloud

environments, which underscores the need for practical

testing using actual workloads.

In [16] The authors introduced a novel method called

MOABCQ that applies optimization as multi-objective

for scheduling issue. This approach employs artificial

bee-colony (ABC) algorithm, which has been enhanced

by incorporating Q-learning, a reinforcement learning

mechanism, that enables the ABC to achieve faster

performance. The primary goal of MOABCQ is to

decrease both the makespan, and cost associated with the

scheduling problem. This approach combined with the

FCFS named ''MOABCQ_FCFS'' and largest-job first

(LJF) named ''MOABCQ_LJF''. However, the authors

cannot provide a guarantee that the MOABCQ_LJF

algorithm achieves optimal results and they don't

consider the user deadline and budget constraints.

This paper proposed task scheduling with an ABC

named (HABC) which is a combination of ABC with

heuristic algorithms (FCFS, SJF, and LJF) to improve

VMs scheduling in cloud by minimizing makespan and

balancing the loads. The result shows that the HABC

with LJF (HABC_LJF) offers the best performance in

scheduling and load balancing compared to ACO, PSO,

and IPSO. So, we compared our work with HABC_LJF.

The authors did not take into account the use of real-

world datasets or the ability of the HABC algorithm to

handle the scheduling of multiple jobs with varying

priorities [17].

This paper proposed an approach based on a two-

stage strategy called dynamic cloud task scheduling

(DTS). First, the task classification process involves

using a bayes classifier that leverages historical

scheduling data to categorize tasks. Various types of VMs

are consequently formed. Then, tasks are matched with

specific VMs dynamically. Tasks are assigned to

compatible VMs dynamically. The results show that

achieving effectively improves the load balancing of the

cloud. The authors don't consider energy consumption

and do not test on real dataset [18].

This article introduced a new approach called hybrid

electro search with a genetic algorithm (HESGA) to

enhance the performance of task scheduling by

considering various parameters such as makespan, load

balancing, resource utilization, and multi-cloud costs. By

combining the benefits of a genetic algorithm and an

electro-search algorithm. GA to find the top local optimal

Received: February 16, 2023. Revised: March 10, 2023. 204

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

solution, whereas ESA provides the best global optimal

solutions. But the authors do not test by using a real

dataset and did not consider energy as a parameter [19].

The authors of this paper suggested a scheduling

technique CBTS by using k-means algorithm and

taking only the length of task and VM capacity. In this

case, tasks are clustered only according to their length,

whereas VMs are grouped depending on their

processing capabilities. The proposed enhanced the

performance of cloud data centers by reducing

execution time and makespan. But, a task may be

restricted by deadline. As a result, the deadline may

be a significant additional property of the tasks to

include when creating task clusters [7].

An in-depth examination of associated works

reveals that the most of the current task scheduling

algorithms are tested using tiny datasets, that are

insufficient to demonstrate their performance and

work in static rather than dynamic environment,

scheduling the tasks based on user preferences

without considering the system capabilities. In

addition, cluster tasks are based on length only. So,

these studies still there is a need for new solutions. To

overcome these limitations a new approach has been

proposed, we have set a relationship between the

budget and the deadline required by the user, as well

as the time of implementation and costs by the system

to create a balance between what the user requests

and what can be provided by the cloud by formulating

a multi-objective function that was overlooked by

previous research. Also, the length and deadline of

the task it has a close relationship in the scheduling,

however, most studies did not consider them.

Therefore, we worked on setting a relationship

between them by using a clustering algorithm,

relying on these two parameters rather than a single

perimeter.

3. Resource management and tasks

scheduling

In processing large-scale data, applications and

workloads are initially split up into smaller units

known as tasks. Scheduler allocate a collection of

tasks with their characteristics to a group of VMs

nodes. The primary objective of scheduling is

decision-making, and it is one of the problems that

are classified under the NP-hard problem. Due to its

dynamic nature, determining the best computing

node for task scheduling is a big issue. Along with

assigning physical resources to the tasks. Scheduler

also has to fulfil the demands of the service-

providers, and the customers. Clearly, its primary

objectives are reducing waiting time for tasks, time

for execution tasks, makespan, and improve

Figure. 1 Scheme of task scheduling

utilization of resources. Some of them concerned

with QoS and satisfying the needs of consumers,

while others are concerned with maximizing supplier

profits [20].

Task scheduling methods place a strong emphasis on

how to select resources that minimize the time of

execution and waiting. Because virtualization is essential

to cloud, scheduling approaches are typically developed

in accordance with two tiers of the cloud system. first, at

host level, where VMs are distributed according to a

group of policies. The second is at the VM level, where

allocation tasks to VMs are controlled and necessitate a

particular set of policies. The benefits of task scheduling

algorithms include improving QoS, increasing resource

usage memory, CPU, network, etc., and improving

performance, high system throughput, enhanced load

balancing, a higher number of finished tasks, etc. [21].

Task scheduling is basically a key process that is

managed by datacenter brokers. The broker is crucial

in mapping the task-to-VMs It maintains track of the

list of available VMs while preserving their QoS.

When a user submits a request to a broker, it is the

broker's duty to assign a suitable VM to the requested

task in a way that doesn't violate the SLA or degrade

the QoS. High QoS is ensured in a cloud computing

environment by the high performance of VMs. When

a low-performing VM is assigned to a high-

performance task, the available resources are not

fully utilized, which leads to poor performance and

throughput, ultimately, a breach of SLA. Therefore,

implementing extremely effective scheduling

techniques at the broker level has become necessary,

in addition to opening up new opportunities for

research into task scheduling algorithms for cloud

computing [22].

Two methods of the task scheduling process, are

static or dynamic. In static method, whole tasks are

initially statically assigned to VMs before they begin to

execution. As a consequence, tasks given to any resource

cannot be changed during run time. Because static task

Received: February 16, 2023. Revised: March 10, 2023. 205

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

scheduling techniques have less scheduling overhead,

their performance for a single parameter may be superior

to dynamic task scheduling algorithms. However, static

algorithms still are incapable of dynamically adjusting to

changing situations [23]. Fig. 1 shows the task scheduling

system.

4. Problem modeling

Tasks scheduling in the could be efficient and

achieve high performance if tasks are assigned to

cloud VMs properly. This definition assumes that the

cloud system is housed in a datacenter with a

heterogeneous of servers, which hosts a number of

VMs. Assume that there are n tasks, 𝑇 =
{𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛} , the tasks are access to the cloud

from the IoT devices and MCS applications. The

cloud system consists of cloud nodes, each of which

has many characteristics, including various processor

capacities, memory sizes, and communication links

with varying bandwidths and storage capacities.

Assume that a collection of N cloud nodes can be

represented as follows:

𝑁 = {𝑁1, 𝑁2, 𝑁3, … , 𝑁𝑚}

where 𝑁𝑗 is represents the 𝑗th processing of

physical node. Every task 𝑇𝑖 would be allocated to a

single computing node 𝑁𝑗 , and is expressed as 𝑇𝑖
𝑗
 .

Each computing node may be assigned a number of

tasks, 𝑁𝑗(𝑗 = 1,2,3, … , 𝑚) as in the expression:

𝑁𝑗
𝑇 = {𝑇𝑥

𝑗
, 𝑇𝑦

𝑗
, … , 𝑇𝑧

𝑗
}

In this proposed approach, the model contains a

finite group of m heterogeneous VMs or multi-core

computing nodes, with a variable capacity to run a

particular task.

The time of execution task 𝑖 on 𝑣𝑚𝑗 is 𝐸𝑇𝑖𝑗 and

can be computed as in the following equation:

 𝐸𝑇𝑖𝑗 =
𝐿(𝑡𝑎𝑠𝑘𝑖)

𝑁𝑃𝐸 𝑗× 𝑉𝑀𝑀𝐼𝑃𝑆 𝑗
 (1)

where 𝐿(task𝑖) is a tasks length expressed in

million -instructions (MI), 𝑁𝑃𝐸 𝑗 is the number of

processing elements of VM, and 𝑉𝑀𝑀𝐼𝑃𝑆 𝑗 refers to

the speeds of the VM measured in million-

instructions-per-second (MIPS).

