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Abstract: Accurate localization and mapping are essential for autonomous navigation systems. The simultaneous 

localization and mapping (SLAM) algorithm, gmapping, is widely used for creating two-dimensional occupancy grid 

maps (2D-OGMs) due to its low cost and effectiveness in indoor environments. According to the SLAM interaction 

between localization and mapping terms, the evaluation of map accuracy implicitly means the evaluation of 

localization. This study focuses on improving the accuracy of the estimated 2D-OGMs by fine-tuning the 32 

initialization parameters of gmapping using a turtlebot3-burger robot. An improved experimental procedure was 

developed, incorporating image registration and similarity measurement to evaluate the map accuracy. The results 

show a substantial improvement in map accuracy, from 78.84% to 94.18%. The study highlights the importance of 

fine-tuning the SLAM algorithm for improved map accuracy and provides valuable insights for developing 

autonomous navigation systems. The key contribution of this paper lies in the systematic classification, fine-tuning, 

and evaluation of the Gmapping initialization parameters. 

Keywords: Mobile robot, Autonomous navigation, Simultaneous localization and mapping (SLAM), Gmapping, 

fine-tuning, Occupancy grid mapping. 

 

 

1. Introduction 

Mobile robotics has made significant 

advancements in recent years, with applications in 

various fields, including but not limited to 

surveillance, emergency response, industrial 

automation, and personal services [1]. In order to 

achieve effective navigation, mobile robots must 

have an accurate and up-to-date map, localize their 

position, plan their motion, and identify and avoid 

potential obstacles [2].  

One approach to this is through SLAM 

algorithms, which allow the robot to create a map of 

its surroundings and simultaneously estimate its 

pose within that map [3]. Over the last few years, 

numerous algorithms for solving navigational 

problems have been developed. Most of these are 

available in robot operating system (ROS), which 

this work will use as a meta-operating system [4]. 

According to the algorithmic principle, There 

are two main categories of probabilistic SLAM 

techniques: Bayes filters (such as Kalman filters and 

particle filters) and graph-based algorithms [5]. This 

research focuses on the former category, the particle 

filter-based approach, which involves a two-step 

process of prediction and update to improve the 

accuracy of the system’s state estimation [6]. 

Gmapping is a popular choice for generating 

2D-OGMs using two-dimensional light detection 

and ranging (2D-LiDAR) sensors due to its low cost 

and effectiveness [7]. Moreover, its map accuracy 

can be improved by fine-tuning its initialization 

parameters [8].  

Previous works have fine-tuned specific 

parameters of Gmapping. In [9], the authors 

introduced two methods to fine-tune 11 of 32 

Gmapping parameters. First, shuffle parameters 

separately by multiplying their values by a specific 

factor. Second, fine-tune parameters collectively, 

and the final results are evaluated visually. In [10], 

only two parameters were tuned in hybrid indoor 

and outdoor environment scenes, and the evaluation 

of CPU and Memory usage and visual inspection 

was presented. Other preceding works, such as [9-

14], have tuned several specific parameters without 
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methodology to study and categorize all parameters 

functionality of Gmapping. No scale-defined ground 

truth map for the evaluation or reliable comparison 

has been made. 

A metric for comparing SLAM algorithms was 

developed in [15], where the outcome is not 

evaluated using a reference but rather by 

considering the robot’s poses during data acquisition. 

However, evaluating the estimated map quality is 

currently done by determining the difference 

between a reference map and the map under scrutiny. 

The structural similarity index measure (SSIM) and 

the iterative closest point (ICP) each of them has 

been used in [16] as a method to compare the 

similarity of the estimated maps. The K-nearest 

neighbor was used In [17] to evaluate OGM’s 

accuracy as a map similarity metric for indoor and 

outdoor environments and CPU and memory 

performance evaluation. The average distance to the 

nearest neighbor (ADNN) was used in [18] to 

evaluate the mapping results of each SLAM 

technique for a simulation-based environment with 

an examination of computational load.  

However, previous works had only tested 

SLAMs in limited scenarios in simulation or 

experimentally based environments where the robot 

was teleoperated with limited velocity implying that 

circumstances are nearly ideal. In addition, no 

systematic methodology for categorizing or fine-

tuning the initialization parameters has been 

proposed to improve the performance of Gmapping 

and its estimated map. 

Based on that, in this work, a systematic 

categorization via functionality, systematic fine-

tuning, and an evaluation metric of the estimated 

map are all expanded to include scenarios in which a 

robot engages in the autonomous exploration of 

realistic indoor environments. All were done 

experimentally under experimental processes and 

realistic constraints, such as drifting caused by 

velocity variety, motion model noise, and a real 

room-scale closed environment. The objectives of 

this work are to: 

 

• Analyze and categorize all the initialization 

parameters of the Gmapping SLAM algorithm 

due to functionality. 

