
Received: December 3, 2022. Revised: February 21, 2023. 591

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

A Logic Design-based Approach for Frequent Itemsets Mining Using LCO

Algorithm

Oday Ahmed Al-Ghanimi1* Hussein K. Khafaji2

1 Informatics Institute for Postgraduate Studies, Baghdad, Iraq

2 Al-Rafidain University College, Baghdad, Iraq
* Corresponding author’s Email: ms202030612@iips.icci.edu.iq

Abstract: Frequent itemsets (FIs) mining is the main challenge in analyzing association rules since the complexity

of association rule mining is determined mainly by identifying all frequent itemsets. There are many approaches to

FIs mining; each approach includes many algorithms, but there is a major weakness in the logic-design-based FIs

approach because there is a limited number of methods for logic circuit or expression optimization, each of which

suffers from some drawbacks that are transferred to the mining process when they are utilized for this purpose. We

propose LCOFI, a new algorithm for frequent itemset mining based on the LCO algorithm, in this paper. LCOA is a

new algorithm for logic circuit optimization. LCOFI utilizes the suggested operations for a bipartite graph in LCOA.

The proposed algorithm is simple and efficient and supports a large number of input items. It scans the transaction

database only once to construct the bipartite graphs of frequent 1-itemsets and avoids the generation of candidate

itemsets. It does not require complex data structures such as trees and hash tables to validate the frequency of FIs.

When applied to a variety of datasets with varying characteristics, the proposed algorithm, LCOFI, outperformed the

Apriori and Fp-growth algorithms in all the experiments.

Keywords: Data mining, Association rule, Frequent itemset, Bipartite graph, LCOA.

1. Introduction

One of the well-known steps in the process of

knowledge discovery in the database, KDD, is data

mining [1]. Mining association rules is one of the

most important tasks of data mining [2, 3]. Due to

the importance of association rules and their mining

difficulties, many algorithms have been developed

for AR mining. The Apriori algorithm is frequently

utilized in discovering association rules, and most

algorithms that are utilized to scan candidate

itemsets depend on it [4]. The AR mining process

can be divided into two steps; 1) mining all frequent

itemsets and; 2) extracting trustworthy association

rules from the mined frequent itemsets [5]. The

essential step of association rules mining is frequent

itemsets mining; it is NP-complete problem [6-8].

The problem of mining frequent itemsets was first

proposed by R. Agrawal, T. Imielinski, and A. N.

Swami [9]. There are several FIs mining algorithms.

These algorithms can be divided into four

approaches:

• Apriori-based approach,

• lattice-based approach,

• graph-based approach, and

• logic circuit design-based approach.

In the first approach, R. Agrawal, H. Mannila, R.

Srikant, H. Toivonen, and A. I. Verkamo [10]

produced the Apriori algorithm, and then many

algorithms are proposed for FIs mining derived from

it. These algorithms are not entirely different from

the state of the art algorithm, Apriori. The Apriori

algorithm inspired many researchers to develop it or

to design an algorithm that comes close to its

properties.

In the second approach, i.e., the lattice-based

approach, D. Burdick, M. Calimlim, J. Flannick, J.

Gehrke, and T. Yiu [11] produced MAFIA, a novel

Received: December 3, 2022. Revised: February 21, 2023. 592

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

algorithm for mining maximal frequent itemsets

from a transactional database. When the maximal

itemsets have been mined, all frequent itemsets can

be derived from them. In the same approach, M. J.

Zaki. [12] developed CHARM, an efficient

algorithm for mining closed frequent itemsets, and

[13] CHARM-L, an efficient algorithm for creating

the closed itemset lattice (CIL).

One of the main algorithms that depend on the

graph principles is the FP-Growth algorithm. V.

Tiwari, V. Tiwari, S. Gupta, and R. Tiwari [14]

developed what so-called the FP-growth-graph

algorithm, which organizes items for mining

frequent itemsets using a graph rather than a tree or

lattice. The advantage of using a graph is that each

item only has one node which leads to less memory

consumption. Kumar, Srinivasu, and Ch, N.D. [15]

proposed graph-based frequent patterns mining

approach that generates patterns without generating

candidate itemsets unlike traditional approaches

such as Apriori. The advantage of a graph-based

algorithm is that it consumes less time of generating

frequent patterns than traditional methods.

Many researchers utilized the similarity between

the binary representation of transactional databases

and truth tables. In both these tables, 1 means the

existence of an item in a transaction of a

transactional database or the truth value of a variable

in a logical sum of product, SOP. This fact leads to

the fourth approach, i.e., the logic circuit

design/minimization-based approach, which

depends on the methods of logical

circuit/expressions minimization to mine frequent

itemsets or minimize the mined association rules.

The algorithms in this approach do not achieve

distinguished success because they inherit the

drawbacks of the methods of the logic design or

because they suffer from weak points resulting from

the incomplete matching between the FI mining,

FIM, problem and the logic circuit design. So let's

consider the three most famous algorithms for logic

circuit design, which are the Karnaugh map or K-

map [16], Quine-McCluskey Q-M [17], and

Espresso [18], with the three algorithms that

emerged from them to mine association rules, with a

brief description of the drawbacks inhered from the

former algorithms:

• In order to enhance the digital logic circuit based

on the truth table, the Karnaugh map, or K-map, was

developed. K-map has flaws that have been

discovered through numerous studies; it is difficult

to use and implement as software [19]. Also, it is

very unclear when a problem contains more than

four variables [20]. Sharma and Singh. [21]

proposed a K-Partition algorithm for frequent

patterns mining which is an advancement in the

traditional partition algorithm. This algorithm

depended on the K map method of logic circuit

design. The K-map-based association rule mining

algorithms have the restrictions that they could only

function effectively with a maximum of four

laterals/items. A drawback of the K-map-based

algorithm is that it is not effective in discovering all

frequent itemsets with more than four literals/items.

• The tabular or Quine-McCluskey Q-M approach,

the first substitute for K-Map, was created by

Edward McCluskey and Willard Quine. The set of

minimum prime implicants emitted by the output

functions [22] is determined by a methodical

process that starts with a truth table and concludes

with it. Although the Quine McCluskey approach is

amenable to automation as a computer program, it is

inefficient in terms of execution time and memory

usage, so that adding one additional literal will

practically quadruple these two consequences of the

reduction cost [23]. In conclusion, the Quine

McCluskey method is far from understandable and

visually appealing [24, 17], yet it is effective for a

small number of input literals and output functions.

Khedr, Ramadan, and Abdel-Magid [25] proposed a

new algorithm Quine-McCluskey Rule (QMR) for

association rule minimization in the dataset

depending on Quine-McCluskey (Q-M) algorithm

Logic circuits Optimization Technique. The

drawbacks of this algorithm are that it deals with a

limited number of inputs, and therefore the process

of reducing the association rules is very expensive in

terms of time and space.