The total execution time 𝑇𝐸𝑇𝑉𝑀𝑗
 of running

collocation of tasks in VM𝑗 node is computed as in Eq.

(2):

 𝑇𝐸𝑇𝑉𝑀𝑗
= ∑  𝑛

𝑖=0 𝐸𝑇𝑖𝑗 (2)

Assume that makespan represents the overall

amount of time needed to perform all tasks in T. The

makespan may be computed by the following

equation:

Makespan = 𝑀𝑎𝑥1≤𝑗≤𝑚[𝑇𝐸𝑇𝑉𝑀𝑗
 (𝑁𝑗)] (3)

Let's define Cost (𝑇𝑖
𝑗
) as the quantity of money

required to finish the task 𝑇𝑖
𝑗
 in cloud node 𝑁𝑗 ,

including the processing cost 𝐶𝑝(𝑇𝑖
𝑗
) , cost of

memory usage 𝐶𝑚(𝑇𝑖
𝑗
) , and bandwidth usage cost

𝐶𝐵(𝑇𝑖
𝑗
) ⋅ Calculate the Cost (𝑇𝑖

𝑗
) as in the

following:

𝐶𝑜𝑠𝑡 (𝑇𝑖
𝑗
) = 𝐶𝑝(𝑇𝑖

𝑗
) + 𝐶𝑚(𝑇𝑖

𝑗
) + 𝐶𝐵(𝑇𝑖

𝑗
). (4)

The above three costs can be defined as:

 𝐶𝑝(𝑇𝑖
𝑗
) = 𝐶𝑜𝑠𝑡𝐶𝑃𝑈−𝑗 × 𝐸𝑇𝑖𝑗(𝑇𝑖

𝑗
), (5)

 𝐶𝑚(𝑇𝑖
𝑗
) = 𝐶𝑜𝑠𝑡𝑀−𝑗 × 𝑀𝑒𝑚𝑜𝑟𝑦 (𝑇𝑖

𝑗
), (6)

 𝐶𝐵(𝑇𝑖
𝑗
) = 𝐶𝑜𝑠𝑡𝐵−𝑗 × Bandwidth (𝑇𝑖

𝑗
), (7)

where 𝐶𝑜𝑠𝑡𝐶𝑃𝑈−𝑗 is the cost of using CPU to

execute task in node 𝑁𝑗 within time, 𝐶𝑜𝑠𝑡𝑀−𝑗 is the

cost of use memory in 𝑁𝑗 node , Memory (𝑇𝑖
𝑗
) is the

amount of memory consumed by a task 𝑇𝑖 in node j,

𝐶𝑜𝑠𝑡𝐵−𝑗 is the bandwidth cost, and bandwidth (𝑇𝑖
𝑗
)

is the value required to transfer task 𝑇𝑖 to be executed

in node 𝑁𝑗. The cost of running whole tasks in a cloud

can be represented as follows:

 Total Cost = ∑  
𝑇𝑖

𝑗
∈𝑇node 𝐶𝑜𝑠𝑡 (𝑇𝑖

𝑗
). (8)

We assume that there are N tasks, i.e., 𝑇 =
{𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛} are received from IoT/MCS users

to schedule into m of VM , i.e., {N1, N2, N3, … , Nm}.

4.1 Defining parameters

Table 1 shows the fundamental notations,

terminologies, and concepts that are used in

mathematical formulations of the proposed

scheduling approach.

5. Proposed work

This section presents the proposed approach DB-

Received: February 16, 2023. Revised: March 10, 2023. 206

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Table 1. DB-MODS schedulers notations

Notations Description

Cloudlet Refers to task in CloudSim plus

VMs Virtual Machines in cloud

MI Million-Instructions data of cloudlet

MIPs Million-Instructions Per Second

𝐸𝑇𝑖𝑗 Time of running task T𝑖 on VM𝑗

𝑇𝐸𝑇𝑉𝑀𝑗
 Total execution time of tasks on jth VM

𝑁𝑃𝐸 𝑗 Number of processing elements of VM.

𝑉𝑀𝑀𝐼𝑃𝑆 𝑗 Refers to the speeds of the VM.

deadline

(𝑇𝑖)

is the user-specified time for execution

task Ti

budget (Ti) is the user-specified cost for execution

task Ti

𝑉𝑀id Is the identification number of VM.

VMj-class Class which VM belongs to.

Tid Identification number of cloudlet.

Ti−class Class which task belongs to (i.e. SLHD

class).

𝐶𝐾 K represents cluster number.

𝛿
is the trade-off coefficient between

deadline and budget.

𝑇𝐹 The number of cloudlets finished with a

specific deadline and budget.

𝑇𝑈 The number of user tasks

µ𝑎𝑗
 Energy that consumes by VM 𝑣𝑗 in

active state.

ɳ𝑖𝑗
 Energy that consumes by VM 𝑣𝑗 in idle

state.

£𝑗 Total energy consumption.

MODS. It is a task management and scheduling

approach implemented for IoT/MCS in a cloud-based

environment. The main goal of the DB-MODS

approach is to meet time of response, balance the load,

reduce delay, reduce the number of missed critical

tasks, and increase the throughput. To achieve this,

we emphasize two constraints deadline , and

budget in scheduling issue, to enhance the QoS in

relation to the two primary parameters (i.e., reduce

the cost and time of execution task), and finally

increase service gain while also making better use of

the hosts and VMs resources.

The proposed approach used the machine learning K-

means clustering algorithm to categorize the tasks based

on length and deadline, and grouping VMs based on

capacity of MIPS, Bandwidth (BW), RAM using

thresholds. Our scheduling model represents the users

task parameters consist the task length, budget, and

deadline.

In DB-MODS, two measures, ready time and load

of VM are dynamically updated. The key objective of

the DB-MODS scheduler is to maximize resource use

and satisfy deadlines for recently coming tasks, cost,

Figure. 2 Architecture of DB-MODS proposed model

and reduce makespan. In our work, the objective

function presented aims to minimize makespan and

cost for IoT applications (MCS users tasks).

The proposed is comprised of two stages, namely

pre-processing and scheduling algorithm.

5.1 DB-MODS system architecture

We propose DB-MODS as a dynamic multi

objective task scheduling approach. The primary aim

is to execute user requested tasks immediately. In

proposed, several algorithms and mechanisms are

used to reduce cost and makespan, and these

techniques are employed to minimize the average

cluster run time as well as the task waiting time.

In DB-MODS, K-means was employed to

grouping the tasks depending on length and deadline,

which there is a clear relationship between them

(between the length of the task and the time required

by the user to finish it). In addition, using the

proposed algorithm DB-MODS scheduler, where an

attempt was made to improve the overall time that

tasks take to complete. Finally, the clusters of tasks

are then sent to hosts whose computing capacity is

appropriate for the task cluster constraints. Fig. 2

illustrates the architecture of the proposed DB-

MODS model.

5.2 Tasks constraints types

In the DB-MODS approach Each task has one or

more constraints depending on the parameters

specified by the user, there are two types of constraint

are deadline and budget.

Fig. 3 shows the relation between Makespan and

Cost which is an inverse relationship as in Eq. (9):

 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =
1

𝐶𝑜𝑠𝑡
 (9)

Received: February 16, 2023. Revised: March 10, 2023. 207

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

(a)

(b)

Figure. 3 several strategies for achieving deadlines and

budget. (a) An example of scheduling that decreases costs

while fulfilling deadlines and (b) An example of

scheduling that decreases a makespan but satisfies the

budget restraint

Were if user deadline is low this means that the

task must be executed within the specified time, and

this requires a VM with a fast CPU, so the cost here

is important as in Fig. 3 where if the user has enough

budget he can provide him with the service as he

wants, if user deadline is high this means the task is

not urgent (need slow CPU) and can execute with low

budget but high makespan as shown in Fig. 3 (a), an

increase in cost versus a decrease in makespan (Fig.

