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Abstract: Frequent itemsets (FIs) mining is the main challenge in analyzing association rules since the complexity 

of association rule mining is determined mainly by identifying all frequent itemsets. There are many approaches to 

FIs mining; each approach includes many algorithms, but there is a major weakness in the logic-design-based FIs 

approach because there is a limited number of methods for logic circuit or expression optimization, each of which 

suffers from some drawbacks that are transferred to the mining process when they are utilized for this purpose. We 

propose LCOFI, a new algorithm for frequent itemset mining based on the LCO algorithm, in this paper. LCOA is a 

new algorithm for logic circuit optimization. LCOFI utilizes the suggested operations for a bipartite graph in LCOA. 

The proposed algorithm is simple and efficient and supports a large number of input items. It scans the transaction 

database only once to construct the bipartite graphs of frequent 1-itemsets and avoids the generation of candidate 

itemsets. It does not require complex data structures such as trees and hash tables to validate the frequency of FIs. 

When applied to a variety of datasets with varying characteristics, the proposed algorithm, LCOFI, outperformed the 

Apriori and Fp-growth algorithms in all the experiments. 

Keywords: Data mining, Association rule, Frequent itemset, Bipartite graph, LCOA. 

 

 

1. Introduction 

One of the well-known steps in the process of 

knowledge discovery in the database, KDD, is data 

mining [1]. Mining association rules is one of the 

most important tasks of data mining [2, 3]. Due to 

the importance of association rules and their mining 

difficulties, many algorithms have been developed 

for AR mining. The Apriori algorithm is frequently 

utilized in discovering association rules, and most 

algorithms that are utilized to scan candidate 

itemsets depend on it [4]. The AR mining process 

can be divided into two steps; 1) mining all frequent 

itemsets and; 2) extracting trustworthy association 

rules from the mined frequent itemsets [5]. The 

essential step of association rules mining is frequent 

itemsets mining; it is NP-complete problem [6-8]. 

The problem of mining frequent itemsets was first 

proposed by R. Agrawal, T. Imielinski, and A. N. 

Swami [9]. There are several  FIs mining algorithms. 

These algorithms can be  divided into four 

approaches:  

 

• Apriori-based approach,  

• lattice-based approach, 

• graph-based approach, and 

• logic circuit design-based approach. 

 

In the first approach, R. Agrawal, H. Mannila, R. 

Srikant, H. Toivonen, and A. I. Verkamo [10] 

produced the Apriori algorithm, and then many 

algorithms are proposed for FIs mining derived from 

it. These algorithms are not entirely different from 

the state of the art algorithm, Apriori. The Apriori 

algorithm inspired many researchers to develop it or 

to design an algorithm that comes close to its 

properties.  

In the second approach, i.e., the lattice-based 

approach, D. Burdick, M. Calimlim, J. Flannick, J. 

Gehrke, and T. Yiu [11] produced MAFIA, a novel 
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algorithm for mining maximal frequent itemsets 

from a transactional database. When the maximal 

itemsets have been mined, all frequent itemsets can 

be derived from them. In the same approach, M. J. 

Zaki. [12] developed CHARM, an efficient 

algorithm for mining closed frequent itemsets, and 

[13] CHARM-L, an efficient algorithm for creating 

the closed itemset lattice (CIL).  

One of the main algorithms that depend on the 

graph principles is the FP-Growth algorithm. V. 

Tiwari, V. Tiwari, S. Gupta, and R. Tiwari [14] 

developed what so-called the FP-growth-graph 

algorithm, which organizes items for mining 

frequent itemsets using a graph rather than a tree or 

lattice. The advantage of using a graph is that each 

item only has one node which leads to less memory 

consumption. Kumar, Srinivasu, and Ch, N.D. [15] 

proposed graph-based frequent patterns mining 

approach that generates patterns without generating 

candidate itemsets unlike traditional approaches 

such as Apriori. The advantage of a graph-based 

algorithm is that it consumes less time of generating 

frequent patterns than traditional methods.  

Many researchers utilized the similarity between 

the binary representation of transactional databases 

and truth tables. In both these tables, 1 means the 

existence of an item in a  transaction of a 

transactional database or the truth value of a variable 

in a logical sum of product, SOP. This fact leads to 

the fourth approach, i.e., the logic circuit 

design/minimization-based approach,  which 

depends on the methods of logical 

circuit/expressions minimization to mine frequent 

itemsets or minimize the mined association rules. 

The algorithms in this approach do not achieve 

distinguished success because they inherit the 

drawbacks of the methods of the logic design or 

because they suffer from weak points resulting from 

the incomplete matching between the FI mining, 

FIM, problem and the logic circuit design. So let's 

consider the three most famous algorithms for logic 

circuit design, which are the Karnaugh map or K-

map [16], Quine-McCluskey Q-M [17], and 

Espresso [18], with the three algorithms that 

emerged from them to mine association rules, with a 

brief description of the drawbacks inhered from the 

former algorithms: 

 

• In order to enhance the digital logic circuit based 

on the truth table, the Karnaugh map, or K-map, was 

developed. K-map has flaws that have been 

discovered through numerous studies; it is difficult 

to use and implement as software [19]. Also, it is 

very unclear when a problem contains more than 

four variables [20]. Sharma and Singh. [21] 

proposed a K-Partition algorithm for frequent 

patterns mining which is an advancement in the 

traditional partition algorithm. This algorithm 

depended on the K map method of logic circuit 

design. The K-map-based association rule mining 

algorithms have the restrictions that they could only 

function effectively with a maximum of four 

laterals/items. A drawback of the K-map-based 

algorithm is that it is not effective in discovering all 

frequent itemsets with more than four literals/items.  