• Brayton et al. [26] created the ESPRESSO

algorithm, which uses very few computer resources

while providing excellent performance. Because

ESPRESSO iterates to manipulate "cubes"

representing product terms, its minimized output is

not guaranteed to produce optimal minimization, in

addition to its reliance on vector optimization,

making it a loser in terms of visualization and ease

of understanding [18]. Ashmouni, Ramadan, and

Rashed. [27] proposed an approach for reducing

association rules in the dataset depending on the

espresso algorithm for rule minimization. A

drawback of the espresso-based algorithm is that the

rules resulting from this algorithm are not in the

optimal minimization.

The aim of this paper is to avoid the drawbacks

of the algorithms that can be listed within the logic

design-based approach for FIM by selecting suitable

algorithm for logic design to be adapted for the FIM

problem.

Received: December 3, 2022. Revised: February 21, 2023. 593

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

O. A. Al-Ghanim and H. K. Khafaji, 2022 [28]

proposed LCOA, a novel algorithm that relies on

bipartite graph properties and suggests graph

operations to optimize logic circuits and expressions.

This algorithm is easy to implement as a program; it

can deal with an unlimited number of literals and

variables; and it is simple to comprehend and

visualize.

To avoid the drawbacks of the algorithms that

can be listed within the logic design-based approach

for FIM, this paper presents a new algorithm to mine

FIs depending on LCOA.

The proposed algorithm will contribute to the

FIM problem in the following directions:

1. utilization of the similarity between FIM and

logic design problems, which leads to

empowering the logic circuit design-based

approach by designing a new algorithm for FIM

problem depending on LCOA. Solving similar

problems with similar algorithms definitely

reduces the design steps and complexity and

provides enough duration to select a suitable

algorithm of a given problem to be modified to

manipulate another.

2. The proposed algorithm scans the database only

once by selecting the frequent 1-itemsets, and all

the required operations, such as support counting

and frequent k-itemsets generation, are

accomplished on-the-fly, which helps maintain

the memory consumption.

3. The proposed algorithm does not need a special

data structure such as hash trees or an FP-tree to

generate and prune candidate itemsets, but it uses

a bipartite graph to represent the itemsets.

4. It lends itself to parallelism because each item in

a database can be manipulated independently.

This feature is not considered in this paper.

5. The above characteristics ensure that the FIM’s

speed can be accelerated by using a single

computation machine or a parallel computing

machine.

A

C

D

B 0

1

0 1

A 0 1

B 0 1

C 1 0

D 1 0

Figure. 1 Representation of the PBG ABC'D'

The proposed algorithm will be explained in

detail in section 3. The organization of the paper is

given as follows: the preliminaries of this research

are given in section 2. The explanation of the

proposed algorithm is illustrated in section 3. The

experiment datasets are given in section 4. The

results and discussion are illustrated in section 5 and

the conclusion of this research work is given in

section 6.

2. Preliminaries

In this section, we discuss basic concepts related

to the proposed algorithm. These concepts include

the definition of frequent itemsets, the logic circuit

optimization algorithm, LCOA, the bipartite graph,

and the product bipartite graph, PBG. The purpose

of presenting these concepts is their role in

designing the proposed algorithm to mine frequent

itemsets that are hidden in transaction databases.

2.1 Frequent itemset mining

Let I = {I1,..., In} be a collection of literals,

called items. Let D be a collection of transactions,

where each transaction T is a set of items such that

T I and each transaction are associated with a

unique identifier called TID. All items included in

the transaction are listed in chronological order. An

itemset A is a set of items in I and is known as a k-

itemset if it contains k items from I. An itemset A is

regarded as a frequent itemset if its occurrences

(support) in D are greater or equal to a min_sup

threshold that is determined by the user, and it's

regarded as an infrequent itemset otherwise [29, 30].

2.2 Bipartite graph

In the graph theory field, a bipartite graph (or

bigraph) is a graph whose nodes' set, N, can be

partitioned into two disjoint and independent sets;

N0 and N1. Every edge e in the edge set E links a

node in N0 to one node in N1 [31]. The node sets N0

={n01, ...n0n} and N1={n11... n1m} are the mutually

exclusive vertices sets and they are called the

graph’s parts [31, 32]. E ⊂ N0 × N1 is a set of edges

that connect vertices between two partitions[32, 33].

For example, Fig. 1 presents a bipartite graph with

two sets of vertices N0={A, B, C, D} and N1={0, 1}

where E={(A, 1), (B, 1), (C, 0), (D, 0)}, in addition

to its biadjacency matrix [31] which includes four

ones indicating the elements of E.

2.3 Product bipartite graph (PBG)

O. A. Al-Ghanim and H. K. Khafaji [28]

Received: December 3, 2022. Revised: February 21, 2023. 594

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

produced what is called "PBG." PBG is a term in an

SOP for logical expression constructed as a bipartite

graph. Therefore, the PBG graph consisted of two

sets of nodes {0, 1} and the set of literals in the

expression. For example, Figure 1 depicts the

representation of the term ABC’D’, i.e., the 13th

entry of a truth table, such that the output of a logic

circuit or expression is 1 when the value of A and B

is 1 and the value of C and D is 0.

2.4 LCO algorithm

The logic circuits optimization algorithm

consists of the following general steps [28]:

Step#1: Depending on the truth table or the

number of true combinations construct

the SOP expression.

Step#2: Construct the biadjacency matrices of

each PBG in the SOP expression.

Step#3:Select two PBGs of the SOP expression

PBGi and PBGj such that the number of

edges of PBGi is less than or equal to the

number of edges of PBGj, (|E(PBGi)| ≤

|E(PBGj)|), (the inclusion property), and

they have only one different edge. The

process of elimination occurs in the

larger PBG with keeping the resulting

PBG and the smaller PBG, or the

elimination process occurs on both PBGs

in the case of equality and keeping the

resulting PBG and neglecting the main

PBGs.

Step#4:Repeat step 3 until the SOP is optimized.

In [28] the researchers suggested the XORing,

ANDing, and ORing operations that can be done on

the bipartite graphs of the PBGs. The proposed

algorithm for mining frequent itemsets in this paper

utilizes the inclusion property of two PBGs and

these suggested logical operations are dedicated to

PBGs in LCOA.

3. The proposed algorithm

In this section, we describe the proposed

algorithm with examples. The proposed algorithm is

an LCOA-based frequent itemset mining algorithm;

for simplicity, it is abbreviated as LCOFI. It deals

with three types of bipartite graphs:

• transaction database bipartite graphs,

• itemset-TIDset bipartite graphs, and

• itemset representation bipartite graphs.

Table 1. Transaction database
TransactionTID Itemsets

TID1 a,b,c,d,e

TID 2 b,c,d,e

TID 3 b,c,e

TID 4 b,c,d

TID 5 a,b

TID 6

a,b,c, e

Table 2. Binary itemized representation of transaction

database

Tid

Item

1 2 3 4 5 6

a 1 0 0 0 1 1

b 1 1 1 1 1 1

c 1 1 1 1 0 1

d 1 1 0 1 0 0

e 1 1 1 0 0 1

Figure. 2 Transaction database bipartite graph

Figure. 3 bipartite graph of {a,b,c}↔{1,6}

e

2

b

c

d

1

6

5

4

3

a

 1 6

A 1 1

B 1 1

C 1 1

A

B

C

1

6

Received: December 3, 2022. Revised: February 21, 2023. 595

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

Table 3. FIs mining processes and their counterpart in LCO algorithm

Seq. Process Suggested LCOA Operation

1 Selecting two k-itemsets i and j to generate a (k+1)-

itemset such that i and j have only one different

item.