3 (b)).

Every task needs to be scheduled with a deadline

that reflects the fastest possible response time from

cloud service providers to requests from users. Cloud

providers must react to user requests in a fair amount

of time; otherwise, an SLA violation occurs, and the

cloud provider must pay the penalty to the users. The

task execution time should not be longer than the

deadline, as displayed in the following equation:

 𝐸𝑇 (𝑖, 𝑗) < 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (𝑇𝑖) (10)

In cloud systems, cloud providers must pay for

using the host/VMs. The consumer is required to pay

the price that is determined by cloud providers based

on the resources consumed by the consumer. The

amount that pays by a consumer per hour/second for

using a resource provider's virtual machine must be

determined, and the consumer specifies the

maximum cost that can be paid as in following:

 𝐶𝑜𝑠𝑡 (𝑇𝑖
𝑗
) < 𝑏𝑢𝑑𝑔𝑒𝑡 (𝑇𝑖) (11)

5.3 Tasks classification

Initially, each task has a set of characteristics,

Task = {ID, deadline, length, budget}. To carefully

select the suitable computing node, need to use task

information, status of computing node, and resource

availability [20]. Tasks are clustered depending on

their length and deadline by K-means method. The

prime aim of this proposal is to minimize the time of

processing huge data size, which is achieved by less

makespan and minimizing overall cost. Therefore, in

DB-MODS, for the purpose of load balancing among

clusters, task migration between clusters is

implemented for purpose of establishing load

balancing between groups.

In the proposed approach, clustering is made

using K-means algorithm. Applying K-means

prevents task clustering from falling into the local

optimum problem due it converges readily. The

elbow curve method is applied to choose the K value.

K-means is an unsupervised learning clustering

algorithm. To cluster the tasks by K-means needs to

train the model based on features of the tasks and

workload type used to determine task clusters.

Afterward, the newly arriving task is assigned to the

cluster having similar features of tasks. Two features

of the task, length and deadline are considered for

task classification. The Euclidean distance is used to

decide the closest centroid assuming four clusters,

𝐶𝐾 , where (k = 1, 2, 3, 4).

𝑑(𝑡𝑗 − 𝑐𝑘) = √(𝑇𝑙𝑒𝑛𝑔𝑡ℎ 𝑗
− 𝑐𝑘)

2

+ (𝑇𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑗
− 𝑐𝑘)

2

(12)

The tasks that are allocated to clusters can be

illustrated in matrix form as displays in Fig. 4. The

column, and row represent a task Ti and a cluster

respectively. Digit 1 , in the 𝑖𝑡ℎ row, and 𝑗𝑡ℎ column

of matrix refers to the task 𝑖 allocated to cluster 𝑗 .

Each column in the matrix only contains single (1).

This means that each task belongs only to a single

cluster.

Similar tasks are not always having the same

characteristics. However, tasks are clustered

according to their length and deadline. Consequently,

there is 𝑛 number of small-length tasks with low -

deadline in cluster, 𝑛 of big-length tasks with high-

deadline in another cluster, 𝑛 of big-length tasks with

low-deadline in another one, and 𝑛 of small-length

Received: February 16, 2023. Revised: March 10, 2023. 208

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

 t1 t2 t3 t4

C1 0 0 1 0

C2 1 0 0 1

C3 0 1 0 0

Figure. 4 An example of assigned tasks to clusters in G

generation matrix

Figure. 5 Cluster analysis of proposed approach

Table 2. Categories of proposed clusters tasks

DB-MODS

Queues

Task

Class
Description

(LCI)T2 SLHD Light Compute Intensive

(HCI)T1 SLLD Heavy Compute Intensive

(HCI)T1 BLLD Heavy Compute Intensive

(LCI)T2 BLHD Light Compute Intensive

tasks with high-deadline in cluster as a result of

clustering of 1000 tasks with length between

100 ~ 300,000 MI , and with deadline between

30 ~ 120 second as shown in Fig. 5. Despite cluster

with smaller-tasks being mapped to the computing

node with lower computing capacity as well as vice

versa. However, the two clusters average processing

times are substantially dissimilar. As previously

mentioned, relevant tasks are clustered in a similar

group to prevent the exchange of data among other

nodes. Table 2 shows the classes of tasks and power

requirements.

Where: T1, T2 are type one and two respectively,

where T1 for LD and T2 for HD. HCI is the tasks of

cluster requires high computing power. LCI is the

tasks of cluster requires low computing power.

SLHD: the first letter refers to small and second is

length of tasks, third is refer to high and fourth is

deadline.

SLLD: Small length and high deadline. BLLD:

Big length and low deadline. BLHD: Big length and

high deadline.

After classifying the tasks into four categories

and viewing the results of the clustering process, we

conclude that the SLLD and SLLD categories can be

merged because they need the same computing

capacity, and thus it becomes three categories.

5.4 Physical nodes classification

After the phase of task classification, tasks are

categorized into groups and distributed among

distinct clusters. To categorize the VMs, firstly, it is

necessary to compute the total capacity of each VM

depending on the following formulation:

 Capacity
𝑉𝑀𝑗

= 𝐶𝑃𝑈𝑗 + 𝑅𝐴𝑀𝑗 + 𝐵𝑊𝑗 (13)

where CPU𝑗, RAMj and BW𝑗 are CPU speed in

MIPS, the size of memory and bandwidth capacity of

VM𝑗, respectively. Additionally, we compute capacity

of each VM class through the sum capacity of each

VMs in a specific class as in the following equation:

 Capacity Class 𝑘 = ∑  𝑉𝑀𝑗∈ Class 𝑘 Capacity 𝑉𝑀𝑗
 (14)

Depending on the capacity calculated by Eq. (14),

we arrange the available VMs in a list. Next step in

the proposed model, the group of the VMs is

determined in relation to the type of task class as

shown in Table 3. Therefore, the proposed groups of

VMs based on their capacity by using thresholds as

shown in Fig. 6. The resulting VMs classes are VMHC,

VMMC, and VMLC.

Where: VMHC, VMMC and VMLC are VM with high

capacity, VMs with medium capacity and VMs with

low capacity respectively.

Table 3 shows the allocation of the task groups to

suitable VMs groups that meet task cluster

requirements.

6. Proposed load‑balancing and scheduling

algorithm DB-MODS

The proposed DB-MODS scheduling approach is

discussed in this section. which has three algorithms

the first is for clustering tasks, the second for

grouping VMs and the last is for a scheduler. DB-

MODS scheduler allocates user tasks to VMs nodes

relying on minimum execution time (MET) and cost,

then updates status of the task and VMs.

Received: February 16, 2023. Revised: March 10, 2023. 209

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Figure. 6 An example of VMs classification depending on

capacity and by using threshold values

Table 3. Allocate the classes of tasks to types of VM

groups

Task types in

received queue
VM types

BLLD
Type-1 (Large - CPU, BW, RAM

intensive).

SLLD+ BLHD
Type-2 (Medium- CPU, BW,

RAM intensive).

SLHD
Type-3 (Small - CPU, BW, RAM

intensive)

6.1 DB-MODS scheduler algorithm

To perform a process of mapping tasks on virtual

machines, DB-MODS scheduler receives task 𝑇𝑖

with its characteristic’s deadline (Ti) in second as well

task length in (MIs) as in algorithm 1. Then by using

k-means, the outputs of algorithm 1 include

distributing incoming tasks into clusters as

mentioned in section 5.3. Algorithm 2 includes a

number of VMs and their processing power in MIPS,

RAM, and BW as input parameters. The output of

algorithm 2 includes grouping VMs into three classes

based on the threshold as mentioned in section 5.4.