• The tabular or Quine-McCluskey  Q-M approach, 

the first substitute for K-Map, was created by 

Edward McCluskey and Willard Quine. The set of 

minimum prime implicants emitted by the output 

functions [22] is determined by a methodical 

process that starts with a truth table and concludes 

with it. Although the Quine McCluskey approach is 

amenable to automation as a computer program, it is 

inefficient in terms of execution time and memory 

usage, so that adding one additional literal will 

practically quadruple these two consequences of the 

reduction cost [23]. In conclusion, the Quine 

McCluskey method is far from understandable and 

visually appealing [24, 17], yet it is effective for a 

small number of input literals and output functions. 

Khedr, Ramadan, and Abdel-Magid [25] proposed a 

new algorithm Quine-McCluskey Rule (QMR) for 

association rule minimization in the dataset 

depending on Quine-McCluskey (Q-M) algorithm 

Logic circuits Optimization Technique. The 

drawbacks of this algorithm are that it deals with a 

limited number of inputs, and therefore the process 

of reducing the association rules is very expensive in 

terms of time and space.  

• Brayton et al. [26] created the ESPRESSO 

algorithm, which uses very few computer resources 

while providing excellent performance. Because 

ESPRESSO iterates to manipulate "cubes" 

representing product terms, its minimized output is 

not guaranteed to produce optimal minimization, in 

addition to its reliance on vector optimization, 

making it a loser in terms of visualization and ease 

of understanding [18]. Ashmouni, Ramadan, and 

Rashed. [27] proposed an approach for reducing 

association rules in the dataset depending on the 

espresso algorithm for rule minimization. A 

drawback of the espresso-based algorithm is that the 

rules resulting from this algorithm are not in the 

optimal minimization. 

 

The aim of this paper is to avoid the drawbacks 

of the algorithms that can be listed within the logic 

design-based approach for FIM by selecting suitable 

algorithm for logic design to be adapted for the FIM 

problem. 
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O. A. Al-Ghanim and H. K. Khafaji, 2022 [28] 

proposed LCOA, a novel algorithm that relies on 

bipartite graph properties and suggests graph 

operations to optimize logic circuits and expressions. 

This algorithm is easy to implement as a program; it 

can deal with an unlimited number of literals and 

variables; and it is simple to comprehend and 

visualize. 

To avoid the drawbacks of the algorithms that 

can be listed within the logic design-based approach 

for FIM, this paper presents a new algorithm to mine 

FIs depending on LCOA. 

The proposed algorithm will contribute to the 

FIM problem in the following directions:  

 

1. utilization of the similarity between FIM and 

logic design problems, which leads to 

empowering the logic circuit design-based 

approach by designing a new algorithm for FIM 

problem depending on LCOA. Solving similar 

problems with similar algorithms definitely 

reduces the design steps and complexity and 

provides enough duration to select a suitable 

algorithm of a given problem to be modified to 

manipulate another. 

2. The proposed algorithm scans the database only 

once by selecting the frequent 1-itemsets, and all 

the required operations, such as support counting 

and frequent k-itemsets generation, are 

accomplished on-the-fly, which helps maintain 

the memory consumption. 

3. The proposed algorithm does not need a special 

data structure such as hash trees or an FP-tree to 

generate and prune candidate itemsets, but it uses 

a bipartite graph to represent the itemsets. 

4. It lends itself to parallelism because each item in 

a database can be manipulated independently. 

This feature is not considered in this paper. 

5. The above characteristics ensure that the FIM’s 

speed can be accelerated by using a single 

computation machine or a parallel computing 

machine. 
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D 1 0
 

Figure. 1 Representation of the PBG ABC'D' 

The proposed algorithm will be explained in 

detail in section 3. The organization of the paper is 

given as follows: the preliminaries of this research 

are given in section 2. The explanation of the 

proposed algorithm is illustrated in section 3. The 

experiment datasets are given in section 4. The 

results and discussion are illustrated in section 5 and 

the conclusion of this research work is given in 

section 6. 

2. Preliminaries 

In this section, we discuss basic concepts related 

to the proposed algorithm. These concepts include 

the definition of frequent itemsets, the logic circuit 

optimization algorithm, LCOA, the bipartite graph, 

and the product bipartite graph, PBG. The purpose 

of presenting these concepts is their role in 

designing the proposed algorithm to mine frequent 

itemsets that are hidden in transaction databases. 

2.1 Frequent itemset mining 

Let I = {I1,..., In} be a collection of literals, 

called items. Let D be a collection of transactions, 

where each transaction T is a set of items such that 

T I and each transaction are associated with a 

unique identifier called TID. All items included in 

the transaction are listed in chronological order. An 

itemset A is a set of items in I and is known as a k-

itemset if it contains k items from I. An itemset A is 

regarded as a frequent itemset if its occurrences  

(support) in D are greater or equal to a min_sup 

threshold that is determined by the user, and it's 

regarded as an infrequent itemset otherwise [29, 30]. 

2.2 Bipartite graph 

In the graph theory field, a bipartite graph (or 

bigraph) is a graph whose nodes' set, N, can be 

partitioned into two disjoint and independent sets; 

N0 and N1. Every edge e in the edge set E links a 

node in N0 to one node in N1 [31]. The node sets N0 

={n01, ...n0n} and N1={n11... n1m} are the mutually 

exclusive vertices sets and they are called the 

graph’s parts [31, 32]. E ⊂ N0 × N1 is a set of edges 

that connect vertices between two partitions[32, 33]. 

For example, Fig. 1 presents a bipartite graph with 

two sets of vertices N0={A, B, C, D} and N1={0, 1} 

where  E={(A, 1), (B, 1), (C, 0), (D, 0)}, in addition 

to its biadjacency matrix [31] which includes four 

ones indicating the elements of E.  