Using of equality inclusion property of PBGs

depending on XORing of two PBGs

2 Joining of the selected two k-itemsets i and j to

generate a (k+1)-itemset

ORing of the itemset representation bipartite graph

of itemset i and j using PBG ORing

3 Complex procedures to verify the frequentness of

the generated (k+1)-itemset.

ANDing of itemset-TIDset bipartite graphs of i and j

itemsets and compute the fun-out of the (k+1)-

itemset.

Figure. 4 Abstracted bipartitegraph of {a,b,c}↔{1,6}

Figure. 5 SOP representation of ABC itemset using

bipartite graph

For more explanation, consider Table 1, which

includes an illustrative database consisting of six

transactions and five items. Table 2 represents an

itemized binary representation of the database. The

first row indicates that item a is available in TIDs 1,

5, and 6. Fig. 2 presents a bipartite graph

representation of the database. The notation

{itemset}↔{TIDset} will be used in this paper,

which means that the "itemset" is included in the

transactions listed in the "TIDset." Consider the

itemset {a, b, c}↔{1, 6}, which can be represented

as a second type of bipartite graph (Fig. 3), or

abstractly as Fig. 4. Indeed, the itemset ABC is

similar to a term in an SOP of logic expression and

can be written as ABCD'E', which means that the

items a, b, and c exist in a transaction or an itemset

but d and e are not available. This leads to the third

type of bipartite graph in this context, as shown in

Fig. 5.

Generally, the FIs mining algorithms require the

processes listed in Table 3. The implementation of

these processes varies from one algorithm to another.

So, Table 3 includes the suggested operation for

each process depending on LCOA to be adopted in

the proposed algorithm LCOFI.

For more explanation, reconsider the database of

Table 1. Suppose that the F3, the set of frequent 3-

itemsets, includes BCD and BCE according to

min_sup value equals 2. Their PBGs graph is

presented in Fig. 6. They are selected for the next

generation to generate BCDE because they include

only one different item. Determining the validity of

these itemsets in LCOFI will depend on the XORing

of their PBGs. The resultant PBG includes two

items connected to the existing node which indicates

the validity of the two itemsets, BCD and BCE, to

play a role in the next generation. To accomplish the

joint process to generate the itemset BCDE, a PBG

ORing operation is required as shown in Fig. 6. To

specify the frequentness of the Itemset BCDE, the

itemset-TIDset bipartite graphs of BCD and BCE

are ANDed as shown in Fig. 7.

The number of remaining transactions represents

the support of the BCDE, i.e., 2 transactions 1 and 2.

From the implementation point of view, the BPG is

represented in abstracted PBG, recall Figs. 4 and 6,

because all items have the same connections.

Therefore the support counting of an itemset in

LCOFI is just its fun-out in the graph.

After this preliminary information, it is possible

now to present LCOFI. Algorithm 1 represents the

general structure of the LCOFI algorithm. To

provide more explanation, Table 4 presents a

description of the functions and variables used in the

proposed algorithms in addition to the explanation

of the most steps in this paper.

The input for the algorithm is a transactional

database, D. D is stored as binary values: 1 for an

item presented in a transaction and 0 if the item is

not presented. The second input is the minimum

support, min_sup, while the output is the set of all

A

B

C

1 exist

0 not exist

D

E

ABC

1

6

Received: December 3, 2022. Revised: February 21, 2023. 596

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

B

C

1

D

2

4

ANDing

B

C

1

E

2

3

6

=

B

C

1

D

2

3

6
E

Figure. 6 XORing and ORing of two PBGs: Keeping the difference and union respectively

Figure 7. ANDing operation of two PBGs to validate the frequentness of the generated PBG

frequent itemsets. Steps #1 and #2 are initialization

steps. Step #3 is a call for an algorithm to generate

1-itemsets, it is called construct-1-itemsets(). The

construct-1-itemsets() algorithm is presented in

Algorithm 2. Step #4 represents a call for an

algorithm to generate 2-itemsets; it is called

construct-2-itemsets (F1). Construct-2-itemsets() are

presented in Algorithm 3. Step #5 is the iteration

process to call the construct-k-itemset(FK-1)

presented in Algorithm 4. This process is repeated to

generate a set of all frequent itemsets, as shown in

Steps #8 and #9. Step #11 will add the previously

mined frequent itemsets to the set of frequent

itemsets and return the result to the caller.

Algorithm 1. The proposed algorithm, LCOFI

Input:transaction dataset D; // Binary Representation

Min_sup; // (minimum support)

Output: Frequent-itemsets // set of frequent itemsets.

{

1. F1={}; frequent-itemsets={};

2. K=4;

3. F1=construct-1-itemsets(D);

4. F2= construct-2-itemsets(F1);

frequent-itemsets=frequent-itemsets F1 F2;

5. while Fk-1≠{}

6. {

7. Fk=construct-k-itemset(Fk-1);

8. frequent-itemsets=frequent-itemsets Fk ;

9. k=k+1;

10. }

11. return frequent-itemsets;

}

 1 2 3 4 6

B 1 1 1 0 1

C 1 1 1 0 1

D * * * * *

E 1 1 1 0 1

 1 2

B 1 1

C 1 1

D 1 1

E 1 1

 1 2 3 4 6

B 1 1 0 1 0

C 1 1 0 1 0

D 1 1 0 1 0

E * * * * *

A

B

C

1 exist

0 not

exist

D

E

 XOR

A'BCDE'

A'BCD'E

A

B

C

D

E

0 not

exist

1 exist

A

B

C

1 exist D

E

=

0 not

exist

 exist

Received: December 3, 2022. Revised: February 21, 2023. 597

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

Table 4. Description of the functions and variables used in the proposed algorithms
Seq. Name of function or

variable

Type description

1 D database Binary transaction database

2 Min-sup variable Minimum support threshold

3 Frequent-itemsets variable Holds all the mined FIs

4 F1 variable Stores frequent items, i.e., frequent 1-itemsets

5 F2 variable Stores frequent items, i.e., frequent 2-itemsets

6 Fk variable Stores frequent items, i.e., frequent k-itemsets, (K>2)

7 f variable Represents an itemset in Fn where n>0

9 Construct- 1-itemsets Function To generates 1-itemsets

10 Construct-2-itemsets Function To Generates 2-itemsets

11 Construct-k-itemsets Function Generates k-itemsets

12 K variable Loop control variable and it represents the size of an itemset.

13 f-PBG variable Holds PBG of f as a biadjacency matrix

14 f-PBGitem variable Holds the item of the PBG of f.

15 f-PBGi variable Holds PBG of ith f as a biadjacency matrix

16 Anding, oring, and

xoring

functions Functions to do two matrices' AND, OR, or XOR operation

respectively.

17 Fun-out function To count number of links of emerged from a node used to

calculate the support of an itemset.