Algorithm 3 is DB-MODS scheduler algorithm to

coordinate the process of mapping clusters of tasks

on VMs groups using objectives functions.

The objective function (ObjF) of DB-MODS

focuses on minimizing the makespan and cost, which

is displayed as follows:

 ObjF = Min {Makespan, 𝐶𝑜𝑠𝑡 (𝑇𝑖
𝑗
)} (15)

The Quality Measure Objective Function (QOF)

of the proposed work is presented here:

QOF = 𝑀𝑖𝑛 (𝛿 × 𝐸𝑇𝑖𝑗 + (1 − 𝛿) × 𝐶𝑜𝑠𝑡 (𝑇𝑖
𝑗
))

 (16)

Algorithm 1: Task Classification Function (TCF)

and VMs Classification Function (VMCF)

1 Input: List of unmapped tasks which have
constraints (ID, length in MIPS and deadline D in
sec.), set of VMs with their characteristics
(MIPS, CPU, RAM and BW)

2 Output: cluster tasks (Ti), and grouping VMs
Algorithm 1: Task Classification Function (TCF)

3 Begin {

4 M← Number of input tasks

5 K← Number of Cluster
6 k-Mean (T) // for tasks classification

7 for All Task tj do

8 get Metric Variables of task for clustering process

 Task ID, Task length and Deadline
9 Normalization for data
10 Start the K-Means Clustering and divide them
 into 4 clusters
11 Assume Centroid A, B, C, D
12 for each Cloudlet k in CL do
13 Calculate Euclidean Distance of k with A, B, C
 and D based on Eq. (12)
14 if previous distance = new distance then
15 Stop Iterations
16 else
17 Add Ck into minimum clustered distance
18 Again Compute the Centroids
19 end
20 end
21 end
 22 get four clusters of tasks LLHD, LLLD, HLLD and
 HLHD

And calculate the objective function for user

parameter to compare with Eq. (16) as follow:

𝑈 − 𝑂𝑏𝑗𝐹 = 𝛿 × 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑇𝑖) + (1 − 𝛿) ×
𝑏𝑢𝑑𝑔𝑒𝑡(𝑇𝑖) (17)

Where: deadline (Ti) is a largest amount user-

assigned time allowed to execute task Ti in the cloud,

which if exceeded, will be violated SLA. budget (Ti)

is the highest permitted cost determined by the cloud

user. which if exceeded, will be violated SLA. 𝛿 is

the trade-off coefficient between the deadline (Ti)

and budget (Ti) and its ∈ [0,1]. If the value of 𝛿 >
 0.5 , the task assignment technique prioritizes

reducing execution time over overall operating costs.

If the value of 𝛿 < 0.5 , execution time is less

significant than operating costs. The value of 𝛿

depends on the value of the budget or the level of the

needed response time.

The proposed includes these attributes for each

task: {TID, task length, data file size, number of PES.

budget and deadline}. While, each task 𝑇𝑖 has the

constraint parameter can be defined as Ti =
{𝐿(𝑡𝑎𝑠𝑘𝑖), deadline (Ti) , budget (Ti), Ti−class} ,

T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

X= 0.30

Medium Capacity

Class 2

X= 0.30

Low Capacity

Class 3

X= 0.40

High Capacity

Class 1

Received: February 16, 2023. Revised: March 10, 2023. 210

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Algorithm 2: VMs Classification Function (VMCF)

23 Create number of PHi with their characteristics

24 Create list of (VMs, PHi) with different CPUj +

PEj + BWj and determine all required parameters

25 for each Virtual Machine VMj on host P Hi do

26 compute capacity of all VMs in VM List [] based:

VMC=vm.getRam().getCapacity()+vm.getMips()+

 vm.getBw().getCapacity()

27 Arrange the list of VMs in decreasing order

28 VMs classNO. = number of VMs%k //NO. of VMs

class = NO. of cloudlet class

29 if V Ms class NO. mode k = 1 then

30 Class 1=class 1+ 1

31 end

32 if V Ms class NO. mode k = 2 then

33 class1=class1+ 1

34 class2=class2+ 1

35 end

36 Group VMs based on the

threshold (ψ, φ and ε) into three Class (high-cap.,

medium-cap., low-cap.), (Class1, ..Classn)

37 Create number list of type VM == VMs classNO. ,

 (V L1, V L2, V L3)

38 if V M ∈ ψ then

39 Set vm.class == VMC1

40 Add.vm to vm VL1

41 end

42 else if vm ∈ φ then

43 Set vm.class == VMC2

44 Add.vm to vm VL2

45 else

46 Set vm.class == VMC3

47 Add.vm to vm VL3

48 end

49 end

 where:

50 V MC1 capacity > V MC2 capacity and V MC2 capacity

> V MC3 capacity

where L(taski) refers to task length measured in

(MI), deadline (Ti) The time limit for completing the

user task in second, budget (Ti) is the cost specific

by user in dollar and Ti−class is a class which task

belongs to. Similarly, each VMi is also characterized

as VMi = {VMID , VMIPS , VMRAM , VMBW , VMj-class } ,

where VMj-class is a class which VM belongs to.

The execution-time ETij ,and cost of task T𝑖 is

calculated during run and each task has

deadline (Ti) , and budget (Ti) to execute from user.

To select the most suitable processor for the current

task, the QOF for each processor 𝑝𝑗 ∈ list 1 is

computed based on Eq. (16), and then calculate the

objective function for user UserObjF parameter

based on Eq. (17), then calculate the minimum value

can return from QOF with 𝑉𝑀ID , then compare

UserObjF with QOF. And mapped cloudlet to VM

has a minimum value, then task and VM status lists

are updated. If UserObjF is greater than QOF, DB-

MODS scheduler migrates task to next group.

7. Performance metrics

In the context of testing and evaluation the DB-

MODS performance based scheduling of the task in

cloud environment includes makespan, cost, success

rate, throughput, energy consumption, and

performance improvement ratio (PIR) are considered

as analytical performance metrics. In the literature,

the majority of researchers use the makespan or cost

as the single criterion to assess the efficiency of their

algorithm. The DB-MODS approach is evaluated

using the following metrics:

• Makespan

One of the most popular metrics for evaluating

the effectiveness of scheduling in cloud environment.

It can be characterized as the finish time of execution

latest task. If the makespan value is small, this refers

that the cloud broker correctly assigning workloads

to the relevant VMs. The definition of makespan as

in Eq. (3) [24].

• Success rate

The success rate is used to determine the fault

tolerance approach's effectiveness. It is a crucial

performance indicator that is used to evaluate the

reliability of the cloud's systems. This is the ratio

between the number of tasks finished and the time

limit allotted by users (deadline and budget). It is

computed using Eq. (18) [25]:

 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝐹

𝑇𝑈
 𝑥 100 (18)

Where:

𝑇𝐹 Number of tasks finished within user deadline

and budget. 𝑇𝑈is a number of users tasks.

• Cost

The cost of processing a task in cloud is defined

as the demand cost to process the incoming task to

cloud and can be computed from the cost of the CPU,

memory cost, and cost of bandwidth consumption. To

calculate cost when 𝑡𝑖 executes at 𝑣𝑗 can be

computed by Eq. (4), and total cost by Eq. (8) [16].

• Throughput

The term throughput denotes the number of tasks

a virtual machine completes in a certain period of

time [25].