• Adapt the effective parameters for a realistic 

indoor environment using turtlebot3 burger-

type (TB3B) by testing the accuracy of the 

generated grid map via ORB and SSIM 

techniques [16]. 

• Specify the final optimal parameters by 

testing under another locomotion and 

environment specifications. 

 

The rest of this paper is structured as follows. In 

sect. 2, the system overview consists of a 

probabilistic RBPF-based SLAM and Gmapping 

processing model. The experimental design section 

includes the robot model, trajectory scenario, 

environmental specifications, experimental 

procedure, and classification of parameters into 

groups. Sec. 4 the results and discussions about the 

tuning and evaluation of each group. Finally, the 

conclusions are demonstrated in sect. 5. 

2. System overview 

The probabilistic approaches intended to include 

uncertainties in the system model. Particle filters 

(PF), a variant of recursive state estimator based on 

Monte-Carlo techniques, estimate the probability 

distribution of the system’s state by sampling 

hypotheses. Unlike parametric filters such as KF, 

Extended-KF, or Unscented-KF, PF can be used for 

non-parametric probability distributions [19].  

Rao-blackwellized PF (RBPF) has been 

developed to address the complexity of the SLAM 

problem, which factorizes the problem into two 

parts: the non-Gaussian posterior of positioning and 

the posterior probability estimation of the map [20], 

as shown in Eq. (1). 

 

𝑝(𝑥1:𝑡,𝑚|𝑢1:𝑡, 𝑧1:𝑡)⏟            
𝑆𝐿𝐴𝑀

=  

𝑝(𝑥1:𝑡|𝑢1:𝑡, 𝑧1:𝑡)⏟          
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑝(𝑚|𝑥1:𝑡, 𝑧1:𝑡)⏟        
𝑀𝑎𝑝𝑝𝑖𝑛𝑔

 (1) 

 

In this equation, 𝑝(𝑥1:𝑡|𝑢1:𝑡, 𝑧1:𝑡) represents the 

robot’s pose, given measurements ( 𝑧1:𝑡 ) And 

odometry data ( 𝑢1:𝑡 ), i.e., a pure localization 

problem. The mapping problem, 𝑝(𝑚|𝑥1:𝑡, 𝑧1:𝑡) , 

refers to estimating the map given the robot’s pose 

and scan measurements. One type of map commonly 

used in SLAM algorithms is an occupancy grid map 

(OGM), which is a discretized metric map 

represented as a grid of cells, each of which can be 

classified as occupied, free, or unknown based on 

the probability of the cell’s navigability [21]. 

While RBPF successfully addresses the SLAM 

problem, it has disadvantages, such as a high 

number of particles and frequent resampling. 

Gmapping, one of the most widely used 2D-LiDAR 

grid SLAM open-source algorithms, addresses these 

issues by employing adaptive resampling and 

improved proposal distribution to reduce particle 

depletion. Gmapping can create indoor environment 

maps in real-time with low LiDAR scanning  
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Figure. 1 Flowchart of Gmapping algorithm 
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Figure. 2 TB3B hardware components 

 

Table 1. Velocity variation of the mobile robot 

Velocities Exp Min Max Mean 

Root 

Mean 

Square 

Error 

(RMSE) 

Linear 

velocity 

(m/s) 1st 

Exp 

-0.080 0.200 0.03073 0.04944 

Angular 

velocity 

(rad/s) 

-0.700 0.900 0.00205 2.87740 

Linear 

velocity 

(m/s) 2nd 

Exp 

0.000 0.155 0.05389 0.06014 

Angular 

velocity 

(rad/s) 

-1.700 1.800 0.00463 2.94947 

 

 

frequency needs and low computational resources 

while still delivering good map accuracy. The 

process steps of the algorithm are illustrated in the 

flow chart in Fig. 1. The process begins with pose 

prediction using the encoder and odometry data, 

followed by the initialization of the particle number 

based on the proposed motion model. Measurement 

and correction are then performed using LiDAR 

data and scan matching, followed by the weighting 

of samples. The final step is the map update and 

resampling method [22]. 

3. Experimental Design 

3.1 Robot model 

Mobile robots using differential drives are the 

most common in recent decades since they are the 

simplest form of the grounded wheeled mobile robot  
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Figure. 3 Panorama images of the real environment for the 1st Exp 

 

with three degrees of freedom (DoF) [23]. The 

differential drive term means the mobile robot can 

control each wheel individually. Wheel encoders and 

inertial measurement units provide odometer data. 