18 inclusion function To determine the equality-inclusion of two PBGs, i.e.,

itemsets.

3.1 1-itemsets PBGs construct

The pseudo-code of the algorithm to generate 1-

itemsets is presented in Algorithm 2. The input for

Algorithm 2 is a transactional dataset D and the

min_sup threshold, while the output is a set of

frequent 1-itemsets, F1. It scans the transaction

database D only once by constructing a bipartite

graph, PBGi, and then computes the support count

of each item i by calculating its fun-out of PBGi.

This process is repeated to construct F1, the list of

frequent 1-itemsets, according to the min_sup

threshold.

Algorithm 2. Construct-1-itemsets

Input : transaction dataset D;

 min-sup;

Output : F1

1. {

2. F1={};

3. For each item i in D

4. {

5. construct PBGi;

6. Support(i)=fun-out(i) ;

7. If (Support(i) <= min-sup)

8. F1= F1{i};

9. }

10. return F1;

11. }

Step #2 is the initialization step. Step #5

constructs the PBGi for each item i in D as a

bipartite graph. The bipartite graph in this context

includes a set of transactions in database D,

including i, and a set of items, which includes one

item i in this step. Simply, the PBG in this context

will be expressed as {set of items}↔{set of

transactions}, for example {a}↔{1, 5, 6} means

that the item "a" is available in transactions 1, 5, and

6. For more explanation, consider Fig. 8.

Received: December 3, 2022. Revised: February 21, 2023. 598

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

Figure 8. 1-itemset/PBG representation

The two sets, i.e., set of items and set of

transactions, in PBG are joined by edges which

represent the relation "the item i is available in the

specified transaction set". These edges represent the

occurrences of the items in the transaction database,

therefore, the number of edges represents the fun-

out which equals the support of item i according to

the entered min_sup, this process is accomplished in

step#6. The number of fun-out in the transaction set

is the support of each item i in D, which is computed

and checked according to the min_sup threshold in

step#6. In steps #7 and 8, the item i will be added to

the frequent 1-itemsets, F1list, which is returned to

the caller when the iteration terminates.

Example 1. Re-consider the database shown in

Tables 1, 2, and Fig. 2. It can be equivalently

represented as a bipartite graph, as shown in Table 2.

which can be described as:

G=(V,E) where V={V1={a, b, c, d, e},

V2={1,2,3,4,5,6}} and E={(a, 1), (a, 5), (a, 6), (b, 1),

(b, 2), (b, 3), (b, 4), (b, 5), (b, 6), (c, 1), (c, 2), (c, 3),

(c, 4), (c, 6), (d, 1), (d, 2), (d, 4), (e, 1), (e, 2), (e, 3),

(e, 6)}. For simplicity and abstraction, the grouping

of items will be used to represent the bipartite graph

as follows E={({a}↔{1, 5, 6}), ({b}↔{1, 2, 3, 4, 5,

6}, ({c}↔{1, 2, 3, 4, 6}), ({d}↔{1, 2, 4}),

({e}↔{1, 2, 3, 6})}. Suppose that the minimum

support is 33%, i.e., ≈ 2 out of 6 transactions of the

datasets presented in Tables 1 and 2. Consider the 1-

frequent itemset presented in Table 2. The fun-out

of {a} is three due to the availability of the links

directed to the set of transactions {1, 5, 6}and this

value is greater than 2, hence {a} is regarded as a

frequent 1-itemset. In the same manner, the

construction of PBGs and support counting is

accomplished for the rest of the items which results

in F1={a, b, c, d, e}. These items have 3, 6, 5, 3, and

4 support counts respectively.

3.2 2-itemsets BPGs construct

After generating the frequent 1-itemsets

presented in section 3.1, the next step is generating

2-itemsets depending on the contents of F1.

Algorithm 3 shows the process of generating

frequent 2-itemsets from frequent 1-itemsets

depending on the XORing, ORing, and ANDing

operations proposed for PBGs.

Step #4 picks the first frequent 1-item from the

input F1 list. Step#7 makes the ORing operation of

the two frequent 1-itemsets, two items, to generate a

2-itemset, i.e., it takes the first 1-item, i.e., (f-PBG

represented as a bipartite graph) from the F1 list with

each of the rest of the list items, i.e., (fi-PBG) using

the OR operation. Step#8 performs the ANDing

operation of two tidlists of the combined frequent 1-

itemset (f-PBG) from the ORing operation to find

the tidlist of the 2-items, then the fun-out is

computed to specify the min_sup of the generated 2-

itemset. The number of fun-out in the (f-PBG)

according to the itemset representation bipartite

graph is the support of (f-PBG), which is computed

and checked according to the min_sup threshold,

this process is accomplished in step#9. In Step#10

the frequent 2-itemset will be added to the F2 list.

The above steps are repeated to construct the rest of

the frequent 2-itemsets F2. For more explanation

consider Fig. 9.

Algorithm 3. Construct-2-itemsets(F1)

Input: F1

Output: F2

1. {

2. While F1≠{}

3. {

4. remove f from F1

5. for(i=1; length (F1)>0; i++) do

6. {

7. f-PBGitem =oring(f-PBGitem, fi- PBGitem);

8. f-PBG=anding(f-PBG, fi-PBG);

9. if (fun-out (f-PBG)>=min-sup)

10. F2= F2f-PBG

11. }// for

12. }// while

13. return F2

14. }

The ORing of the PBG template and b PBG

template, (100000) OR (010000), implies {a, b}

PBG template, i.e., (110000). The ANDing of a and

b PBGs, (100011) and (111111), result in (100011),

which means ({a, b}↔{1, 5, 6}).

Consider example 1 and the following frequent

1- itemsets, F1 list generated from the previous step

in section 3.1 which are F1={a, b, c, d, e}. Fig. 9

includes steps of constructing PBGs for two sets of

frequent 1- itemsets as sub bipartite graphs from the

F1 list presented in Table 2. To generate frequent 2-

 Tid

Item

1 2 4 4 5 6

a 1 0 0 0 1 1 a

1

6

5

Received: December 3, 2022. Revised: February 21, 2023. 599

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

Figure. 9 ORing of a and b item-template and their PBGs ANDing

Figure. 10 ORing {a,b} and {a,c} item-template and their PBGs ANDing

itemset depending on the OR and AND operations

proposed for PBGs. Let's trace the process of

generating a frequent 2- itemset shown in Fig. 9.