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑇𝑆𝑒

Makespan
 (19)

Received: February 16, 2023. Revised: March 10, 2023. 211

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

k

Algorithm 3: DB-MODS Scheduler Algorithm

1 Input: List of unmapped tasks which have

constraints (ID, length in MIPS and deadline D

in sec.), set of VMs with their characteristics

(MIPS, CPU, RAM and BW)

2 Output: Map (Ti, VMj) with Minimizing the

Makespan and expenditure cost for these

tasks

3 ETij = 0, Cost(𝑇𝑘
𝑖)=0, VMId = 0, U-ObjF = 0,

 minQOF= 0 Timespan = 0, α = 0

4 while Ti != null do

5 for 𝑗 = 1 𝑡𝑜 𝑚 do

6 if cloudlet class LLHD || LLLD class then

7 maxTries1 = VL1.size();

8 For each

machine VM (i)

[] VL1 []

Resource list

and¡ maxTries1

do

9 ETij = computeET ij (Ti, VMj) based Eq.(1)

 10 Cost (𝑇𝑘
𝑖) =compute Cost (Ti, VMj) based Eq.(4)

11 QOF = compute (α × ETij + (1 − α) × Cost (𝑇𝑘
𝑖))

12 M-QOF = Min (QOF)

13 list.add (VMId, M-QOF) //Get minimum

value

 of QOF function from list of vmgroup1with vmid

14 end

15 end

16 U-ObjF = compute (α × deadline (T i) + (1 − α) ×

 budget (T i))

17 if U-Obj <= M-QOF then
18 Map.add (Ti, VMj) //return cloudlet id that

 allocated to VMid
19 update VMs status (utilities)
20 updateVm list (VL1)
21 end

22 else

23 set cloudlet class = 2

24 migrate cloudlet to next group

25 end

26 end
27 Note: repeat steps from 5-26 for each class of

task, but with different values of α

Computation performance

 Calculate the metrics:

28 Makespan based on the Equation 3.

29 Success Rate based on the Equation 18.

30 Energy consumed based on the Equation 24.

31 Throughput based on the Equation 19.

32 Cost based on the Equation 8.

33 PIR based on the Equation 25.

Where NTSe is a number of tasks successfully

executed.

In a cloud context, throughput represents

productivity or overall system performance i.e. the

higher value of throughput refers to the better the

system performs.

• Energy modeling

The amount of energy that cloud nodes consume

is generally due to the execution process , power

conditioning, and cooling of the system. VM is the

foundation of our energy model in execution

environment. mostly, the energy consumption is

depending on VM state. A virtual machine state can

either be in active mode, or idle. Here, we suppose

the VM will be in an active state when executed it,

otherwise, a VM considers idle. Typically, the energy

taken up by a VM in idle mode is between 60-70% of

the active state. Let, µ𝑎𝑗
 and ɳ𝑖𝑗

 indicate the energy

that consumes by VM 𝑣𝑗 in both states active, and

idle consecutively. while total consumption of energy

(£𝑗) of VM 𝑣𝑗 is calculated by taking into account

active and idle states together and calculation is as in

Eq. (20) [14, 26].

 £𝑗 = (µ𝑎𝑗
+ ɳ𝐼𝑗

) × 𝑀𝐼𝑃𝑆𝑗 (20)

Calculate the total execution time (£𝑗) for every

task allocated to 𝑣𝑗 as in the following expression:

𝑇𝐸𝑇𝑉𝑀𝑗
= ∑  𝑛

𝑖=1 𝑋𝑖
𝑗

× 𝐸𝑇𝑖𝑗 (21)

Where binary value 𝑋𝑖
𝑗

= 1, if 𝑡𝑖 is allotted to 𝑣𝑗.

If 𝑡𝑖 is not allotted to 𝑣𝑗 then 𝑋𝑖
𝑗

= 0. The energy that

is consumed by 𝑣𝑗 in active, and idle mode is

computed as follows:

 µ𝑎𝑗
= 𝑇𝐸𝑇𝑉𝑀𝑗

× ß𝑗 (22)

ɳ𝑖𝑗
= (Makespan − 𝑇𝐸𝑇𝑉𝑀𝑗

) × 0.6 × ß𝑗 (23)

Where: ß𝑗 = 10−8 × (𝑀𝐼𝑃𝑆𝑗)
2
 in Joules/MI.

The overall energy -consumption (𝛿) for cloud

VMs is computed as:

𝑜𝑣£𝑗
= ∑  𝑚

𝑗=1 £𝑗 (24)

• Performance improvement ratio (PIR%)

PIR metric employed to indicate the effectiveness

of a DB-MODS algorithm depending on the decrease

in time of execution. Therefore, it is considered one

of the crucial measures that benefit to determine the

Received: February 16, 2023. Revised: March 10, 2023. 212

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Figure. 7 Composition of GOCJ realistic workload

Table 4. Parameters of simulation environment

version of

simulator

CloudSimPlus v7.3.0

Experimental

environment

Intel(R) Core(TM) i7-10750H

CPU @ 2.6 GHz 2.59 GHz.

Memory 16.00 GB HD 1 TB

effectiveness of the work. It is calculated as follows

[27].

𝑃𝐼𝑅% =
 Makespan𝑟− Makespan- proposed

 Makespan𝑟
× 100 (25)

where Makespan
r
 and Makespan

proposed
 is refer

to makespan acquired from the rth algorithm also

from proposed algorithm.

8. Implementation and experimentation

results

8.1 Experimental setup

To simulate DB-MODS we used the

CloudSimPlus platform for simulating, modulization,

and testing the performance of our proposed DB-

MODS scheduling approach. which include several

models, and algorithms, such as heuristic-algorithms,

VM migration approach, scalability, more precision,

and ease to operate [28]. Additionally provides

fundamental classes for characterizing cloud system

ingredients such as datacenters, brokering policy,

computational resources, VMs and cloudlet [29].

8.2 Benchmark datasets

To assess the effectiveness of our scheduling

method, two distinct datasets are used: first) random

dataset, second) Google cloud jobs (GOCJ) dataset.

workload datasets are be described in the following:

8.2.1. Random dataset

We generated tasks with length varying from 1k-

100k MIs. There is a total of 1k tasks in randomly

generated dataset. The dataset contains task ID, task

length, deadline and budget.

8.2.2. GOCJ dataset

GOCJ is regarded as Google such a real dataset

produced as a result from workload that reflects

behaviors of Google cluster evaluation employing

bootstrapped (i.e. Monte-Carlo). simulation, a widely

used simulation technique. In the GOCJ dataset, tasks

length lies between range from 15x103 - 900 x103 MIs,

then, dataset is categorized as: jobs with small size

(15 x103-55 x103 MIs), medium size jobs (59 x103-99

x103 MIs), large size jobs (101 x103 - 135 x103 MIs),

extra size jobs (150 x103 - 337.5 x103 MIs), and huge-

size jobs(525x103-900x103MIs) as shown in Fig. 7

[16,30], and available on:

https://data.mendeley.com/datasets/b7bp6xhrcd/1

8.3 Implementation environment

The experimental environment includes CPU

Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59

GHz, memory (16.0 GB) HD 1 TB, and uses Eclipse

IDE 2022‑09, jdk-17.0.1, and CloudSim Plus v7.3.0

as shown in Table 4.

Simulated the dynamic arrival of cloudlets

randomly during simulation runtime. At any time, the

simulation clock updates, a new cloudlet will be

created from dataset based normal distribution

equation.

To cluster cloudlets, cloudlets values need to be

normalized. The normalization procedure reduces a

variety of values to a narrow range, such as 0 and 1,

and is used as a pre-processing, mapping, and scaling

method to turn severely skewed results into a new

values range [31].

In order to evaluate efficiency of proposed DB-

MODS algorithm, we compared with other methods

in the literature such as LA-based scheduling (LAS),

Greedy-R and Greedy-P [14], EEVS [15], and

random in scenario 1. And compared it with well-

known methods based on FCFS scheduling algorithm,

(MOABCQ-FCFS), (MOABCQ_LJF), Q-learning

method, multi-objective PSO (MO-PSO), Max-Mi,

and multi-objective-cuckoo search (MO-CS) [16],

artificial-bee-colony (ABC) algorithm, and the

largest-job-first (HABC-LJF) [17] in scenario 2, and

HESGA, GA, and ACO [19] in scenario 3.