Highly precise LiDAR data is needed for mapping 

and pose correction via the scan-matching approach. 

When testing ROS-based 2D-LiDAR SLAM 

algorithms, it is best to do so in a real-world setting. 

TB3B model, shown in Fig. 2, is considered for 

realistic indoor environment mapping [24].  

It is characterized by cost-effective, powerful 

computational features and ROS-enabled hardware 

components for educational and scientific purposes 

that can benchmark the investigated approach [25]. 

Therefore, it is suggested to be the mobile robot 

model prototype in this work. 

3.2 Dataset specifications 

Two indoor environments are chosen for the first 

and second experiments (Exp)s. Both are flat terrain, 

room-scale, enclosed, uni-obstruction, and 

straightened and curved walls. All these restrictions 

are chosen to represent reality. 

Fig. 3 shows two panorama images of the first 

environment. The ground truths of both 

environments have been measured accurately by 

hand once and by laser other using a distance 

measurement device (YT-7312250, ± 2 𝑚𝑚 ). The 

measurements have been projected on ground truth  
 

 
(a) 

 

(b) 

Figure. 4 Ground truth maps: (a) 1st Exp ground truth 

map and (b) 2nd Exp ground truth map (Dimensions in 

cm) 
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Table 2. Initialization parameters of Gmapping with the 

default values 

Parameters 
Default 

value 
Description 

Group (1): Coordinate system parameters 

base_frame 
Base link 

frame 
The coordinate system of 

the mobile robot platform odom_frame 
Odometry 

frame 

map_frame Map frame 

transform_publ

ish_period 
 

The publishing rate of data 

among frames 

Group (2): OGM parameters 

xmin -100 m 
The initial map dimensions 

represented a rectangular 

region defined by two 

opposite corners 

ymin -100 m 

xmax 100 m 

ymax 100 m 

delta 0.05 m 
The length of one side of 

the grid cell in meters 

occ_thresh 0.25 

The threshold is used to 

determine whether a cell is 

an obstacle or not. 

Group (3):  Measurement Update Parameters 

linearUpdate 1.0 m The translational and 

rotational threshold of 

measurement update angularUpdate 0.5 rad 

temporalUpdate -1.0 
The time threshold of the 

Measurement update 

Group (4):  Motion model parameters 

srr 0.1 

Covariance of sampling 

motion noise 

str 0.1 

str 0.2 

stt 0.2 

Group (5.1):  Scan matching and LiDAR parameters 

maxRange - 
LiDAR maximum distance 

range 

maxUrange - The usable LiDAR range 

throttle_scans 1 
The number of throttle 

scans 

sigma 0.05 
the Standard deviation (𝜎) 

of the score and likelihood 

functions of a single beam 

of the LiDAR 
lsigma 0.075 

kernelSize 1 

The size of the kernel’s 

search window for 

matching scans 

lstep 0.05 m Linear and Angular 

displacement step 

increment size astep 0.05 m 

iterations 1 

The number of refinement 

steps used in the scan 

matches 

lskip 0 
The number of beams 

skipped in each scan 

Group (5.2): Likelihood sampling parameters 

llsamplerange 0.01 
Translation sampling range 

of scan matching 

llsamplestep 0.01 
Translation sampling step 

of scan matching 

lasamplerange 0.005 
Rotational sampling range 

of scan matching 

lasamplestep 0.005 
Rotational sampling step of 

scan matching 

Group (6):  PF parameters 

particles 30 the number of particles 

map_update_ 

interval 
5.0 the map update period 

minimumScore 0 

The lowest score that a 

scan-matching algorithm 

must achieve for the 

outcome of the scan to be 

considered valid 

ogain 3.0 

the gain of weight 

normalizer function for 

smoothing the resampling 

step 

resampleThresh

old 
0.5 Resampling threshold 

 

 

images via AutoCAD, as shown in Fig. 4. 

The first environment of Fig. 4 (a) is for the 

fine-tuning tests, while the second environment of 

Fig. 4 (b) is chosen to check the validity of the final 

optimal configuration. Likewise, to facilitate 

comparisons between the generated map and the 

ground truth, the applied scenario for conducting the 

trajectory used to build the map is tested with 

straight, curvature, rotation-only movement utilizing 

a variety of linear and angular velocities. The 

selected ranges of velocities are illustrated in Table 

1. 

3.3 Initialization parameters classification 

Initialization parameters of Gmapping are 

critical limits of the algorithm’s performance. Some 

are related to map resolution, particle filtering, 

coordinate transformation systems, scan matching, 

or motion model noise. In this work, parameters are 

classified according to theoretical reasons, 

functionality, and tuning considerations. Table 2 

shows all the Gmapping algorithm’s initialization 

parameters grouped into six categories. 