Pick {a} as the first item from F1 with each item

of {b, c, d, e}. This process can be described simply

as the combination of items by making OR

operation template, i.e., ({a, b},{a, c},{a, d},{a,

e},{b, c},{b, d},{b, e},{c, d},{c, e},{d, e}) and

making AND operation of the transaction TID lists,

i.e., the join of the itemsets ({a},{b}) is {1, 5, 6}

will be used to represent the bipartite graph as

follows: E={({a, b}↔{1, 5, 6}),({a, c}↔{1, 6}),

({a, d}↔{1}), ({a, e}↔{1, 6}), ({b, c}↔{1, 2, 3, 4,

6}), ({b, d}↔{1, 2, 4}),({b, e}↔{1, 2, 3, 6}), ({c,

d}↔{1, 2, 4}), ({c, e}↔{1, 2, 3, 6}), ({d, e}↔{1,

2}). The fun-out of {a, b} is three due to the

availability of the links directed to the set of

transactions {1, 5, 6} and this value is greater than 2,

hence {a, b} is regarded as a frequent 2-itemset, but

the fun-out of {a, d} is one and this value is less

than 2, hence {a, d} is regarded as an infrequent

itemset. In the same manner, the construction of

PBGs and support counting is accomplished for the

rest of the items which results in F2=({a, b},{a,

c},{a, e},{b, c},{b, d},{b, e},{c, d},{c, e},{d, e})

are frequent itemset. These itemsets have 3, 2, 2, 5,

3, 4, 3, 4, and 2 support counts respectively.

3.3 K-itemset construct algorithm

The robustness and efficiency of LCOFI appear

in this stage of FIs mining which depends on the

properties of LCOA. The XORing, ORing, and

ANDing are the main operations in LCOFI. After

generating frequent 2-itemsets from frequent 1-

itemsets. The next step includes generating frequent

k-itemsets depending on the contents of the F2 list

 Tid

Item

1 2 3 4 5 6

a 1 0 0 0 1 1

 Tid

Item

1 2 3 4 5 6

b 1 1 1 1 1 1

Tid Tid

Item

1 2 3 4 5 6

a, b 1 0 0 0 1 1

 It Item a b c . . .

a 1 0 0 0 0 0

 Item a b c . . .

b 0 1 0 0 0 0

 Item a b c . . .

a, b 1 1 0 0 0

 Tid

Item

1 2 3 4 5 6

a,b 1 0 0 0 1 1

 Tid

Item

1 2 3 4 5 6

a,c 1 0 0 0 0 1

 Tid

Item

1 2 3 4 5 6

a,b,c 1 0 0 0 0 1

 It Item a b c . .

a,b 1 1 0

 It Item a b c . .

a,c 1 0 1

 It Item a b c . .

a,b,c 1 1 1

a

,

1

5

6

b

1

2

3

4

5

6

a, b

1

5

6

= a,b

1

5

6

a,c

1

6

a,b,c

1

6

Equality Inclusion

Itemset

Representation

graph ORing and

PBG ANDing

Received: December 3, 2022. Revised: February 21, 2023. 600

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

which contains all frequent 2-itemsets. The input of

Algorithm 4 is a set of frequent (Fk-1) itemsets, while

the outputs are a set of frequent (k-itemset). Steps #5

to #7 are in the same manner as the previous steps

described in Algorithm 3, which will be used in the

process to generate a frequent k-itemset. In step#10

the equality inclusion operation of LCOA will be

used for this purpose as illustrated in Fig. 7. In

step# 11 the algorithm selects two sets of frequent

(k-1)-itemsets that have the equality inclusion

property in such a way that they contain the same

items except one item is different, for example,

suppose that {a, b, c},{a, b, d} are two sets of

frequent 3-itemsets that the items {a},{b} of two

sets is the same itemsets, but items {c} and {d} are

one different them, hence, the combination of two

itemsets is {a, b, c, d}. Additionally, if the two

PBGs have the equality inclusion property shown in

step#12. Step# 14 includes combining the items

represented as a bipartite graph by the OR operation

template, i.e., (fi-PBG OR fj-PBG) to generate k-

itemsets. Step# 15 make the AND operation of two

tidlists of the combined frequent (Fk-1-itemset) from

the OR operation to find the tidlist of the (k-items).

Step#16 the support counting of the k-itemset is

computed by fun-out of the item template assigned it

and checked according to the min_sup threshold. In

step#17 the frequent k-itemsets will be added to Fk,

the list for frequent k-itemsets.These steps are

repeated to find the rest frequent k-itemset, where

k=3. Step#20 increases k by one to generate the next

level of frequent itemsets. The frequent itemsets will

be added to the set of frequent itemsets which are

returned to the caller.

Algorithm 4. Construct k-itemsets(Fk-1)

2. Input: Fk-1

3. Output: frequent k-itemsets

4. {

5. While(Fk-1≠{}) do

6. {

7. Remove fi from (Fk-1)

8. For (j=1 to length (Fk-1); j++) do

9. {

10. //inclusion function of LCOA- Equality inclusion

11.Boolean inclusionResult= inclusion(f-PBG, fj-

PBG);

12. If (inclusionResult)

13. {

14. f-PBGitem= fi-PBGitem OR fj-PBGitem; //

ORing the items templates

15. f-PBG=anding(f-PBG);

16. if (fun-out (f-PBG) >=min-sup) // Support

counting

17. Fk= Fkf -PBG;

18. } if

19. }//for

20. k=k + 1;

21. } while

22. }// k-itemsets

For more explanation, consider Fig. 10. consider

the following frequent 2-itemsets, F2 list generated

from the previous step which are F2=({a, b}, {a, c},

{a, e}, {b, c},{b, d}, {b, e}, {c, d}, {c, e}, {d, e}).

To give a full explanation, Recall example 1 and

consider Figure 10 which includes steps to construct

PBGs for two sets of frequent 2- itemsets as a sub

bipartite graph from the F2 list presented in section

3.2.

To generate frequent 3- itemset depending on

the ORing operation the template ANDing operation,

and the quality inclusion operation proposed for

PBGs. Let’s trace the process to generate a frequent

3-itemset shown in Fig. 10. Pick {a, b} as the first

item from F2 with each item of ({a, c}, {a, e}, {b, c},

{b, d}, {b, e}, {c, d}, {c, e}, {d, e})}. The equality

inclusion operation will be applied to two PBGs

from F2 in this process. The sets {a, b} and {a, c}

have the equality inclusion property, which includes

only one item different is {b} and {c}. This process

can be described simply as the combination of items

will be used to represent the bipartite graph as

follows: E={({a, b, c}↔{1, 6}),({a, b, e}↔{1, 6}),

({a, c, e}↔{1, 6}), ({b, c, d}↔{1, 2, 4}), ({b, c,

e}↔{1, 2, 3, 6}), ({b, d, e}↔{1, 2}), ({c, d, e}↔{1,

2})}. The fun-out of {a, b, c} is 2 due to the

availability of the two itemsets link directed to two

of transactions 1 and 6. This value is equal to 2,

hence {a, b, c} is regarded as a frequent 3-itemset.

In the same manner, the construction of PBGs and

support counting is accomplished for the rest of the

items which results in F3= ({a, b, c}, {a, b, e}, {a, c,

e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}) are

frequent itemset. These items have 2, 2, 2, 3, 4, 2,

and 2 support counts respectively.

For the transaction database mentioned in Table

1 contains a frequent 4- itemset according to the

min_sup threshold. Consider Fi. 5which shows the

process generates a frequent 4-itemset depending on

the contents of the F3 list is presented in the previous

step.