2.3 Product bipartite graph (PBG) 

O. A. Al-Ghanim and H. K. Khafaji [28] 
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produced what is called "PBG." PBG is a term in an 

SOP for logical expression constructed as a bipartite 

graph. Therefore, the PBG graph consisted of two 

sets of nodes {0, 1} and the set of literals in the 

expression. For example, Figure 1 depicts the 

representation of the term ABC’D’, i.e., the 13th 

entry of a truth table, such that the output of a logic 

circuit or expression is 1 when the value of A and B 

is 1 and the value of C and D is 0. 

2.4 LCO algorithm 

The logic circuits optimization algorithm 

consists of the following general steps [28]: 

 
Step#1: Depending on the truth table or the 

number of true combinations construct 

the SOP expression. 

Step#2: Construct the biadjacency matrices of 

each PBG in the SOP expression. 

Step#3:Select two PBGs of the SOP expression 

PBGi and PBGj such that the number of 

edges of PBGi is less than or equal to the 

number of edges of PBGj, (|E(PBGi)| ≤ 

|E(PBGj)|), (the inclusion property), and 

they have only one different edge. The 

process of elimination occurs in the 

larger PBG with keeping the resulting 

PBG and the smaller PBG, or the 

elimination process occurs on both PBGs 

in the case of equality and keeping the 

resulting PBG and neglecting the main 

PBGs.  

Step#4:Repeat step 3 until the SOP is optimized. 

 

In [28] the researchers suggested the XORing, 

ANDing, and ORing operations that can be done on 

the bipartite graphs of the PBGs. The proposed 

algorithm for mining frequent itemsets in this paper 

utilizes the inclusion property of two PBGs and 

these suggested logical operations are dedicated to 

PBGs in LCOA.  

3. The proposed algorithm 

In this section, we describe the proposed 

algorithm with examples. The proposed algorithm is 

an LCOA-based frequent itemset mining algorithm; 

for simplicity, it is abbreviated as LCOFI. It deals 

with three types of bipartite graphs: 

 

• transaction database bipartite graphs, 

•  itemset-TIDset bipartite graphs, and  

• itemset representation bipartite graphs.  

 

Table 1. Transaction database 
TransactionTID Itemsets 

TID1 a,b,c,d,e 

TID 2 b,c,d,e 

TID 3 b,c,e 

TID 4 b,c,d 

TID 5 a,b 

TID 6 

 

a,b,c, e 

 

 

 
Table 2. Binary itemized representation of transaction 

database 

Tid 

Item 

1 2 3 4 5 6 

a 1 0 0 0 1 1 

b 1 1 1 1 1 1 

c 1 1 1 1 0 1 

d 1 1 0 1 0 0 

e 1 1 1 0 0 1 

 

 

 
Figure. 2 Transaction database bipartite graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 3 bipartite graph of {a,b,c}↔{1,6} 
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Table 3. FIs mining processes and their counterpart in LCO algorithm 

Seq. Process Suggested LCOA Operation 

1 Selecting two k-itemsets i and j to generate a (k+1)-

itemset such that i and j have only one different 

item. 

Using of equality inclusion property of PBGs 

depending on XORing of two PBGs 

2 Joining of the selected two k-itemsets i and j to 

generate a (k+1)-itemset   

ORing of the itemset representation bipartite graph 

of itemset i and j using PBG ORing  

3 Complex procedures to verify the frequentness of 

the generated (k+1)-itemset. 

ANDing of itemset-TIDset bipartite graphs of i and j 

itemsets and compute the fun-out of the (k+1)-

itemset. 

 

 

 
Figure. 4 Abstracted bipartitegraph of {a,b,c}↔{1,6} 

 

 
Figure. 5 SOP representation of ABC itemset using 

bipartite graph 

 

For more explanation, consider Table 1, which 

includes an illustrative database consisting of six 

transactions and five items. Table 2 represents an 

itemized binary representation of the database. The 

first row indicates that item a is available in TIDs 1, 

5, and 6. Fig. 2 presents a bipartite graph 

representation of the database. The notation 

{itemset}↔{TIDset} will be used in this paper, 

which means that the "itemset" is included in the 

transactions listed in the "TIDset." Consider the 

itemset {a, b, c}↔{1, 6}, which can be represented 

as a second type of bipartite graph (Fig. 3), or 

abstractly as Fig. 4. Indeed, the itemset ABC is 

similar to a term in an SOP of logic expression and 

can be written as ABCD'E', which means that the 

items a, b, and c exist in a transaction or an itemset 

but d and e are not available. This leads to the third 

type of bipartite graph in this context, as shown in 

Fig. 5. 

Generally, the FIs mining algorithms require the 

processes listed in Table 3. The implementation of 

these processes varies from one algorithm to another. 

So, Table 3 includes the suggested operation for 

each process depending on LCOA to be adopted in 

the proposed algorithm LCOFI. 

For more explanation, reconsider the database of 

Table 1. Suppose that the F3, the set of frequent 3-

itemsets,  includes BCD and BCE according to 

min_sup value equals 2. Their PBGs graph is 

presented in Fig. 6. They are selected for the next 

generation to generate BCDE because they include 

only one different item. Determining the validity of 

these itemsets in LCOFI will depend on the XORing 

of their PBGs. The resultant PBG includes two 

items connected to the existing node which indicates 

the validity of the two itemsets, BCD and BCE, to 

play a role in the next generation. To accomplish the 

joint process to generate the itemset BCDE, a PBG 

ORing operation is required as shown in Fig. 6. To 

specify the frequentness of the Itemset BCDE, the 

itemset-TIDset bipartite graphs of BCD and BCE 

are ANDed as shown in Fig. 7. 

The number of remaining transactions represents 

the support of the BCDE, i.e., 2 transactions 1 and 2. 

From the implementation point of view, the BPG is 

represented in abstracted PBG, recall Figs. 4 and 6, 

because all items have the same connections. 

Therefore the support counting of an itemset in 

LCOFI is just its fun-out in the graph. 