The position of the map frame will begin from 

the left down corner, represented in (-xmin, -ymin) 

point in Group (2). Meanwhile, in Group (3), 

parameters such as linearUpdate, and angularUpdate, 

define measurement update threshold in translation 

(meters) and rotation (rad), respectively. On the 

other hand, the third parameter in Group (3) is 

related to time, temporalUpdate; the measurement 
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will be performed, If the last considered 

measurement is older than the update time in 

seconds. 

The fourth group is motion model parameters. 

Adding noise term to the motion model to describe 

its uncertainty makes it a probabilistic motion model,  

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡), refers to the prediction step in the 

RBPF. According to [26], for particle filters, 

sampling from a conditional density is more 

accessible to implement and faster than calculating 

the density by the closed-form algorithm since there 

is no need for an inverse model. In Gmapping, the 

motion model stands for associate sampling noise 

from zero-mean Gaussian distribution whose 

covariance is proportional to a linear combination of 

∆𝑥, ∆𝑦, ∆𝜃 , which is characterized by the four 

parameters represent pure translational (srr), 

translational to rotational (srt), rotational to 

translational (str), and pure rotational (stt) noise 

components as shown in Eq. (2) as a sampling 

function. 

 

𝑆(𝜎) =  

[
 
 
 
𝑆(𝑠𝑟𝑟|∆𝑥| + 𝑠𝑡𝑟|∆𝜃| + 𝑠𝑥𝑦|∆𝑦|)

𝑆(𝑠𝑟𝑟|∆𝑦| + 𝑠𝑡𝑟|∆𝜃| + 𝑠𝑥𝑦|∆𝑥|)

𝑆(𝑠𝑡𝑡|∆𝜃| + 𝑠𝑟𝑡√∆𝑥
2 + ∆𝑦2) ]

 
 
 
  (2) 

 

where ( ∆𝑥, ∆𝑦, ∆𝜃 ) is the pose differences. 

(𝑠𝑥𝑦 = 0.3𝑠𝑟𝑟 ) by default, the term 𝑆(𝜎), return a 

random sample from a normal distribution with a 

zero mean. Gmapping samples high-quality random 

variables from a zero mean normal distribution 

using the pseudo-random number generator and 

polar form of the Box-Muller transformation 

algorithm [27].  

Group (5.1) is scan matching parameters. Scan 

matching is an algorithm to correct the pose of the 

robot. The default value of LiDAR maximum range 

distance, maxRange, is the actual characterized 

range subtracted by (0.01) in meters. The 

correspondence usable LiDAR parameter is 

maxUrange, where the default value is the same as 

maxRange. Rays beyond this range get discarded 

completely. The sigma parameter indicated the 

standard deviation (𝜎) of the score function of a 

single beam of the LiDAR. The score function Eq. 

(3) is an exponential decay function that decreases 

with the increase of (𝑑), the distance between the 

pose and the single LiDAR beam reading when the 

endpoint is matched. 

 

𝑆𝑐𝑜𝑟𝑒𝐹𝑜𝑟𝑆𝑖𝑛𝑔𝑙𝑒𝐵𝑒𝑎𝑚 = 𝑒
−𝑑2

𝜎      (3) 

 

Another standard deviation parameter (lsigma)  

 

(-1,-1) (-1,0) (-1,1)

(0,-1) (0,0) (0,1)

(1,-1) (1,0) (1,1)

 
Figure. 5 Search window of scan matching 

 

of the score and likelihood function of a single beam 

of the LiDAR decreases linearly as the difference 

between LiDAR beam reading and pose increases 

rapidly, representing the particle’s weight as shown 

in Eq. (4). 

 

𝐿𝑖𝑘𝑙𝑖ℎ𝑜𝑜𝑑𝐹𝑜𝑟𝑆𝑖𝑛𝑔𝑙𝑒𝐵𝑒𝑎𝑚 = 
−𝑑2

𝜎
       (4) 

 

kernelSize parameter characterizes the size of 

the kernel’s search window for matching scans. Fig. 

5 shows the visual description of a nine-square grid 

centered on the hit point, and neighboring unhit 

points are mainly utilized for the search box size 

when computing the score for the most likely laser 

beam strike in a kernel window. Parameters of 

Angle and linear displacement step increment size 

(lstep and astep) assumed the initial step size of the 

optimization step in the Hill-Climbing algorithm 

during the scan matching algorithm [28]. The 

Iterations parameter is the number of times the 

search step size changes during the optimization 

method in the scan matching algorithm. In Group 

(5.2), llsamplerange, llsamplestep, lasamplerange, 

and lasamplestep parameters are used as sampling 

steps and range of likelihood function in scan 

matching. 