Various numbers of cases that are acquired by the

generation of a different count of tasks are between

200 and 1000 whose length is ranging from 1000 MI

Received: February 16, 2023. Revised: March 10, 2023. 213

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

to 900,000 MI and varies number of VMs from (40)

to (100). Therefore, for simulation the proposed, we

have carried out three scenarios as in the following

section.

8.4 Experimentation results and discussion

This section shows the experiments of the

proposed DB-MODS scheduling approach and

discusses the results.

Scenario 1:

For simulation scenario 1, the following specific

settings and parameters are provided:

• The VMs are modeled to have processing capacity

with value lying in range [3k-6k] MIPS.

• A tasks creation is modeled to simulate the tasks

with the behavior of arrival in real-time to the

cloud system.

• The poisson distribution is used to simulate task

arrival, and the time of arrival is distributed in an

exponential manner.

• Deadline of tasks is defined as: deadline (Ti) =
ari + baseD , where ari is the task arrival time,

baseD is in uniform distribution form in range

between U(5,10).

• Task length is specified to be between [1000

to10000] MI.

• To prevent the impact of uncertainty factors on

the experimental outcomes, each experiment is

run 20 times, and the average is calculated.

In this scenario, we have taken 40 VMs which are

constant in number and varying in processing

capacity needed to complete the user task allocated to

its. The collection of tasks generated in a random way

whose numbers are different from 200 to 1000 in

intervals of 200 based on a random dataset is

considered for the evaluation of the proposed

approach.

To evaluate the effectiveness of the proposed DB-

MODS in this scenario several metrics are considered.

These parameters include makespan, success ratio,

and total energy consumed.

A comparison result of proposed DB-MODS

method performance in terms of makespan is shown

in Fig. 8. There were 40 VMs used in this experiment,

and the system was given 200, 400, 600, 800, and

1000 tasks. After testing the random dataset, the

experimental findings in Fig. 8 show that the DB-

MODS approach reduced the average makespan

more effectively than the LAS, EEVS, Greedy-R,

Greedy-P, and random.

In our tests, we used a value of δ = 0.5, indicating

that time and cost are equally important in the

objective. The DB-MODS model achieves the

shortest makespan by minimizing the time required

to complete tasks within the given budget and

deadline constraints. This results in a higher

performance level for the DB-MODS model,

achieved through clustering the tasks, and assigning

large tasks to high-capacity VMs and small tasks to

low-capacity VMs. By reducing the average

execution time, this approach minimizes the

makespan. We conclude, the DB-MODS model's

performance is optimized by prioritizing task

completion within the specified time and cost

constraints, accomplished through intelligent task

clustering.

Fig. 9 illustrates that for all the compared

methods. There is little difference in success rate,

regardless of the number of tasks. While it is clear

that when increasing the number of tasks leads to an

increase in the failure rate for all tested methods. This

is because of the inefficient distribution of tasks on

the VMs, which leads to an increase in execution time,

and therefore it is not possible to meet the negotiated

deadline between the service provider and the user.

whereas DB-MODS maintained the success rate of

tasks even when increasing them, and the reason is

the efficient distribution of tasks on the VMs, this is

due to use the K-means algorithm, which groups

tasks depending on their length and deadline, where

we conclude from our work that the large tasks and

with short deadline, they were executed on VMs with

high resources to ensure their execution is within the

specified time which.

Fig. 10 illustrates the performance analysis of

DB-MODS algorithm in term of consumption of

energy for the various task combinations. Fig. 10

shows that DB-MODS conserves energy better than

other approaches, and this tendency is evident as the

number of tasks increases. This experimental finding

indicates that the DB-MODS scheduler aids the

efficient use of VM nodes, which contributes to

energy conservation low as possible compared with

others methods. The results indicate that our work

optimizes the processing time through distributed

tasks on VMs in an efficient way and this means

decreasing the idle time (ɳ𝐼𝑗
). The main reason is due

to the objective function presented in Eq. (16), which

tried to reduce the makespan. Minimizing the

makespan of a system is equivalent to conserving

energy, since the makespan is directly related to the

energy consumption of the system. By reducing the

makespan, the idle time of virtual machines is

reduced as well. As a consequence, the energy

consumed by the system is lower when virtual

machines have less idle time.

Received: February 16, 2023. Revised: March 10, 2023. 214

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Figure. 8 Makespan under scenario 1 using random

dataset

Figure. 9 Success rate comparison under scenario 1 using

random dataset

Figure. 10 Total energy consumption under scenario 1

using random dataset

In this paper, we used the statistical analysis t-test

to conduct according to the makespan values on the

same random dataset with 200 tasks, but one on 40

VMs and another on 60 VMs as shown in Fig. 8 and

Fig. 11 respectively.

The null hypothesis assumes that the success rate

for all implemented algorithms is 75%. we applied a

(t-test) using 200 tasks, and the number of VMs is 40

for (Test-1) whereas, 60 for (Test-2). For Test-1 the

mean calculated value = 61.76, Std. deviation =

32.32, and N equal to 7. Whereas Test-2, the mean

value = 61.6, Std. deviation = 35.0, and N equal to 7.

Figure. 11 Makespan under scenario 1 using random

dataset (60 VMs)

Table 5. Simulation environment (scenario 2)

Type Parameter Value

Host Host Number 20

 MIPS 177.73 ْ x103

 Storage capacity 2TB

 Bandwidth 10GB/s

 RAM 16GB

 VM-Monitor Xen

Data Center DC Number 1

 VM-Scheduler Time Shared

 Memory Cost 0.1 − 1.0

 Storage Cost 0.1 − 1.0

VM VMs number 5 − 100

 Speed of

processor

3.5x103 – 100x103

MIPS

 Memory 1 − 4 GB

 Bandwidth 1,000 − 10,000

 Cost per

Memory
0.1 − 1.0

 Cost per Storage 0.1 − 1.0

 Cloudlet

Scheduler

Time Shared

 PEs Number 1

 VM Monitor Xen

Cloudlet/Task Length of Tasks 1x103-900x103

 Tasks number 200 − 1000

The value of t is (0.01) and (degree-of-freedom)

(df)=12. The value of t(p) at 12 df is 0.993 when

significance is 5% (value is 0.05) for 12 df in (two-

tailed). At a 5% level of significance, the null-

hypothesis may be to accepted because the estimated

t-value is smaller than 0.993.

Scenario 2:

In this scenario, simulated a virtual environment

to evaluate efficiency of DB-MODS in terms of

cloud-based load balancing and scheduling. The

parameters used in this scenario for the simulation are

defined as shown in Table 5. We have considered four

objectives in scenario 2 are makespan, throughput,

cost and PIR as follows:

Received: February 16, 2023. Revised: March 10, 2023. 215

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Fig. 12 when comparing DB-MODS against

MOABCQ-FCFS, MOABCQ-LJF, Max_Min

method, HABC_LJF, FCFS, Q-learning, MO-PSO,

and MOCS algorithms, the results show clear

superiority in reducing makespan. The reason for this

is due to the mechanism of dividing tasks and

resources into clusters and groups and then

distributing them in several levels. Fig. 13 shows the

number of virtual machines in each group with the

total capacity. Thus, the clustered tasks will be

submitted according to their cluster to the appropriate

groups of VMs. As the number of tasks increases, the

makespan of DB-MODS becomes significantly

smaller compared to the other algorithms because our

algorithm selects the resource based on the task class.

This approach has the capability to improve the

convergence speed and the effectiveness of

optimization in the DB-MODS algorithm. The

proposed demonstrates a high capability to reduce the

makespan and determine the optimal resources for

processing incoming tasks, and arrive at the best

decision even when the task count increases.

Fig. 14 compares the effectiveness of the DB-

MODS method using important throughput metric,

can be defined is the number of tasks finished in a

specific time which is calculated using Eq. (19).

