
Received: December 21, 2022. Revised: February 12, 2023. 486

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

High Reliability Through Cache Failure Minimization Technique for Workload

Execution Under Multi-Core Edge-Cloud Platforms

Hrushikesh Joshi1,2* Uttam Patil3 Kuldeep Sambrekar4

1Jain College of Engineering, Department of Computer Science and Engineering, Visveswaraya Technological

University, Belagavi, India
2Faculty of Engineering, Department of Information Technology, Society for Computer Technology and Research

Pune Institute of Computer Technology, Pune, India
3Department of Computer Science and Engineering, Faculty of Engineering, Jain College of Engineering,

Visveswaraya Technological University, Belagavi, India
4Department of Computer Science and Engineering, Professor, Karnataka Law Society Gogte Institute of

Technology, VTU, Belagavi, India

* Corresponding author’s Email: hrushikeshjj@yahoo.com

Abstract: The Internet of Things (IoT) has become an infrastructure for various domain applications such as smart

homes, smart cities, wearables, smart grids, etc. Due to these applications, the internet of things search engines has

attained some attention from various researchers, industry, and users. The search throughput of IoT search engines is

crucial because they must execute hundreds of spatial-time-keyword inquiries in a second. Moreover, IoT search

engines use cloud resources to execute tasks. Some of the tasks might have a small workflow but some of the tasks

might have a larger workflow and require more virtual machines. Instead of using the virtual machine the best option

is to utilize a caching mechanism. In recent years, there are only a few methods that use the caching mechanism for

the execution of the task. Furthermore, these methods are not reliable, and efficient and have not considered multi-

core edge-cloud computing. To overcome this issue, this paper proposes a high-reliability method using the cache-

failure mechanism for the multi-core edge-cloud computing architecture. The proposed High Reliability through

cache-failure minimization (HRCFM) technique's main aim was to provide better tradeoffs during the execution of the

task using the caching mechanism and reduce energy consumption. The results have been compared with the existing

energy minimizing scheduling (EMS) and reliability (REL) technique in terms of execution time, power sum, power

average, and energy consumption. The results have been compared and it shows that the proposed HRCFM technique

reduces the time, energy consumption, power sum, and average by 83.3%, 90.92%, 38.44%, and 91.59% for EMS

technique and 81.91%, 91.4%, 41.24% and 91.85% for REL technique respectively.

Keywords: Internet of things, Workflow, Cache failure, Reliability, Multi-core, Edge-cloud.