After this preliminary information, it is possible 

now to present LCOFI. Algorithm 1 represents the 

general structure of the LCOFI algorithm. To 

provide more explanation, Table 4 presents a 

description of the functions and variables used in the 

proposed algorithms in addition to the explanation 

of the most steps in this paper. 

The input for the algorithm is a transactional 

database, D. D is stored as binary values: 1 for an 

item presented in a transaction and 0 if the item is 

not presented. The second input is the minimum 

support, min_sup, while the output is the set of all  
 

A 

B 

C 

1 exist 

0 not exist 

D 

E 

ABC 

1 

6 
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Figure. 6 XORing and ORing of two PBGs: Keeping the difference and union respectively 

 

 

 

 

 

 

 

 

 

Figure 7. ANDing operation of two PBGs to validate the frequentness of the generated PBG 
 

 

frequent itemsets. Steps #1 and #2 are initialization 

steps. Step #3 is a call for an algorithm to generate 

1-itemsets, it is called construct-1-itemsets(). The 

construct-1-itemsets() algorithm is presented in 

Algorithm 2. Step #4 represents a call for an 

algorithm to generate 2-itemsets; it is called 

construct-2-itemsets (F1). Construct-2-itemsets() are 

presented in Algorithm 3. Step #5 is the iteration 

process to call the construct-k-itemset(FK-1) 

presented in Algorithm 4. This process is repeated to 

generate a set of all frequent itemsets, as shown in 

Steps #8 and #9. Step #11 will add the previously 

mined frequent itemsets to the set of frequent 

itemsets and return the result to the caller. 

 

Algorithm 1. The proposed algorithm, LCOFI 

Input:transaction dataset D; // Binary Representation 

Min_sup; // ( minimum support) 

Output: Frequent-itemsets // set of frequent itemsets. 

{ 

1. F1={}; frequent-itemsets={}; 

2. K=4; 

3. F1=construct-1-itemsets(D); 

4. F2= construct-2-itemsets(F1); 

frequent-itemsets=frequent-itemsets  F1  F2; 

5.  while   Fk-1≠{}  

6. { 

7.       Fk=construct-k-itemset(Fk-1); 

8.       frequent-itemsets=frequent-itemsets  Fk ; 

9.       k=k+1; 

10. } 

11.   return frequent-itemsets; 

} 
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Table 4. Description of the functions and variables used in the proposed algorithms 
Seq. Name of function or 

variable 

Type description 

1 D database Binary transaction database 

2 Min-sup variable Minimum support threshold 

3 Frequent-itemsets variable Holds all the mined FIs 

4 F1 variable Stores frequent items, i.e., frequent 1-itemsets 

5 F2 variable Stores frequent items, i.e., frequent 2-itemsets 

6 Fk variable Stores frequent items, i.e., frequent k-itemsets, (K>2) 

7 f variable Represents an itemset in Fn where n>0 

9 Construct- 1-itemsets Function To generates 1-itemsets 

10 Construct-2-itemsets Function To Generates 2-itemsets 

11 Construct-k-itemsets Function Generates k-itemsets 

12 K variable Loop control variable and it represents the size of an itemset. 

13 f-PBG variable Holds PBG of f as a biadjacency matrix 

14 f-PBGitem variable Holds the item of the PBG of f. 

15 f-PBGi variable Holds PBG of ith f as a biadjacency matrix 

16 Anding, oring, and 

xoring 

functions Functions to do two matrices' AND, OR, or XOR operation 

respectively. 

17 Fun-out function To count number of links of emerged from a node used to 

calculate the support of an itemset. 

18 inclusion function To determine the equality-inclusion of two PBGs, i.e., 

itemsets. 

 

 

3.1 1-itemsets PBGs construct 

The pseudo-code of the algorithm to generate 1-

itemsets is presented in Algorithm 2. The input for 

Algorithm 2 is a transactional dataset D and the 

min_sup threshold, while the output is a set of 

frequent 1-itemsets, F1. It scans the transaction 

database D only once by constructing a bipartite 

graph, PBGi, and then computes the support count 

of each item i by calculating its fun-out of PBGi. 

This process is repeated to construct F1, the list of 

frequent 1-itemsets, according to the min_sup 

threshold. 

 

Algorithm 2. Construct-1-itemsets 

Input    :  transaction dataset D;  

         min-sup; 

Output :  F1 

1. { 

2.            F1={}; 

3.            For each item  i  in D  

4.            {     

5.               construct PBGi; 

6.               Support(i)=fun-out(i) ; 

7.               If ( Support(i) <=  min-sup) 

8.                          F1= F1{i}; 

9.           } 

10.            return F1; 

11.   } 

 

Step #2 is the initialization step. Step #5 

constructs the PBGi for each item i in D as a 

bipartite graph. The bipartite graph in this context 

includes a set of transactions in database D, 

including i, and a set of items, which includes one 

item i in this step. Simply, the PBG in this context 

will be expressed as {set of items}↔{set of 

transactions}, for example {a}↔{1, 5, 6} means 

that the item "a" is available in transactions 1, 5, and 

6. For more explanation, consider Fig. 8. 
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Figure 8. 1-itemset/PBG representation 

 

The two sets, i.e., set of items and set of 

transactions, in PBG are joined by edges which 

represent the relation "the item i is available in the 

specified transaction set". These edges represent the 

occurrences of the items in the transaction database, 

therefore, the number of edges represents the fun-

out which equals the support of item i according to 

the entered min_sup, this process is accomplished in 

step#6. The number of fun-out in the transaction set 

is the support of each item i in D, which is computed 

and checked according to the min_sup threshold in 

step#6. In steps #7 and 8, the item i will be added to 

the frequent 1-itemsets, F1list, which is returned to 

the caller when the iteration terminates. 