Proposed algorithm processes more tasks in a

given time due to better balancing. The GOCJ dataset

used in this experiment. The result of simulation

indicates that DB-MODS outperformed all other

algorithms in terms of throughput. And higher

throughput value achieved at 800 tasks, DB-MODS

gave higher values than the others at 195%, 163%,

88%, 86%, 86%, 77%, 26% and 22% when compared

to Max-Min method, FCFS algorithm, Q-Learning

method, HABC-LJF approach, MOPSO technique,

MOCS, MOABCQ-FCFS and MOABCQ-LJF

respectively. The result indicate that proposed is

stable at each number of tasks 200, 400, 600, 800 and

1000. From the result, based on our examination, it

can be inferred that the proposed method can perform

load balancing effect to ensure that no single server

is overloaded. Because resources and tasks are

properly grouped and divided in the pre-processing

process which leads to increased overall cloud

throughput.

In Fig. 15, the performance from a cost

perspective is calculated for scheduled tasks, which

are assigned to 100 VMs under GOCJ dataset. The

maximum costs for 200, 400, 600, 800, and 1000

number of the task are 117.733, 229.773, 368.108,

446.081, and 581.574 which are less compared to

existing algorithms such as MOABCQ-FCFS,

MOABCQ-LJF, Max_Min method, FCFS algorithm,

HABC-LJF, Q-learning, MO-PSO, and MOCS

Figure. 12 Comparison of makespan under scenario 2

on GOCJ dataset

Figure. 13 VMs number comparison of the different

classes

Figure. 14 Comparison of throughput under scenario 2

on GOCJ dataset

techniques. Because the DB-MODS reduce tasks

execution time due to better distribution of tasks on

VMs by running the task with large length on high

VM capacity and this led to reducing in execution

time, since the total cost depends upon the CPU, BW,

Received: February 16, 2023. Revised: March 10, 2023. 216

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Figure. 15 Cost comparison under scenario 2 on GOCJ

dataset

Figure. 16 PIR (%) on makespan comparison under

scenario 2 on GOCJ dataset

and RAM usage cost multiply by execution time, thus,

the total cost decreases. Also, we concentrate in our

objective function on minimizing user cost by set 𝛿 =

0.5 through selecting a VM with a small cost, and this

leads to executing a task on a VM that returns a

minimal cost.

The PIR (%) of the DB-MODS approach based

on makespan as it relates to the MOABCQ-FCFS,

MOABCQ-LJF, Max-Min, FCFS, HABCLJF,

Q_learning, MO_PSO, and finally MOCS algorithm

is presented in Fig. 1. For the GOCJ workload, the

results show that the DB-MODS algorithm produces

82.60%–60.48%, 72.02%–55.54%, 65.76%–43.09%,

64.64%–37.05%, 66.12%-39.46, 64.24%-30.60,

62.14%-20.96% and 54.03%–18.71% makespan time

improvements over the (Max-Min), FCFS,

Q_Learning, HABC_LJF, MO-PSO, MOCS, MO-

ABCQFCFS and MO-ABC-QLJF algorithms,

respectively.

Scenario 3:

In this scenario, simulating is to evaluate the

effectiveness of DB-MODS in makespan and

throughput to show a performance of our proposed

when a huge number of tasks. In this scenario, the

parameters used for the simulation are: length of the

task 1000-20000 MI, number of tasks from 1000 to

5000, number of VMs is 1000, MIPS is 500-2500,

BW is 500-1500, RAM from 256 to 2048 and PEs

from 1 to 4.

In Fig. 17, a comparison of makespan is shown

for various algorithms (DB-MODS), HESGA, GA,

and ACO with different numbers of tasks. The

findings indicate that the DB-MODS algorithm has

minimize the makespan by 46% in average. This

proves that our proposal is better when compared

even with a large number of tasks, and it becomes

clear that the time decreases with the growth in tasks

number significantly, and this is due to the balanced

distribution of tasks on VMs and the speed of

adaptation, in addition to finding the appropriate

VMs better as a result of the clustering and dynamism

provided by the algorithm.

Fig. 18 the algorithm we developed has improved

task scheduling throughput in cloud environments

when compared to HESGA, GA, and ACO by

maximize throughput by 39% in average. The

algorithm may be better at allocating resources in a

way that maximizes utilization and reduces wastage.

The algorithm may be better at placing tasks on the

most appropriate servers or VMs, based on factors

such as execution time, and the ability to faster

decision-making based on real-time data about

resource availability and task requirements. This can

reduce the time required for scheduling and improve

overall throughput.

9. Conclusion and future works

Resource management and task scheduling are

crucial challenging of the cloud-based IoT/MCS

ecosystem. the challenging represented in select the

optimal processing node. because users want to

complete their application in given time and within

specified budget, whereas the service provider wants

to utilizing the resource to gain maximum profit. In

this paper, we proposed deadline-budget multi-

objective dynamic scheduling scheme (DB-MODS).

The proposed approach employs the K-means to

cluster tasks based length and deadline to assigning

to appropriate computing nodes, and grouping VMs

based on capacity using thresholds. DB-MODS

depend on objective function which consider user

task constraint i.e. deadline and budget to minimizing

the rejection rate of tasks. Two scenarios were

conducted on random and real GOCJ dataset using

CloudSim plus. The proposed approach facilitates

balancing load workload across the system's existing

resources. in addition, is clear effective in improving

user QoS and save SLA through reduction makespan,

cost, energy consumption, failure task ratio, and

Received: February 16, 2023. Revised: March 10, 2023. 217

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Figure. 17 Makespan under scenario 3

Figure. 18 Comparison of throughput under scenario 3

maximize throughput when compared to the EEVS,

Random, Greedy-R, Greedy-P, LAS, and DTS in first

scenario. HABC-LJF, Max-Min, Q-Learning,

MOPSO, MOCS, FCFS, MOABCQ-FCFS and

MOABCQ-LJF in second scenario, and HESGA, GA,

and ACO in third scenario.

Task scheduling in Cloud/Fog for IoT and MCS

environments might be an issue and it could be our

future study. We will propose a scheduling method in

multi-environments and planning to apply meat-

heuristic algorithms and other machine learning

techniques. Furthermore, the proposed approach will

be evaluated in a real-world scenario.

Data availability

The authors can provide the data that was used to

support the findings of experiments upon request.

Conflicts of interest

The authors Abbas M. Ali Al-muqarm and Dr.

Naseer Ali Hussien declare there are no conflicts of

interest.

Author contributions

Conceptualization, Abbas M. Ali Al-muqarm,

Naseer Ali Hussien; methodology, Abbas M. Ali Al-

muqarm; software, Abbas M. Ali Al-muqarm;

validation, Abbas M. Ali Al-muqarm and Naseer Ali

Hussien; formal analysis, Abbas M. Ali Al-muqarm;

investigation, Abbas M. Ali Al-muqarm, Naseer Ali

Hussien; resources, Abbas M. Ali Al-muqarm,

Naseer Ali Hussien; data curation, Abbas M. Ali Al-

muqarm; writing original draft preparation, Abbas M.

Ali Al-muqarm, Naseer Ali Hussien; writing review

and editing, Abbas M. Ali Al-muqarm, Naseer Ali

Hussien; visualization, Abbas M. Ali Al-muqarm;

supervision, Naseer Ali Hussien.

Acknowledgments

The authors would like to thank Islamic

University for partially supporting this project.

Thanks, are extended to the (anonymous) reviewers

and Editor in Chief for their great efforts and valuable

comments.

References

[1] A. M. A. A. Muqarm and F. Rabee, “Prediction

Communication Time and Data Size Based-

Bluetooth in Mobile Crowdsensing for IoT”, In:

Next Generation of Internet of Things:

Proceedings of ICNGIoT 2021, 2021, pp. 445–

466.

[2] N. Manikandan, N. Gobalakrishnan, and K.

Pradeep, “Bee optimization based random

double adaptive whale optimization model for

task scheduling in cloud computing

environment”, Comput. Commun., Vol. 187, pp.

35–44, 2022.