To generate a frequent 4-itemset, trace the same

steps to generate a frequent 3-itemsets as shown in

Algorithm 4. The {a, b, c },{a, b, e} are two sets of

frequent 3- itemsets generated from the previous

step. These sets include only one item different is

{c} and {e}. This process can be described simply

as the combination of items that will be used to

Received: December 3, 2022. Revised: February 21, 2023. 601

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

Figure. 11 ORing {a, b, c} and {a, b, e} item-template and their PBGs ANDing

represent the bipartite graph as follows: E={({a, b, c,

e}↔{1, 6}), ({b, c, d, e}↔{1, 2})}. The fun-out of

{a, b, c, e} and {b, c, d, e} are two due to the

availability of the two itemsets link directed to the

set of transactions, and the support of two itemsets is

2, hence {a, b, c, e} and {b, c, d, e} are regarded as

frequent 4-itemset. For example, 1 mentioned in

section 3.1 the final result is a set of all frequent

itemsets generated in database D as output are ({a},

{b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, e},{b, c}, {b,

d},{b, e}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, b, e},

{a, c, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a,

b, c, e}, {b, c, d, e}).

4. Experiments datasets

Experiments were carried out on an Intel(R)

Core(TM) i5-5300U CPU running at 2.30 GHz, 8

GB of memory, and a PC running Windows 10. The

algorithm was implemented using Python. The

experiments indirectly pointed to memory utilization

according to the used dataset and min_sup values. It

is well known that the lower value of min_sup leads

to the largest number of FIs, in addition to the

increment in execution time and memory

consumption. The experiments are executed by

using four typical datasets, such as chess,

mushrooms, T10I4D100K, and T40I10D100K. To

better test and analyze the performance of the

algorithm, four different types of public data sets are

used, which have obvious differences in the amount

of data, transaction width, number of items,

sparseness, and so on. The data sets used in the

experiments are of two types; real and synthetic

public test datasets commonly used in association

algorithm research, which are publicly available in

the frequent itemset mining implementations

repository [34]. The characteristics of this dataset

are shown in Table 5.

5. Results and discussion

This section deals with the results related to

LCOFI and also comparative analyzes of the results

with that of the Apriori and FP-Growth algorithms

using different four experiments to generate frequent

itemsets depending on execution time and memory

usage. The results presented in this paper were

obtained from the Python authors' implementation

of the apriori and FP-growth algorithms and are

fully consistent with the results in the references

[35-38] related to these algorithms. The results are

presented in tables as follows:

Table 6 presents the number of frequent itemsets

hidden in the chess dataset using min_sup of 40%,

50%, 60%, 70%, 80%, and 90%, which are 979582,

32273, 28173, 24401, 196, and 13 respectively.

These FIs numbers are for the Apriori, Fp-growth,

and LCOFI. If the min_sup value is less than 40%,

then a huge number of frequent itemsets will be

generated, increasing the execution time of these

algorithms and memory consumption. It is clear that

the number of frequent itemsets increases

dramatically when the value of the min_sup

threshold decreases, i.e., the lower value of min_sup

leads to the largest number of FIs.

Table 7 presented the total of frequent itemsets

using mushroom dataset and different min_sup

values. The results in Table 7 explain the total of

frequent itemsets of mushroom dataset under

min_sup of 10%, 20%, 30%, 40%, 50%, 60%, 70%,

80%, 90%, and 100% is 342869, 12248, 1867, 304,

17, 9, 5, 5, 4, and 1 respectively.

Using the T10I4D100K dataset and various min

sup values ranging from 1% to 9% of the dataset

size, Table 8 shows the total number of frequent

 Tid

Item

1 2 3 4 5 6

a,b,c 1 0 0 0 0 1

 Tid

Item

1 2 3 4 5 6

a,b.e 1 0 0 0 0 1

 Tid

Item

1 2 3 4 5 6

a, b, c, e 1 0 0 0 0 1

 It Item a b c . . .

a, b, c 1 1 1 0

 It Item a b c . . .

a,b,e 1 1 0 0 1
 It Item a b c . . .

a,b,c,e 1 1 1 0 1

Equality Inclusion

Itemset

Representation

graph ORing and

PBG ANDing

=
a,b,c

1

6

a, b,c,e

1

6

a,b,e

1

6

Received: December 3, 2022. Revised: February 21, 2023. 602

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

Table 5. Dataset characteristics
Dataset Name No.of Items No. of Transactions Dataset Type Size(KB)

Mushroom 120 8124 Real /very dense 335

Chess 76 3196 Real/very dense 558

T10I4D100K 1000 100000 Artificial/sparse 5,774

T40I10D100K 1000 100000 Artificial/sparse 18,768

Table 6. Total of frequent itemset with different min_sup values under the chess data set

 Min_sup

Dataset

40% 50% 60% 70% 80% 90%

Chess 979582 32273 28173 24211 196 13

Table 7. Total of frequent itemset with different min_sup values under the mushroom data set

 Min_sup

Dataset

10% 20% 30% 40% 50% 60% 70% 80% 90% 100

%

Mushroom 342869 12248 1867 304 17 9 5 5 4 1

Table 8. Total of frequent itemsets with different min_sup values under the T10I4D100K dataset

 Min_sup

Dataset

1% 2% 3% 4% 5%

6% 7% 8% 9% 10%

 T10I4D100K 384 155 60 26 10 4 2 0 0 0

Table 9. Total of frequent itemsets with different min_sup values under the T40I10D100K dataset

 Min_sup

Dataset

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

T40I10D100K 24732 2273 780 430 315 283 183 137 110 82

 (a) (b)

Figure. 12 Shows a comparative graph of three algorithms such that the line graph: (a) execution time using the chess

dataset, while the bar graph and (b) memory usage using the chess dataset

itemsets. The findings in Table 8 give 384, 155, 60,

26, 10, 4, 2, 0,0, and 0 as the total number of

frequent itemsets of the T10I4D100K dataset under

min sup of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%,

and 10%, respectively. Itemsets are not available

when the min sup is larger than or equal to 8% since

there are no FIs with a high support value in this

sparse dataset. The presence of rare items, as well as

the fact that the shortest transaction is 4 items long

and the average transaction length is 37, could be

attributed to this phenomenon.

The results in Table 9 explain the total of

frequent itemsets of T40I10D100K dataset

undermin_sup 1%, 2%, 3%, 4%, 5%, 6%, 7%,

0

200

400

600

800

50 70 90

Ti
m

e
 in

 s
e

co
n

d
s

Min_sup (%)

Execution Time

LCOFI

Apriori

Fp-growth 0

5000

10000

50 70 90

M
e

m
o

ry
 u

sa
ge

 in
 M

B

Min_sup %

Memory usage (MB)

LCOFI

Apriori

Fp-growth

Received: December 3, 2022. Revised: February 21, 2023. 603

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

 (a) (b)

Figure. 13 A comparative graph of three algorithms such that the line graph: (a) execution time using mushroom dataset,

while the bar graph and (b) memory usage on mushroom dataset

 (a) (b)

Figure. 14 A comparative graph of three algorithms such that the line graph: (a) execution time on T10I4D100K dataset,

while the bar graph and (b) memory usage on T10I4D100K dataset

 (a) (b)

Figure. 15 A comparative graph of three algorithms such that the line graph: (a) execution time on T40I10D100K dataset,

while the bar graph and (b) memory usage on T40I10D100K dataset

8%,9% and10% are 24732, 2273, 780, 430, 315,

283,183, 137, 110, and 82 respectively. This dataset

is more sparse than mushroom in addition to the fact

that it contains more than 50% of the items with a

very low number of occurrences.