 

Example 1. Re-consider the database shown in 

Tables 1, 2, and Fig. 2. It can be equivalently 

represented as a bipartite graph, as shown in Table 2. 

which can be described as: 

G=(V,E) where V={V1={a, b, c, d, e}, 

V2={1,2,3,4,5,6}} and E={(a, 1), (a, 5), (a, 6), (b, 1), 

(b, 2), (b, 3), (b, 4), (b, 5), (b, 6), (c, 1), (c, 2), (c, 3), 

(c, 4), (c, 6), (d, 1), (d, 2), (d, 4), (e, 1),  (e, 2), (e, 3), 

(e, 6)}. For simplicity and abstraction, the grouping 

of items will be used to represent the bipartite graph 

as follows E={({a}↔{1, 5, 6}), ({b}↔{1, 2, 3, 4, 5, 

6}, ({c}↔{1, 2, 3, 4, 6}), ({d}↔{1, 2, 4}), 

({e}↔{1, 2, 3, 6})}. Suppose that the minimum 

support is 33%, i.e., ≈ 2 out of 6 transactions of the 

datasets presented in Tables 1 and 2. Consider the 1-

frequent  itemset presented in Table 2. The fun-out 

of {a} is three due to the availability of the links 

directed to the set of transactions {1, 5, 6}and this 

value is greater than 2, hence {a} is regarded as a 

frequent 1-itemset. In the same manner,  the 

construction of  PBGs and support counting is 

accomplished for the rest of the items which results 

in F1={a, b, c, d, e}. These items have 3, 6, 5, 3, and 

4 support counts respectively. 

3.2 2-itemsets BPGs construct 

After generating the frequent 1-itemsets 

presented in section 3.1, the next step is generating 

2-itemsets depending on the contents of  F1. 

Algorithm 3 shows the process of generating 

frequent 2-itemsets from frequent 1-itemsets 

depending on the XORing, ORing, and ANDing 

operations proposed for PBGs.  

Step #4 picks the first frequent 1-item from the 

input F1 list. Step#7 makes the ORing operation of 

the two frequent 1-itemsets, two items, to generate a 

2-itemset, i.e., it takes the first 1-item, i.e., (f-PBG 

represented as a bipartite graph) from the F1 list with 

each of the rest of the list items, i.e., (fi-PBG) using 

the OR operation. Step#8 performs the ANDing 

operation of two tidlists of the combined frequent 1-

itemset (f-PBG) from the ORing operation to find 

the tidlist of the 2-items, then the fun-out is 

computed to specify the min_sup of the generated 2-

itemset. The number of fun-out in the (f-PBG) 

according to the itemset representation bipartite 

graph is the support of (f-PBG), which is computed 

and checked according to the min_sup threshold, 

this process is accomplished in step#9. In Step#10 

the frequent 2-itemset will be added to the F2 list. 

The above steps are repeated to construct the rest of 

the frequent 2-itemsets F2. For more explanation 

consider Fig. 9. 

 

Algorithm 3. Construct-2-itemsets(F1) 

Input: F1 

Output: F2 

1. { 

2.   While F1≠{} 

3.   {  

4.      remove f from F1 

5.      for( i=1; length (F1)>0; i++) do 

6.     { 

7.          f-PBGitem =oring(f-PBGitem, fi-  PBGitem); 

8.          f-PBG=anding(f-PBG, fi-PBG ); 

9.          if (fun-out (f-PBG)>=min-sup) 

10.                 F2=   F2f-PBG 

11.    }// for 

12.  }// while 

13.  return F2 

14. } 

 

The ORing of the PBG template and b PBG 

template, (100000) OR (010000), implies {a, b} 

PBG template, i.e., (110000).  The ANDing of a and 

b PBGs, (100011) and (111111), result in (100011), 

which means ({a, b}↔{1, 5, 6}). 

Consider example 1 and the following frequent 

1- itemsets, F1 list generated from the previous step 

in section 3.1 which are F1={a, b, c, d, e}. Fig. 9 

includes steps of constructing PBGs for two sets of 

frequent 1- itemsets as sub bipartite graphs from the 

F1 list presented in Table 2. To generate frequent 2-  
 

     Tid 

Item 

1 2 4 4 5 6 

a 1 0 0 0 1 1 a 

1 

6 

5 
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Figure. 9 ORing of a and b item-template and their PBGs ANDing 

 

 

 

 

 

 

 

 

 

 

 
Figure. 10 ORing {a,b} and {a,c} item-template and their PBGs ANDing 

 

itemset depending on the OR and AND operations 

proposed for PBGs. Let's trace the process of 

generating a frequent 2- itemset shown in Fig. 9. 

Pick {a} as the first item from F1 with each item 

of {b, c, d, e}. This process can be described simply 

as the combination of items by making OR 

operation template, i.e., ({a, b},{a, c},{a, d},{a, 

e},{b, c},{b, d},{b, e},{c, d},{c, e},{d, e}) and 

making AND operation of the transaction TID lists, 

i.e., the join of the itemsets ({a},{b}) is {1, 5, 6} 

will be used to represent the bipartite graph as 

follows: E={({a, b}↔{1, 5, 6}),({a, c}↔{1, 6}), 

({a, d}↔{1}), ({a, e}↔{1, 6}), ({b, c}↔{1, 2, 3, 4, 

6}), ({b, d}↔{1, 2, 4}),({b, e}↔{1, 2, 3, 6}), ({c, 

d}↔{1, 2, 4}), ({c, e}↔{1, 2, 3, 6}), ({d, e}↔{1, 

2}). The fun-out of {a, b} is three due to the 

availability of the links directed to the set of 

transactions {1, 5, 6} and this value is greater than 2, 

hence {a, b} is regarded as a frequent 2-itemset, but 

the fun-out of {a, d} is one and this value is less 

than 2, hence {a, d} is regarded as an infrequent 

itemset. In the same manner, the construction of  

PBGs and support counting is accomplished for the 

rest of the items which results in F2=({a, b},{a, 

c},{a, e},{b, c},{b, d},{b, e},{c, d},{c, e},{d, e}) 

are frequent itemset. These itemsets have 3, 2, 2, 5, 

3, 4, 3, 4, and 2 support counts respectively. 