[3] P. Krishnadoss, C. Chandrashekar, and V. K.

Poornachary, “RCOA Scheduler: Rider Cuckoo

Optimization Algorithm for Task Scheduling in

Cloud Computing”, Int. J. International Journal of

Intelligent Engineering and Systems, Vol. 15, No. 5,

pp. 505–514, 2022, doi:

10.22266/ijies2022.1031.44.

[4] H. B. Alla, S. B. Alla, A. Ezzati, and A. Touhafi,

“A novel multiclass priority algorithm for task

scheduling in cloud computing”, J.

Supercomput., Vol. 77, No. 10, pp. 11514–

11555, 2021.

[5] M. A. Alworafi and S. Mallappa, “A

collaboration of deadline and budget constraints

for task scheduling in cloud computing”, Cluster

Comput., Vol. 23, No. 2, pp. 1073–1083, 2020.

[6] N. R. Rajalakshmi, A. Dumka, M. Kumar, R.

Singh, A. Gehlot, S. V. Akram, D. Anand, D. H.

Received: February 16, 2023. Revised: March 10, 2023. 218

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

Elkamchouchi, and I. D. Noya, “A Cost-

Optimized Data Parallel Task Scheduling with

Deadline Constraints in Cloud”, Electronics,

Vol. 11, No. 13, p. 2022, 2022.

[7] G. Muthusamy and S. R. Chandran, “Cluster-

based task scheduling using K-means clustering

for load balancing in cloud datacenters”, J.

Internet Technol., Vol. 22, No. 1, pp. 121–130,

2021.

[8] T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong,

and R. Buyya, “Machine learning (ML)–Centric

resource management in cloud computing: A

review and future directions”, J. Netw. Comput.

Appl., p. 103405, 2022.

[9] J. Varghese and J. Sreenivasaiah, “Entropy

Based Monotonic Task Scheduling and

Dynamic Resource Mapping in Federated Cloud

Environment”, International Journal of

Intelligent Engineering and Systems, Vol. 15,

No. 1, pp. 235–250, 2022, doi:

10.22266/ijies2022.0228.22.

[10] M. Kumar, S. C. Sharma, A. Goel, and S. P.

Singh, “A comprehensive survey for scheduling

techniques in cloud computing”, J. Netw.

Comput. Appl., Vol. 143, pp. 1–33, 2019.

[11] M. Adhikari and T. Amgoth, “Heuristic-based

load-balancing algorithm for IaaS cloud”, Futur.

Gener. Comput. Syst., Vol. 81, pp. 156–165,

2018.

[12] N. Alaei and F. S. Esfahani, “RePro-Active: a

reactive–proactive scheduling method based on

simulation in cloud computing”, J.

Supercomput., Vol. 74, No. 2, pp. 801–829,

2018.

[13] F. Alhaidari and T. Z. Balharith, “Enhanced

round-robin algorithm in the cloud computing

environment for optimal task scheduling”,

Computers, Vol. 10, No. 5, p. 63, 2021.

[14] S. Sahoo, B. Sahoo, and A. K. Turuk, "A

Learning Automata-Based Scheduling for

Deadline Sensitive Task in The Cloud", IEEE

Transactions on Services Computing, Vol. 14,

No. 6, pp. 1662-1674, 1 Nov.-Dec. 2021, doi:

10.1109/TSC.2019.2906870.

[15] Y. Ding, X. Qin, L. Liu, and T. Wang, “Energy

efficient scheduling of virtual machines in cloud

with deadline constraint”, Futur. Gener. Comput.

Syst., Vol. 50, pp. 62–74, 2015.

[16] B. Kruekaew and W. Kimpan, "Multi-Objective

Task Scheduling Optimization for Load

Balancing in Cloud Computing Environment

Using Hybrid Artificial Bee Colony Algorithm

With Reinforcement Learning", IEEE Access,

Vol. 10, pp. 17803-17818, 2022, doi:

10.1109/ACCESS.2022.3149955.

[17] B. Kruekaew and W. Kimpan, “Enhancing of

artificial bee colony algorithm for virtual

machine scheduling and load balancing problem

in cloud computing”, Int. J. Comput. Intell. Syst.,

Vol. 13, No. 1, pp. 496–510, 2020.

[18] P. Zhang and M. Zhou, “Dynamic cloud task

scheduling based on a two-stage strategy”, IEEE

Trans. Autom. Sci. Eng., Vol. 15, No. 2, pp. 772–

783, 2017.

[19] S. Velliangiri, P. Karthikeyan, V. M. A. Xavier,

and D. Baswaraj, “Hybrid electro search with

genetic algorithm for task scheduling in cloud

computing”, Ain Shams Eng. J., Vol. 12, No. 1,

pp. 631–639, 2021.

[20] Z. Jalalian and M. Sharifi, “A hierarchical multi-

objective task scheduling approach for fast big

data processing”, J. Supercomput., Vol. 78, No.

2, pp. 2307–2336, 2022.

[21] D. A. Dewi, T. Mantoro, U. Aditiawarman, and

J. Asian, “Toward Task Scheduling Approaches

to Reduce Energy Consumption in Cloud

Computing Environment”, Multimed. Technol.

Internet Things Environ. Vol. 3, pp. 41–58, 2022.

[22] V. Sharma and M. Bala, “An improved task

allocation strategy in cloud using modified K-

means clustering technique”, Egypt. Informatics

J., Vol. 21, No. 4, pp. 201–208, 2020.

[23] S. Nabi and M. Ahmed, “OG-RADL: Overall

performance-based resource-aware dynamic

load-balancer for deadline constrained cloud

tasks”, J. Supercomput., Vol. 77, pp. 7476–7508,

2021.

[24]M. K. Patra, S. Misra, B. Sahoo, and A. K. Turuk,

“GWO-Based Simulated Annealing Approach

for Load Balancing in Cloud for Hosting

Container as a Service”, Appl. Sci., Vol. 12, No.

21, p. 11115, 2022.

[25] V. Sathiyamoorthi, P. Keerthika, P. Suresh, Z. J.

Zhang, A. P. Rao, and K. Logeswaran,

“Adaptive fault tolerant resource allocation

scheme for cloud computing environments”, J.

Organ. End User Comput., Vol. 33, No. 5, pp.

135–152, 2021.

[26] S. K. Mishra, D. Puthal, J. J. P. C. Rodrigues, B.

Sahoo, and E. Dutkiewicz, “Sustainable service

allocation using a metaheuristic technique in a

fog server for industrial applications”, IEEE

Trans. Ind. Informatics, Vol. 14, No. 10, pp.

4497–4506, 2018.

[27] M. Agarwal and G. M. S. Srivastava,

“Opposition-based learning inspired particle

swarm optimization (OPSO) scheme for task

scheduling problem in cloud computing”, J.

Ambient Intell. Humaniz. Comput., Vol. 12, No.

10, pp. 9855–9875, 2021.

Received: February 16, 2023. Revised: March 10, 2023. 219

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023 DOI: 10.22266/ijies2023.0630.16

[28] J. Yang and G. Zhang, “Dynamic Dual-

Threshold Virtual Machine Merging Method

Based on Three-Way Decision”, Symmetry

(Basel)., Vol. 14, No. 9, p. 1865, 2022.

[29] H. Singh, S. Tyagi, and P. Kumar, “Comparative

analysis of various simulation tools used in a

cloud environment for task-resource mapping”,

In: Proc of the International Conference on

Paradigms of Computing, Communication and

Data Sciences, pp. 419–430, 2021.

[30] A. Hussain and M. Aleem, “GoCJ: Google cloud

jobs dataset for distributed and cloud computing

infrastructures”, Data, Vol. 3, No. 4, p. 38, 2018.

[31] S. K. Panda and P. K. Jana, “Normalization-

based task scheduling algorithms for

heterogeneous multi-cloud environment”, Inf.

Syst. Front., Vol. 20, pp. 373–399, 2018.