Finally, in the sixth group, the particles 

parameter determines the number of particles in the 

Gmapping algorithm. Each particle represents a 

possible trajectory and its map. Ogain parameter 

characterized the gain of weight normalizer function 

for smoothing the resampling step; the normalizer 

function is to calculate the judgment value (𝑁𝑒𝑓𝑓 ) of 

the resampling. resampleThreshold parameter 

characterizes the adaptive resampling technique in 

the algorithm; it is the ratio of (𝑁𝑒𝑓𝑓) to the particle 

number (𝑁 ), resampling is performed if it falls 

below that value, as illustrated in Eq. (3).  

 

𝑁𝑒𝑓𝑓 < (𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)𝑁        (5) 

 

Higher means more frequent resampling 

according to the evaluation formula [29] as follows 

in Eq. (6): 
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𝑁𝑒𝑓𝑓 =
1

∑𝒊=𝟏
𝑵 (�̃�𝑖)2

                 (6) 

 

where �̃�𝑖 is the likelihood of each particle. 𝑁𝑒𝑓𝑓 

is 𝑁 when there is no difference in the likelihood of 

particles immediately after resampling. The value of 

𝑁𝑒𝑓𝑓, decreases as the particle likelihood increases. 

Eventually, it approaches 1. 

4. Experimental design 

The evaluation metric is an image processing 

tool to measure the similarity between the ground 

truth map and the estimated map. Firstly, the image 

registration technique, oriented FAST and rotated 

BRIEF (ORB), is used to transform, align and scale 

the estimated image to the reference image to justify 

a similarity measurement [16]. The ORB algorithm 

combines the FAST keypoint detector and the 

BRIEF descriptor with several tweaks to improve 

performance [30]. Lastly, the mean SSIM (MSSIM) 

algorithm for similarity measurement checks the 

estimated map’s accuracy [16]. The SSIM for a 

specific window of size (x and y) and the MSSIM 

for X and Y images are given by Eqs. (7) and (8), 

respectively: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
     (7) 

 

Where  𝜇𝑥  , 𝜇𝑦: The pixel sample’s mean of x 

and y, respectively; 𝜎𝑥
2 , 𝜎𝑦

2: The variance of x and y, 

respectively; 𝜎𝑥𝑦: The covariance of x and y; 𝑐1 , 𝑐2: 

variables for stabilizing the division with a weak 

denominator. 

 

𝑀𝑆𝑆𝐼𝑀(𝑋, 𝑌) =  
1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑥𝑗, 𝑦𝑗)
𝑀
𝑗=1        (8) 

 

Where the X and Y represent the ground truth 

and the estimated map, respectively; 𝑥𝑗 and 𝑦𝑗  are 

the sub-images at the 𝑗𝑡ℎ local window: and M is the 

number of local windows of the images [31]. 

Fig. 6 shows the proposed experimental 

procedure (EP) diagram for fine-tuning and the 

evaluation metric conducted in this work. After 

classifying Gmapping initialization parameters, 

every group of parameters is subjected to the EP 

separately to assess how the configuration would 

affect that group. After collecting the best 

configurations at one configuration, the results will 

be reached. The experimental procedure execution is 

repeated five times for every best configuration due 

to random internal terms in the algorithm. The final 

MSSIM value is obtained by taking the mean of  
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Figure. 6 Proposed EP diagram 

 

those five values. 

5. Results and discussions  

The study evaluates the accuracy of estimated 

maps for a specific robot model and an indoor 

environment, considering the impact of Gmapping 

initialization parameters on hardware resource 

utilization and map correction estimation. As 

Gmapping relies on probabilistic methods, accurate 

tuning of noise assumptions and initialization 

parameters is critical to obtaining high-quality 

results. In order to optimize the results, it is 

necessary to evaluate the effectiveness of each 

parameter group by tuning their initialization 

parameters. This process will facilitate the 

inspection of the results and determine the 

recommended parameters to be adjusted. Table 2 

shows the default parameter configuration, and the 

parameters are tuned in a specific order, starting 

with OGM resolution parameters, followed by the 

measurement update frequency, motion model 

parameters, scan matching parameters, and particle 

filter parameters. The default configuration achieves 

an SSIM score of 0.78849 (78.849%), and fine-

tuned parameters are categorized into six groups as 

follows: 

Group 1: Coordinate system transformations 

parameters Gmapping uses three frames to predict 

the robot’s position on the estimated map. The word 

frame represents the fixed one, and the odometry 

frame represents the drifting error between the 

mobile robot base frame and the fixed frame on the 

estimated map. The period for issuing frames 

transformations to generate the map while 
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estimating the self-position is 0.05 seconds, given as 

a default value of the transform_publish_period 

parameter. For this parameter, it is not recommended 

to change the value of the publishing period since 

that will affect the whole synchronization process of 

the algorithm structure. 