1. Introduction

Globally, organizations are adopting

transformational change, although in most instances

organizations should re-evaluate the capacity of their

current technological infrastructures to satisfy the

needs of information growth, edge development, IoT,

and remote workers. As a result of the fact that

information is created and consumed throughout

multiple clouds, multi-core edge clouds, data centres,

and other locations, there exists a substantial risk that

data warehouses will form all across organizations

[1]. This will restrict an organization's tendency to

begin making an appropriate decision that are driven

by data. Although the vast majority of information

still is stored on-premises, it is anticipated that the

number of different kinds of information which are

gathered, analysed and maintained only at multi-core

edge cloud outside of standard data centres or cloud

infrastructure will rapidly increase in the not-too-

distant future [2]. This is not an easy effort to manage

Received: December 21, 2022. Revised: February 12, 2023. 487

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

workstreams among all of those distant locations in

addition to those that are located on-premises to

assure every time connection, security, and

compliance in the most cost-effective way possible

[3]. It is necessary to have infrastructures, capacities,

advising and consultancy services that allow

businesses to handle, safeguard, and capitalize on all

of their data, from the multi-core edge cloud

platforms to the cloud [4]. Further, temporarily

saving files or data enabling fast retrieving by users

is nothing new; caching has served as the standard

method for this for a long time [5]. As the need for

digital resources increases around the world, from

major cities to remote areas, edge computing has

emerged as the leading method for bridging the gap

between developers and online users [6]. Edge

caching alleviates strain on large networks and boosts

content distribution by relocating memory storage

closest to end users [7]. This is achieved by

establishing a structure in the memory space between

central processing units, edge nodes, and local

storage devices. In the edge computing environment,

conventional data centers may have the most capacity,

but their capabilities are rarely utilized by network

end users [8]. Comparatively, edge servers can only

store a little amount of data, but they contain files that

are accessed often. Last but not least, local storage

takes up the least space yet is where you'll find

frequently accessed data and files [9]. As edge

caching provides better results and there is a

probability that there would be some failure during

the retrieval of the information from the multi-core

edge cloud. Hence, we propose a model which

provides high reliability through cache failure

minimization technique for workload execution

under multi-core edge-cloud platforms. The proposed

method comes with a multi-core edge-cloud platform

that can execute workloads with a high level of

reliability by employing a strategy to minimize cache

failure. Further, to ensure that the presented multicore

architecture and scheduling techniques are effective,

we must first put them to the test using a variety of

data-intensive and scientific workloads from the

DAG.

In section 2, various studies have been conducted

and the significance of the proposed work has been

given. Further, in section 3, the proposed technique

for scheduling scientific workload in a cloud

computing environment using the caching technique

has been given. In section 4, the results have been

discussed with two existing methods. Finally, in

section 5, the conclusion along with the future work

has been given for the proposed model.

2. Literature survey

In [10], developed a resource optimizing

approach for finding optimal system resources

allotment to assure optimal availability and reliability

at the minimum possible cost. This approach can

utilize one of two resource optimization iterations,

based on the traffic. Experiments outcome shows

cooperative task scheduling is better than non-

cooperative like Shortest-Job First-Scheduling and

Earliest-Deadline First-Scheduling. However, the

model failed reduce energy during task scheduling. In

[11], they suggested an approach to minimize

scheduling length, hence easing reliability constraints.

To reduce energy consumption, they also suggested a

processor-merging technique and a slack-time

reclaiming method. The slack time method reduces

task and processor speeds to save energy for

execution of parallel workflows. However, the model

to meet energy constraint result in increased

execution time and doesn’t provide information on

how cache resource optimization can be done.

In [12], they develop S-Cache to provide edge

cloud cache. They've established a novel cache-

replacement technique to enhance hit rates. The

developed cache-replacement technique outperforms

least frequently (LFU) and greedy dual size

frequency (GDSF). In each of these two databases,

the aggregate cache hit-rates jump by 39% as well as

the aggregate cache-replacement latency drops by

41% and 38%. multi-core edge cloud functionality,

such as caching, computing, communication, and

other processing, has been surveyed in [13]. The

purpose of this review is to show how cache

processing techniques can be essential in making this

future a reality. In [14], the authors offer a video

caching method built on multi edge-computing

(MEC), wherein only certain maximum possible bit-

rate video was cached and transcoded towards the

desired lower bit-rate variant utilizing its processing

capabilities just at MEC. They demonstrate that their

approach improves the cache hit-rate, reduces the

backhaul traffic burden, and speeds up video load

time compared to the standard store and forward

caching methodology. Nonetheless, how cache

optimization meeting energy constraint is not

addressed in their work. In [15], researchers analysed

previous research from their perspective. In

comparison to certain other literature reviews, theirs

contains comprehensive research on the complete

edge caching method, from policy development and

caching location optimizations to content distribution.

In [16], researchers worked on collaborative service-

caching and task-offloading to improve edge-server

and cloud-resource cooperation. In this approach,

Received: December 21, 2022. Revised: February 12, 2023. 488

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

they first framed this issue as mix-integer-nonlinear-

programming, which really is NP-hard. Then, a three-

stage heuristic for completing the task in polynomial

time was proposed. In its early stages, this approach

attempted to pre-offload as many tasks as possible to

the cloud. Their method improved the efficiency of

cloud-offloaded tasks by re-offloading part of them

to edge-resources. Multiple mock experiments were

used to evaluate their strategy. With respect to user

happiness, resource effectiveness, and processing

speed, their solution is up to 155%, 56.1%, and 155%

better than both traditional and state-of-the-art

alternatives respectively. However, these models

have been tested using non-direct acyclic graph

(DAG) application.