Fig. 12(a) shows a comparative line graph of

execution time for the Apriori, Fp-growth, and

LCOFI algorithms on the chess dataset. The

algorithms' parameters are various min_sup values

and the chess dataset. LCOFI outperforms the

Apriori algorithm and the Fp-growth algorithm

when the min_sup value is 50%, 70%, or 90%, but

the Fp-growth algorithm is better in terms of

execution time than the Apriori algorithm. Fig.

12(b) shows a comparative bar graph of memory

usage for three algorithms on chess dataset. The

0

0.1

0.2

0.3

50 70 90

Ti
m

e
 in

 s
e

co
n

d
s

Min_sup (%)

Execution Time

LCOFI

Apriori

Fp-growth 0

2000

4000

6000

50 70 90

M
e

m
o

ry
 u

sa
ge

 in
 M

B

Min_sup %

Memory usage (MB)

LCOFI

Apriori

Fp-growth

0

5

10

15

20

25

3 5 7

Ti
m

e
 in

 s
e

co
n

d
s

Min_sup (%)

Execution Time

LCOFI

Apriori

Fp-growth 5000

5500

6000

6500

3 5 7

M
e

m
o

ry
 u

sa
ge

 in
 M

B

Min_sup %

Memory usage (MB)

LCOFI

Apriori

Fp-growth

0

50

100

150

200

5 7 10

Ti
m

e
 in

 s
e

co
n

d
s

Min_sup (%)

Execution Time

LCOFI

Apriori

Fp-growth 0

2000

4000

6000

8000

5 7 10M
e

m
o

ry
 u

sa
ge

 in
 M

B

Min_sup %

Memory usage (MB)

LCOFI

Apriori

Fp-growth

Received: December 3, 2022. Revised: February 21, 2023. 604

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

proposed algorithm, LCOFI consumes less memory

to generate the frequent itemsets compared with the

Apriori algorithm and the Fp-growth algorithm

under the min_sup value of 50%, 70%, and 90%,

where the Fp-growth consumes less memory than

the Apriori algorithm under various min_sup. In the

same manner, we present the comparisons of

execution time and memory consumption among the

three algorithms using the adopted databases. Figs.

12-15 show how LCOFI outperforms in most

experiments with different values of min-sup and

these databases.

6. Conclusion

In this paper, a new algorithm for frequent

itemset mining is proposed that takes advantage of

the LCO algorithm's characteristics and the

operations proposed in it to deal with the bipartite

graph, which is used to minimize the logic

expressions and circuits. The algorithm proved that

the similarity between the binary representation of

transactional databases and the truth table of a

logical problem and the similarity between the

PBGs and the suggested binary representation of

itemsets led to an efficient algorithm for mining FIs

depending on bipartite graph representation and its

operations: XORing, ORing, ANDing, and the

inclusion property of LCOA. The experiment results

show that LCOFI reduces the consumption of time

and memory with various min_sup values on

different datasets compared with Apriori and Fp-

growth algorithms. The outperformance is gained

from many properties involved in LCOFI, such as:

• It required one database scan operation,

• It is not necessary to perform the operations

of prying the candidate itemsets apart.

• Complex data structures, such as hash tables

or long linked lists, are unnecessary.

• There is no need to apply complex

operations to joint k-itemsets to generate

(k+1)-itemsets.

• There is no need to perform a sorting

operation to keep items in an itemset in

chronological order.

• The counting of itemsets' supports became

no more than the counting of the number of

1s in a binary vector.

Different datasets were used to test the LCOFI.

These datasets have various characteristics, such as

the number of transactions, the average size of

transactions, the number of items, the density, and

the type, such as real or synthetic. These tests were

done to verify the LCOFI's scalability and tolerance

for the sparseness and length of the generated

itemsets.

As a future step, one can plan for LCOFI

modification to mine frequent patterns in different

application databases.

Conflicts of interest

The authors declare no conflict of interest .

Author contributions

The concept, method, formal analysis, validation,

references, data collection and original draft

preparation were all contributed by Oday Ahmed

Al-Ghanimi and Hussein K. Khafaji; the superviser.

Hussein K. Khafaji revised and edited the work.

Algorithms' implementation is accomplished and

obtaining the results are done by Oday Ahmed Al-

Ghanimi.

References

[1] N. F. Zulkurnain and A. Shah, “HYBRID: An

efficient unifying process to mine frequent

itemsets”, In: Proc. of 2017 IEEE 3rd

International Conference on Engineering

Technologies and Social Sciences (ICETSS), pp.

1–5, 2017, DOI:

10.1109/ICETSS.2017.8324140.

[2] M. A. Shouman, M. Aziz, A. H. N. Ahmed, and

N. Z. A. Fatah, “A Comparative Study of SQL

Based Approaches for Mining Association

Rules over Relational DBMS”, Egypt. Comput.

Sci. J., Vol. 34, No. 2, 2010.

[3] M. Al-Maolegi and B. Arkok, “An improved

Apriori algorithm for association rules”, ArXiv

Prepr. arXiv1403.3948, 2014.

[4] A. Dhabi, S. Jabri, Y. Balouki, and T. Gadi, “A

new method to select the interesting association

rules with multiple criteria”, Int. J. Intell. Eng.

Syst., Vol. 10, No. 5, pp. 191–200, 2017, doi:

10.22266/ijies2017.1031.21.

[5] W. A. Salman and S. B. Sadkhan, “Status and

Challenges of Frequent Itemsets and

Association Rules Mining Methods”, In: Proc.

of 2020 3rd International Conference on

Engineering Technology and its Applications

(IICETA), 2020, pp. 154–158,

DOI:10.1109/IICETA50496.2020.9318834.

[6] S. Singh and J. Singh, “Association rules and

mining frequent itemsets using algorithms”, Int.

J. Comput. Sci. Eng. Technol, Vol. 3, pp. 370–

373, 2012.

[7] W. X. gang, “A Summary of Research on

Received: December 3, 2022. Revised: February 21, 2023. 605

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

Frequent Itemsets Mining Technology”,

Procedia Comput. Sci., Vol. 131, pp. 841–846,

2018, DOI:

https://doi.org/10.1016/j.procs.2018.04.276.

[8] C. H. Chee, J. Jaafar, and I. A. Aziz, “FP-

NoSQL: An Efficient Frequent Itemset Mining

Algorithm Using the FP-DB Approach”, In:

Proc. of 2018 IEEE Conference on Big Data

and Analytics (ICBDA), 2018, pp. 80–86.

[9] R. Agrawal, T. Imielinski, and A. N. Swami,

“Association rules between sets of items in

large databases”, In: Proc. of ACM SIGMOD

Int. Conf. on Management of Data, Washington,

1993, pp. 207–216.

[10] R. Agrawal, H. Mannila, R. Srikant, H.