Group 2: OGM parameters 

The default values of the initial map dimensions 

constrain the initial map dimensions, so they do not 

affect the mapping procedure. Otherwise, the delta 

parameter is the scale of one pixel in the map in 

meters per occupancy grid cell. In addition, the 

occ_thresh parameter is the threshold of each grid 

cell probability value. If the probability value is 

equal to or greater than the value of this parameter, 

it is judged to be an obstacle. After tuning those two 

parameters, the occupancy threshold parameter’s 

value better remains as (0.25), but for more precise 

gids of the map, the delta is fine-tuned to the value 

of (0.025 m). that depends on the scale of the real 

environment to be represented as OGM. 

Group 3: Measurement update parameters 

Repeated measurements in the same location can 

skew the results, making it seem more likely that the 

particles are not what they seem. Therefore, the 

subsequent assessment is delayed until a 

predetermined amount of travel is elapsed. Those 

parameters represent how much a robot must 

translate or rotate to process the latest scan data. 

Only after the robot reaches those thresholds do a 

new measurement. Even if the robot is not moving 

during the preceding linear and angular updates, 

observation will be conducted after a conditional 

time. If temporalUpdate is set to minus, there will be 

no time-based observations. There is a trade-off 

between accuracy and computation in selecting 

these parameters. Setting an enormous value for 

these two parameters will reduce the computation 

but would result in poor map quality. After several 

tuning tests, the methodology of fine-tuning the 

motion threshold parameters is to select values more 

extensive than the maximum liner or angular 

movement done per one second (0.3 m or 1 rad, 

respectively). Moreover, the temporal threshold’s 

fine-tuned values range between 1 to 3 seconds. 

Group 4: Motion model parameters setting the 

odometrical error parameters to zeros means the 

odometry data is ideal. The four parameters 

represent pure translational (srr), translational to 

rotational (srt), rotational to translational (str), and 

pure rotational (stt) noise components. Fig. 7 shows 

the simulation of tuning different values of motion 

model parameters. After many considerable 

empirical shuffling of the motion model parameters, 

the fine-tuned variances are: 0.05, 0.10, 0.09, and  
 

 

(a)            (b)           (c)                (d)              (e) 

Figure. 7 Odometry sample model: (a) all parameters 

have the same prediction value, (b) the impact of srr, (c) 

the impact of srt, (d) the impact of str, and (e) the impact 

of stt 

 

0.15 for srr, srt, str, and stt respectively. However, 

even if the tuning of error values is relatively over-

estimated, a particle filter can solve that as a Bayes 

filter by highly sparse particles. The effectiveness of 

tuning this group is indicated in Fig. 7. It 

significantly impacts localization accuracy and, 

implicitly, mapping accuracy. Motion model noise 

parameters are fine-tuned due to empirical shuffling. 

However, even if the tuning of error values is 

relatively over-estimated, a particle filter can solve 

that as a Bayes filter by highly sparse particles. 

Group 5: Scan matching and LiDAR parameters. 

The maxUrange parameter was set to be greater than 

the maximum characterized range of the LiDAR 

(MaxR-LiDAR) sensor to depict open areas as 

empty on the map. In addition, the maxRange 

parameter was set to be less than or equal to MaxR-

LiDAR. However, it was determined that it is more 

efficient to shorten the length of the usable rays, as 

errors tend to be larger at longer distances. The 

parameters utilized in this work were based on the 

specifications of the LDS-01 LiDAR sensor (MaxR-

LiDAR = 3.5 m). During the mapping process, it 

was observed that specific cells were classified as 

occupied, despite being outside the room outline and 

vice versa. This issue was addressed by setting these 

parameters as maxRange = maxURange < MaxR-

LiDAR. 

The Throttle_scans parameter was also 

investigated, which denotes the number of un-

processed scans. If a value of three is set, indicating 

that one scan out of every three was not processed. 

However, it is crucial to note that using the default 

value may be necessary as certain essential features 

could be impacted. To minimize computational 

processing, setting the value to one is recommended. 