3.3 K-itemset construct algorithm 

The robustness and efficiency of LCOFI appear 

in this stage of  FIs mining which depends on the 

properties of LCOA. The XORing, ORing, and 

ANDing are the main operations in LCOFI. After 

generating frequent 2-itemsets from frequent 1-

itemsets. The next step includes generating frequent 

k-itemsets depending on the contents of the F2 list 

     Tid 

Item 

1 2 3 4 5 6 

a 1 0 0 0 1 1 

     Tid 

Item 

1 2 3 4 5 6 

b 1 1 1 1 1 1 

Tid     Tid 

Item 

1 2 3 4 5 6 

a, b 1 0 0 0 1 1 

    It   Item a b c . . . 

a 1 0 0 0 0 0 

    Item a b c . . . 

b 0 1 0 0 0 0 

    Item a b c . . . 

a, b 1 1 0 0 0  

     Tid 

Item 

1 2 3 4 5 6 

a,b 1 0 0 0 1 1 

     Tid 

Item 

1 2 3 4 5 6 

a,c 1 0 0 0 0 1 

     Tid 

Item 

1 2 3 4 5 6 

a,b,c 1 0 0 0 0 1 

    It   Item a b c . .  

a,b 1 1 0 
 

  

    It   Item a b c . .  

a,c 1 0 1 
 

  

    It   Item a b c . .  

a,b,c 1 1 1 
 

  

a

, 

1 

5 

6 

b 
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2 

3 

4 

5 

6 

a, b 

1 

5 

6 

= a,b 

 

1 

5 

6 

a,c 

1 

6 

a,b,c 

1 

6 

Equality Inclusion 

Itemset 

Representation 

graph ORing and  

PBG ANDing 
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which contains all frequent 2-itemsets. The input of 

Algorithm 4 is a set of frequent (Fk-1) itemsets, while 

the outputs are a set of frequent (k-itemset). Steps #5 

to #7 are in the same manner as the previous steps 

described in Algorithm 3, which will be used in the 

process to generate a frequent k-itemset. In step#10 

the equality inclusion operation of  LCOA will be 

used for this purpose as illustrated in  Fig. 7. In 

step# 11  the algorithm selects two sets of frequent 

(k-1)-itemsets that have the equality inclusion 

property in such a way that they contain the same 

items except one item is different, for example, 

suppose that {a, b, c},{a, b, d} are two sets of 

frequent 3-itemsets that the items {a},{b} of two 

sets is the same itemsets, but items {c} and {d} are 

one different them, hence, the combination of two 

itemsets is {a, b, c, d}. Additionally, if the two 

PBGs have the equality inclusion property shown in 

step#12. Step# 14 includes combining the items 

represented as a bipartite graph by the OR operation 

template, i.e., ( fi-PBG OR fj-PBG) to generate k-

itemsets. Step# 15 make the AND operation of two 

tidlists of the combined frequent (Fk-1-itemset ) from 

the OR operation to find the tidlist of the (k-items). 

Step#16 the support counting of the k-itemset is 

computed by fun-out of the item template assigned it 

and checked according to the min_sup threshold. In 

step#17 the frequent k-itemsets will be added to Fk, 

the list for frequent k-itemsets.These steps are 

repeated to find the rest frequent k-itemset, where 

k=3. Step#20 increases k by one to generate the next 

level of frequent itemsets. The frequent itemsets will 

be added to the set of frequent itemsets which are 

returned to the caller.  

 

Algorithm 4. Construct k-itemsets(Fk-1) 

2. Input: Fk-1 

3. Output:  frequent k-itemsets 

4. { 

5.   While(Fk-1≠{} )   do 

6.    { 

7.        Remove fi from  (Fk-1) 

8.        For (j=1 to length (Fk-1); j++) do 

9.        { 

10. //inclusion function of LCOA- Equality inclusion 

11.Boolean  inclusionResult= inclusion(f-PBG, fj-

PBG); 

12.           If (inclusionResult)  

13.           { 

14.           f-PBGitem= fi-PBGitem OR  fj-PBGitem; // 

ORing the items templates 

15.          f-PBG=anding(f-PBG); 

16.          if (fun-out (f-PBG) >=min-sup) // Support 

counting 

17.                Fk= Fkf -PBG; 

18.             } if 

19.       }//for 

20.        k=k + 1; 

21.     } while 

22. }// k-itemsets 

 

For more explanation, consider Fig. 10. consider 

the following frequent 2-itemsets, F2 list generated 

from the previous step which are F2=({a, b}, {a, c}, 

{a, e}, {b, c},{b, d}, {b, e}, {c, d}, {c, e}, {d, e}). 

To give a full explanation, Recall example 1 and 

consider Figure 10 which includes steps to construct 

PBGs for two sets of frequent 2- itemsets as a sub 

bipartite graph from the F2 list presented in section 

3.2.  