Toivonen, and A. I. Verkamo, “Fast discovery

of association rules”, Adv. Knowl. Discov. data

Min., Vol. 12, No. 1, pp. 307–328, 1996.

[11] D. Burdick, M. Calimlim, J. Flannick, J.

Gehrke, and T. Yiu, “MAFIA: A maximal

frequent itemset algorithm”, IEEE Trans.

Knowl. Data Eng., Vol. 17, No. 11, pp. 1490–

1504, 2005, DOI: 10.1109/TKDE.2005.183.

[12] M. J. Zaki and C. J. Hsiao, “CHARM: An

efficient algorithm for closed itemset mining”,

In: Proc of the 2002 SIAM International

Conference on Data Mining, 2002, pp. 457–473.

[13] M. J. Zaki and C. J. Hsiao, “Efficient

algorithms for mining closed itemsets and their

lattice structure”, IEEE Trans. Knowl. Data

Eng., Vol. 17, No. 4, pp. 462–478, 2005, DOI:

10.1109/TKDE.2005.60.

[14] V. Tiwari, V. Tiwari, S. Gupta, and R. Tiwari,

“Association rule mining: A graph-based

approach for mining frequent itemsets”, In:

Proc. of ICNIT 2010 - 2010 International

Conference on Networking and Information

Technology, 2010, pp. 309–313, DOI:

10.1109/ICNIT.2010.5508505.

[15] D. S. Kumar, N. Srinivasu, and S. S. R. P. Ch,

“Bipartite graph based frequent pattern mining

using maximum degree of a vertex”, Bulletin

Monumental, Vol. 22, No. 7, 2021.

[16] M. J. Islam, M. G. Hussain, B. Sultana, M.

Rahman, M. S. Rahman, and M. A. Rahaman,

“Simplifying the Boolean Equation Based on

Simulation System using Karnaugh Mapping

Tool in Digital Circuit Design”, GUB J. Sci.

Eng., pp. 76–84, 2020.

[17] H. G. Vu, N. D. Bui, and A. T. Nguyen,

“Performance Evaluation of Quine-McCluskey

Method on Multi-core CPU”, In: Proc. of 2021

8th NAFOSTED Conference on Information

and Computer Science (NICS), 2021, pp. 60–64.

[18] M. Bolton, Digital systems design with

programmable logic, Addison-Wesley

Longman Publishing Co., Inc., 1990.

[19] L. E. Frenzel Jr., Practical Electronic Design

for Experimenters, McGraw-Hill Education,

2020.

[20] N. J. Glauch, D. S. Choi, and G. Herman, “How

engineering students use domain knowledge

when problem‐solving using different visual

representations”, J. Eng. Educ., Vol. 109, No. 3,

pp. 443–469, 2020.

[21] N. Sharma and A. Singh, “K-partition model

for mining frequent patterns in large databases”,

Int. J. Comput. Sci. Eng., Vol. 4, No. 9, p. 1505,

2012.

[22] C. W. Kann, “Digital Circuit Projects: An

Overview of Digital Circuits Through

Implementing Integrated Circuits”, Getysburg

College Open Educational Resources, 2014.

[23] W. V Quine, “A way to simplify truth

functions”, Am. Math. Mon., Vol. 62, No. 9, pp.

627–631, 1955.

[24] E. D. Nugroho, “Development of Applications

for Simplification of Boolean Functions using

Quine-McCluskey Method”, Telematika, Vol.

18, No. 1, p. 27, 2021, doi:

10.31315/telematika.v18i1.3195.

[25] A. Y. Khedr, R. A. Ramadan, and S. M. A.

Magid, “QMR: QUINE-MCCLUSKEY for rule

minimization in rule-based systems”, Int. J.

Intell. Comput. Inf. Sci., 2012.

[26] R. K. Brayton, G. D. Hachtel, C. McMullen,

and A. S. Vincentelli, “Logic minimization

algorithms for VLSI synthesis”, Springer

Science & Business Media, Vol. 2, 1984.

[27] E. F. Ashmouni, R. A. Ramadan, and A. A.

Rashed, “Espresso for Rule Mining”, Procedia

Comput. Sci., Vol. 32, pp. 596–603, 2014.

[28] O. A. A. Ghanim and H. K. Khafaji, “A new

logic circuits optimization algorithm using a

bipartite graph”, Indonesian J Elec Eng &

Comp Sci, Vol. 99, No. 1, Month 2099: 1-1x,

Vol. 28, No. 3, pp. 1621–1632, 2022, DOI:

10.11591/ijeecs.

[29] Y. Rochd and I. Hafidi, “An Efficient

Distributed Frequent Itemset Mining Algorithm

Based on Spark for Big Data”, International

Journal of Intelligent Engineering and Systems,

Vol. 12, No. 4, 2019, DOI:

10.22266/ijies2019.0831.34.

[30] S. Rubaiee, M. Masud, R. Alroobaea, G. S.

Gaba, Z. Jian, and Z. Zhao, “An improved

association rule mining algorithm for large

data”, J. Intell. Syst., Vol. 30, No. 1, 2021.

[31] A. Frieze and M. Karoński, Introduction to

Random Graphs, Cambridge University Press,

Received: December 3, 2022. Revised: February 21, 2023. 606

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.49

2016.

[32] A. S. Asratian, T. M. J. Denley, and R.

Häggkvist, Bipartite Graphs and Their

Applications, Vol. 131, Cambridge university

press, 1998.

[33] J. V. D. Brand, “Bipartite matching in nearly-

linear time on moderately dense graphs”, In:

Proc. of 2020 IEEE 61st Annual Symposium on

Foundations of Computer Science (FOCS), pp.

919–930, 2020.

[34] “Frequent Itemset Mining Dataset Repository”,

http://fimi.uantwerpen.be/data/.

[35]Y. Zhang, W. Yu, Q. Zhu, X. Ma, and H. Ogura,

“Right‐ hand side expanding algorithm for

maximal frequent itemset mining”, Appl. Sci.,

Vol. 11, No. 21, pp. 1–18, 2021, doi:

10.3390/app112110399.

[36] L. Xu, “Improvement and Application of

Apriori Algorithm Based on Equalization”, In:

Proc. of 2019 IEEE Fourth International

Conference on Data Science in Cyberspace

(DSC), pp. 635–641, 2019, doi:

10.1109/DSC.2019.00104.

[37] C. Wu and H. Jiang, “Research on

Parallelization of Frequent Itemsets Mining

Algorithm”, In: Proc. of 2021 IEEE 6th Int.

Conf. Cloud Comput. Big Data Anal.

ICCCBDA 2021, No. 2018, pp. 210–215, 2021,

doi: 10.1109/ICCCBDA51879.2021.9442547.

[38] M. M. Hasan and S. Z. Mishu, “An Adaptive

Method for Mining Frequent Itemsets Based on

Apriori And FP Growth Algorithm”, In: Proc.

of 2018 International Conference on Computer,

Communication, Chemical, Material and

Electronic Engineering (IC4ME2), pp. 1–4,

2018, doi: 10.1109/IC4ME2.2018.8465499.