In addition, the standard deviation of the score 

function (sigma) and the standard deviation of the 

likelihood function (lsigma) of a single beam of the 

LiDAR was evaluated. The optimal values for these 

parameters were found to be the default values. The 

kernelSize parameter was kept at value one as the 

map discretizes into squared grids, and the search 

space in the optimization step of scan matching 

represents the nine grids surrounding the targeted 
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grid. 

The initial linear or angular step size of the scan 

matcher optimization (lstep and astep) was 

recommended to be the same as the delta parameter, 

representing the grid size. Additionally, two other 

refinement steps increased the iterations parameter 

value to obtain a more optimized pose. To further 

optimize the process, the lskip parameter was tuned, 

and it was found that skipping one or two beams in 

each scan is a viable option, as not all laser data is 

always necessary. 

Likelihood sampling parameters concerning the 

scan matcher’s calculation of the likelihood field are 

the default settings for a grid map of 5 cm. In this 

study, the map resolution was set as 2.5 cm. By 

adjusting the sampling values, the best choices are 

indicated in Table 3. The grid dimension in the 

estimated map was fine-tuned to be 0.025 m, and the 

scan matching parameters, such as lstep, astep, and 

sampling likelihood parameters, were adjusted 

accordingly. 

Group 6: PF parameters 

As a PF approach, selecting an appropriate 

number of particles is crucial to balancing 

computational efficiency and accuracy. However, it 

is essential to note that increasing the particle count 

can lead to an increased computational burden. As 

such, in this work, the tuning of particle number was 

approached as a last resort, and a small particle 

population of up to 20 particles was found to be 

suitable for obtaining high-performance and 

accurate maps. It is also worth noting that the 

particle number and resampling threshold are 

interdependent PF parameters. A high particle 

number can slow down the processing of the entire 

simultaneous localization and mapping (SLAM) 

system. Therefore, the resampling threshold is 

advised to be set at a ratio of half the particle 

number. 

The map_update_interval parameter, which 

denotes the frequency at which map recalculations 

are performed, was set to 5 seconds in this study. It 

is important to note that a lower value for this 

parameter can increase the computational load on 

the system, while a higher value can improve map 

accuracy, depending on the environmental features. 

Additionally, the minimumScore parameter serves 

as a threshold for considering the outcome of the 

scan matching to be good. It is, and its default value 

is set at 0. A high value for this parameter can lead 

to a higher reliance on odometry alone, effectively 

turning Gmapping into a mapping algorithm only. 

The ogain parameter was found to be best set at its 

default value after several tuning experiments. 

Similarly, the resampling threshold parameter was  
 

Table 3. The optimal configuration 

Parameter 

Range 
Optimal 

Value Min. Max. 

Group (2): OGM parameters 

xmin -30 -20 -25 

ymin -30 -20 -25 

xmax -30 -20 -25 

ymax -30 -20 -25 

delta 0.025 0.05 0.025 

occ_thresh 0.25 0.25 0.25 

Group (3):  Measurement Update Parameters 

linearUpdate 0.2 0.5 0.3 

angularUpdate 0.5 1 1 

temporalUpdate 1 4 2 

Group (4):  Motion model parameters 

srr 0.001 0.05 0.05 

str 0.001 0.1 0.1 

str 0.02 0.2 0.09 

stt 0.1 0.2 0.15 

Group (5.1):  Scan matching and LiDAR parameters 

maxRange 3.94 3.94 3.49 

maxUrange 3.4 3.49 3.49 

throttle_scans 1 1 1 

sigma 0.05 0.5 0.05 

lsigma 0.075 0.075 0.075 

kernelSize 1 1 1 

lstep 0.025 0.05 0.025 

astep 0.025 0.05 0.025 

iterations 5 7 7 

lskip 0 0 0 

Group (5.2): Likelihood sampling parameters 

llsamplerange 0.005 0.01 0.005 

llsamplestep 0.005 0.01 0.005 

lasamplerange 0.0025 0.005 0.0025 

lasamplestep 0.0025 0.005 0.0025 

Group (6):  PF parameters 

particles 20 75 25 

map_update_interval 3 5 5 

minimumScore 0 50 0 

ogain 3 3 3 

resampleThreshold 0.5 0.75 0.5 

 

 

found to be best set at its default value after several 

shuffling tests. 

It was found that the impact of fine-tuning 

initialization parameters on the accuracy of the 

mapping algorithm was significant. Table 3 presents 

the best range of values for all 32 parameters and the 

optimal value chosen in the final test to achieve the 

best accuracy for this study’s specific environmental 

and robot model. 