To generate frequent 3- itemset depending on 

the ORing operation the template ANDing operation, 

and the quality inclusion operation proposed for 

PBGs. Let’s trace the process to generate a frequent 

3-itemset shown in Fig. 10. Pick {a, b} as the first 

item from F2 with each item of ({a, c}, {a, e}, {b, c}, 

{b, d}, {b, e}, {c, d}, {c, e}, {d, e})}. The equality 

inclusion operation will be applied to two PBGs 

from F2 in this process. The sets {a, b} and {a, c} 

have the equality inclusion property, which includes 

only one item different is {b} and {c}. This process 

can be described simply as the combination of items 

will be used to represent the bipartite graph as 

follows: E={({a, b, c}↔{1, 6}),({a, b, e}↔{1, 6}), 

({a, c, e}↔{1, 6}), ({b, c, d}↔{1, 2, 4}), ({b, c, 

e}↔{1, 2, 3, 6}), ({b, d, e}↔{1, 2}), ({c, d, e}↔{1, 

2})}. The fun-out of {a, b, c} is 2 due to the 

availability of the two itemsets link directed to two 

of transactions 1 and  6. This value is equal to 2, 

hence {a, b, c} is regarded as a frequent 3-itemset. 

In the same manner, the construction of  PBGs and 

support counting is accomplished for the rest of the 

items which results in F3= ({a, b, c}, {a, b, e}, {a, c, 

e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}) are 

frequent itemset. These items have 2, 2, 2, 3, 4, 2, 

and 2 support counts respectively. 

For the transaction database mentioned in Table 

1 contains a frequent 4- itemset according to the 

min_sup threshold. Consider Fi. 5which shows the 

process generates a frequent 4-itemset depending on 

the contents of the F3 list is presented in the previous 

step. 

To generate a frequent 4-itemset, trace the same 

steps to generate a frequent 3-itemsets as shown in 

Algorithm 4. The {a, b, c },{a, b, e} are two sets of 

frequent 3- itemsets generated from the previous 

step. These sets include only one item different is 

{c} and {e}. This process can be described simply 

as the combination of items that will be used to  
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Figure. 11 ORing {a, b, c} and {a, b, e} item-template and their PBGs ANDing 
 

represent the bipartite graph as follows: E={({a, b, c, 

e}↔{1, 6}), ({b, c, d, e}↔{1, 2})}. The fun-out of 

{a, b, c, e} and {b, c, d, e} are two due to the 

availability of the two itemsets link directed to the 

set of transactions, and the support of two itemsets is 

2, hence {a, b, c, e} and {b, c, d, e} are regarded as 

frequent 4-itemset. For example, 1 mentioned in 

section 3.1 the final result is a set of all frequent 

itemsets generated in database D as output are ({a}, 

{b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, e},{b, c}, {b, 

d},{b, e}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, b, e}, 

{a, c, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a, 

b, c, e}, {b, c, d, e}). 

4. Experiments datasets 

Experiments were carried out on an Intel(R) 

Core(TM) i5-5300U CPU running at 2.30 GHz, 8 

GB of memory, and a PC running Windows 10. The 

algorithm was implemented using Python. The 

experiments indirectly pointed to memory utilization 

according to the used dataset and min_sup values. It 

is well known that the lower value of min_sup leads 

to the largest number of FIs, in addition to the 

increment in execution time and memory 

consumption. The experiments are executed by 

using four typical datasets, such as chess, 

mushrooms, T10I4D100K, and T40I10D100K. To 

better test and analyze the performance of the 

algorithm, four different types of public data sets are 

used, which have obvious differences in the amount 

of data, transaction width, number of items, 

sparseness, and so on. The data sets used in the 

experiments are of two types; real and synthetic 

public test datasets commonly used in association 

algorithm research, which are publicly available in 

the frequent itemset mining implementations 

repository [34]. The characteristics of this dataset 

are shown in Table 5. 

5. Results and discussion 

This section deals with the results related to 

LCOFI and also comparative analyzes of the results 

with that of the Apriori and FP-Growth algorithms 

using different four experiments to generate frequent 

itemsets depending on execution time and memory 

usage. The results presented in this paper were 

obtained from the Python authors' implementation 

of the apriori and FP-growth algorithms and are 

fully consistent with the results in the references 

[35-38] related to these algorithms. The results are 

presented in tables as follows: 

Table 6 presents the number of frequent itemsets 

hidden in the chess dataset using min_sup of 40%, 

50%, 60%, 70%, 80%, and 90%, which are 979582, 

32273, 28173, 24401, 196, and 13 respectively. 

These FIs numbers are for the Apriori, Fp-growth, 

and LCOFI. If the min_sup value is less than 40%, 

then a huge number of frequent itemsets will be 

generated, increasing the execution time of these 

algorithms and memory consumption. It is clear that 

the number of frequent itemsets increases 

dramatically when the value of the min_sup 

threshold decreases, i.e., the lower value of min_sup 

leads to the largest number of FIs. 

Table 7 presented the total of frequent itemsets 

using mushroom dataset and different min_sup 

values. The results in Table 7 explain the total of 

frequent itemsets of mushroom dataset under 

min_sup of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80%, 90%, and 100% is 342869, 12248, 1867, 304, 

17, 9, 5, 5, 4, and 1 respectively. 

Using the T10I4D100K dataset and various min 

sup values ranging from 1% to 9% of the dataset 

size, Table 8 shows the total number of frequent  
 

     Tid 

Item 

1 2 3 4 5 6 

a,b,c 1 0 0 0 0 1 

     Tid 

Item 

1 2 3 4 5 6 

a,b.e 1 0 0 0 0 1 

     Tid 

Item 

1 2 3 4 5 6 

a, b, c, e 1 0 0 0 0 1 

    It   Item a b c . . . 

a, b, c 1 1 1 0   

    It   Item a b c . . . 

a,b,e 1 1 0 0 1  
    It   Item a b c . . . 

a,b,c,e 1 1 1 0 1  

Equality Inclusion 

Itemset 

Representation 

graph ORing and  

PBG ANDing 

 

 

= 
a,b,c 

1 

6 

a, b,c,e 

1 

6 

a,b,e 

1 

6 
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Table 5. Dataset characteristics 
Dataset Name No.of Items No. of Transactions Dataset Type Size(KB) 

Mushroom 120 8124 Real /very dense 335 

Chess 76 3196 Real/very dense  558 

T10I4D100K 1000 100000 Artificial/sparse 5,774 

T40I10D100K 1000 100000 Artificial/sparse 18,768 

 

 

Table 6. Total of frequent itemset with different min_sup values under the chess data set 

             Min_sup 

Dataset       

40% 50% 60% 70% 80% 90% 

Chess 979582 32273 28173 24211 196 13 

 

 

Table 7. Total of frequent itemset with different min_sup values under the mushroom data set 

             Min_sup 

Dataset       

10% 20% 30% 40% 50% 60% 70% 80% 90%  100

% 

Mushroom 342869 12248 1867 304 17 9 5 5 4 1 

 

 

Table 8. Total of frequent itemsets with different min_sup values under the T10I4D100K dataset 

             Min_sup 

Dataset       

1% 2% 3% 4% 5% 

 

6% 7% 8% 9% 10% 

 T10I4D100K 384 155 60 26 10 4 2 0 0 0 

 

 

Table 9. Total of frequent itemsets with different min_sup values under the T40I10D100K dataset 

             Min_sup 

Dataset       

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

T40I10D100K 24732 2273 780 430 315 283 183 137 110 82 

 

 

 
                                             (a)                                                                                        (b)   

Figure. 12 Shows a comparative graph of three algorithms such that the line graph: (a) execution time using the chess 

dataset, while the bar graph and (b) memory usage using the chess dataset 
 

itemsets. The findings in Table 8 give 384, 155, 60, 

26, 10, 4, 2, 0,0, and 0 as the total number of 

frequent itemsets of the T10I4D100K dataset under 

min sup of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 

and 10%, respectively. Itemsets are not available 

when the min sup is larger than or equal to 8% since 

there are no FIs with a high support value in this 

sparse dataset. The presence of rare items, as well as 

the fact that the shortest transaction is 4 items long 

and the average transaction length is 37, could be 

attributed to this phenomenon. 

The results in Table 9 explain the total of 

frequent itemsets of T40I10D100K dataset 

undermin_sup 1%, 2%, 3%, 4%, 5%, 6%, 7%,  
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                                             (a)                                                                                              (b) 

Figure. 13 A comparative graph of three algorithms such that the line graph: (a) execution time using mushroom dataset, 

while the bar graph and (b) memory usage on mushroom dataset 
 

 
                                                    (a)                                                                                   (b)    

Figure. 14 A comparative graph of three algorithms such that the line graph: (a) execution time on T10I4D100K dataset, 

while the bar graph and (b) memory usage on T10I4D100K dataset 
 

 
                                                  (a)                                                                                         (b)    

Figure. 15 A comparative graph of three algorithms such that the line graph: (a) execution time on T40I10D100K dataset, 

while the bar graph and (b) memory usage on T40I10D100K dataset 
 

8%,9% and10% are 24732, 2273, 780, 430, 315, 

283,183, 137, 110, and 82 respectively. This dataset 

is more sparse than mushroom in addition to the fact 

that it contains more than 50% of the items with a 

very low number of occurrences. 

Fig. 12(a) shows a comparative line graph of 

execution time for the Apriori, Fp-growth, and 

LCOFI algorithms on the chess dataset. The 

algorithms' parameters are various min_sup values 

and the chess dataset. LCOFI outperforms the 

Apriori algorithm and the Fp-growth algorithm 

when the min_sup value is 50%, 70%, or 90%, but 

the Fp-growth algorithm is better in terms of 

execution time than the Apriori algorithm. Fig. 

12(b) shows a comparative bar graph of memory 

usage for three algorithms on chess dataset. The 
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proposed algorithm, LCOFI consumes less memory 

to generate the frequent itemsets compared with the 

Apriori algorithm and the Fp-growth algorithm 

under the min_sup value of 50%, 70%, and 90%, 

where the Fp-growth consumes less memory than 

the Apriori algorithm under various min_sup. In the 

same manner, we present the comparisons of 

execution time and memory consumption among the 

three algorithms using the adopted databases. Figs. 

12-15 show how LCOFI outperforms in most 

experiments with different values of min-sup and 

these databases. 

6. Conclusion 

In this paper, a new algorithm for frequent 

itemset mining is proposed that takes advantage of 

the LCO algorithm's characteristics and the 

operations proposed in it to deal with the bipartite 

graph, which is used to minimize the logic 

expressions and circuits. The algorithm proved that 

the similarity between the binary representation of 

transactional databases and the truth table of a 

logical problem and the similarity between the 

PBGs and the suggested binary representation of 

itemsets led to an efficient algorithm for mining FIs 

depending on bipartite graph representation and its 

operations: XORing, ORing, ANDing, and the 

inclusion property of LCOA. The experiment results 

show that LCOFI reduces the consumption of time 

and memory with various min_sup values on 

different datasets compared with Apriori and Fp-

growth algorithms. The outperformance is gained 

from many properties involved in LCOFI, such as: 

 

• It required one database scan operation, 

• It is not necessary to perform the operations 

of prying the candidate itemsets apart. 

• Complex data structures, such as hash tables 

or long linked lists, are unnecessary. 

• There is no need to apply complex 

operations to joint k-itemsets to generate 

(k+1)-itemsets. 

• There is no need to perform a sorting 

operation to keep items in an itemset in 

chronological order. 

• The counting of itemsets' supports became 

no more than the counting of the number of 

1s in a binary vector. 

 

Different datasets were used to test the LCOFI. 

These datasets have various characteristics, such as 

the number of transactions, the average size of 

transactions, the number of items, the density, and 

the type, such as real or synthetic. These tests were 

done to verify the LCOFI's scalability and tolerance 

for the sparseness and length of the generated 

itemsets.   

As a future step, one can plan for LCOFI 

modification to mine frequent patterns in different 

application databases. 
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