Fig. 8 illustrates the visual representation of the 

accuracy achieved in 1st Exp. utilizing the default 

configuration without any tuning applied. The  
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(a) 

 
(b) 

Figure. 8 A visual inspection of the 1st Exp. environment 

for the difference between: (a) its ground truth and (b) the 

estimated OGM via default configuration 

 

 
(a) 

 
(b) 

Figure. 9 A visual inspection of the 1st Exp. environment 

for the difference between: (a) its ground truth and (b) the 

estimated OGM via the final optimal configuration 
 

 
(a) 

 
(b) 

Figure. 10 A visual validation inspection of the 2nd Exp. 

environment for the difference between: (a) its ground 

truth and (b) the estimated OGM via the final optimal 

configuration 

 

 
Figure. 11 MSSIMs of fine-tuning every group of 

parameters for 1st Exp 

0.78849

0.86969

0.87977

0.89173

0.90707

0.90876

0.94183

0.7 0.75 0.8 0.85 0.9 0.95 1

Default Configuration

Group (2) OGM parameters

Group (3) Measurement
update parameters

Group (4) Motion model
parameters

Group (5.1) Scan matching
parameters

Group (5.2) Likelihood of
scan matching parameters

Group (6) PF parameters
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straight and curvature outlines appear noisy, and 

areas in the environment remain grey, indicating 

unknown areas. Additionally, Fig. 9 provides a 

visual inspection of the accuracy of the 1st 

experiment, which is nearly accurate. The straight 

curvature and obstacle outlines are clear, and no 

areas within the targeted environment remain 

undiscovered. Finally, the accuracy of the estimated 

OGM based on the optimal fine-tuned configuration 

has been tested and validated in the 2nd Exp., which is 

illustrated as a visual inspection in Fig. 10. 

Each optimal configuration was repeated five 

times to obtain the mean of the results since the 

algorithm contains probabilistic and internal random 

terms. Upon comparing the accuracy of the default 

configuration at the bottom of Fig. 11 to the MSSIM 

values obtained after fine-tuning the four numerical 

groups of categorized parameters, it was observed 

that the MSSIM values increased from 

approximately ~78% to ~94%. 

6. Conclusion 

The results of this study show that Gmapping 

can effectively solve the localization and mapping 

problem in a room-scale environment with uncertain 

locomotion and provide a low-cost solution for 

optimizing the algorithm through parameters fine-

tuning and a benchmark experimental procedure for 

evaluating the accuracy of the estimated map.  

The highly accurate estimated map means 

implicitly highly accurate localization of the robot. 

Gmapping has 32 numerical initialization 

parameters that highly affect the accuracy of the 

resulting map depending on the environment scale, 

the hardware used, and locomotion characteristics. 

Setting significant parameters for Gmapping SLAM 

is unnecessary and can increase the hardware cost 

without improving the mapping results.  

The parameters have been divided into 

categories based on the functioning of each 

parameter due to their large number. This work 

provides a reference for setting the parameters and 

Benchmark. Scan matching parameters such as lstep, 

astep, and sampling likelihood parameters are tuned 

according to the value of the delta parameter, which 

is tuned to be 0.025 m. Motion model noise 

parameters are fine-tuned due to empirical shuffling. 

However, even if the tuning of error values is 

relatively over-estimated, a particle filter can solve 

that as a Bayes filter by highly sparse particles. In 

this work, the effectiveness of Gmapping in solving 

the problem of particle depletion in RBPF is 

demonstrated by reducing the particle number below 

the default value due to the systemic tuning of the 

motion model parameters. The more fine-tuning of 

motion model parameters, the less requirement to 

increase the particle number, which impacts 

computational resources.  

However, there are still many opportunities for 

future research that could further improve the 

performance of Gmapping in indoor environments. 

For example, additional sensors such as cameras or 

depth cameras could be used to provide additional 

information for the mapping and localization 

process, and machine learning techniques could be 

explored as a means of optimizing the selection and 

tuning of Gmapping parameters based on the 

characteristics of the environment and the hardware 

being used. Additionally, the performance of 

Gmapping could be evaluated in larger-scale or 

more complex environments or compared with other 

SLAM algorithms.  

In conclusion, fine-tuning the Gmapping 

algorithm’s initialization parameters has 

significantly improved the accuracy of the generated 

2D occupancy grid maps. By systematically 

classifying and optimizing these parameters, map 

accuracy is improved from a default configuration 

accuracy of 78.84% to a PF parameters accuracy of 

94.18%, using a TB3B and a structured evaluation 

procedure incorporating image registration and 

similarity measurement. This finding is essential for 

developing autonomous navigation systems that rely 

on accurate maps for localization and obstacle 

avoidance. It also highlights the importance of 

carefully considering the selection and optimization 

of algorithms and parameters to achieve optimal 

performance. 
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