In [17], they have proposed an approach that

explores Data, User, and power allocation (DUPA3)

to serve as many consumers as necessary while

maximizing the total data rate. First, they developed

DUPA3 as a future game that had at least one Nash

equilibrium and presented DUPA3. Further, in the

results they explained that the dynamic cache

reconfiguration improves energy consumption and

efficiency in single-core computers. However, the

model will exhibit poor performance for execution of

DAG application. In [18], offers a static profiling-

based method enabling vulnerability-aware energy-

optimization in real-time multicore systems. Their

method allows easy discovery of cache

configurations and partition schemes for energy-

optimization while meeting job constraints and

vulnerability limits. Compared to state-of-the-art

alternatives, their technique saves 19.2% more

energy and reduces vulnerability by 49.3%.

Nonetheless, work only for task with no

interdependencies. In [19], researchers explored

collaborative-edge data-caching (CEDC) issue to

minimize network expenses including data caching,

data migration, and QoS penalties. They developed a

CEDC-O, an online method, to tackle the problem

throughout all time periods. CEDC-O outperforms

two main approaches on a real-world data set.

Similarly, In [20], extended the work of [19] and

proposed CEDC-IP for Integer-Programming CEDC.

They also revealed the approximations ratio of

CEDC-A, a method for quickly finding extensive

CEDC solutions. Real-world and synthetic data are

used to evaluate CEDC-IP and CEDC-A. The results

show that the existing four popular approaches failed

to match the proposed model. Nonetheless, the ILP

formulation takes significantly higher computation

overhead. In [21], they build a non-cooperative game

among users, compute the corresponding Pure-Nash-

Equilibrium (PNE), also known as the optimum data-

offloading, and provide a decentralized low-

complexity technique that responds to the PNE.

Through modelling and testing, the efficiency of the

proposed system as well as its fundamental principles

are demonstrated. However, offloading of task

doesn’t consider energy constraint in scheduling

reconfiguration. In [22], they examined cache-

placement in Fog-RANs using adjustable

transmission algorithms and user-content options. An

approximate technique is offered to reach a solution

around a constant-factor of either the best. In

distributed system, a belief propagation-based

distributed technique with iterative updates at each

base station based on local data is provided.

Simulations demonstrate that transmissions-aware

caching can lower customers' average download

delay by utilizing caching and cooperation

improvements. However, the model failed to

consider energy-makespan scheduling problem. Due

to all these above issues found in the literature survey,

we propose the significance of the research work as

follows

1. One way that multi-core edge-cloud platforms

can execute workloads with a high level of

reliability is by employing a strategy to minimize

cache failure.

2. To ensure that the presented multicore

architecture and scheduling techniques are

effective, we must first put them to the test using

a variety of data-intensive and scientific

workloads from the DAG.

3. Model

The purpose of this research is to develop a

methodology for scheduling scientific workloads to

reduce the number of Last-Level-Cache (LLC)

failures. Because of the difficulty in allocating

resources to several users, the cache-aware resource

consumption algorithm was developed in this

research. In the next stage, the computing-node is

moved to a new location to cut down on LLC-failures

in the distributed computing setting. The concept of

allocation of resources consists of two stages. The

first stage is for all virtual-computing-nodes (VCNs)

to pool their cache memory and share it among the

working nodes. This helps increase the system's

throughput and storage space.

Further, the notation table of all the variables used in

the equations has been denoted using Table 1.

When an LLC fails in the second stage of the

computing environment, the scheduler will modify

the virtual-computing-machines (VCMs) on the

failing nodes. Algorithm 1 depicts the suggested

technique operational flow. Specifically, the whole

Received: December 21, 2022. Revised: February 12, 2023. 489

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

Table 1. Notation Table

Variable Definition

𝑃(𝑡) Energy-dissipation

𝑒(𝑡) Consumption of energy under

the heterogenous cloud

𝑀𝑎 Operational interval

𝐵𝑘 Processor core

𝑣𝑘(𝑡) Usage of processing core 𝐵𝑘

𝑉𝑘 Resource consumption sets

𝑉 = [𝑉1, …… . , 𝑉𝑖]
𝑇 for every

frequency range [𝑅↑,𝑘, , 𝑅↓,𝑘]

for every processor core 𝐵𝑘

{𝑎𝑘(𝑡)|1 ≤ 𝑘
≤ 𝑖 }

Cache-memory partitioning

size

{𝕗𝑘(𝑡)|1 ≤ 𝑘 ≤ 𝑖} The operation frequency of the

processing cores

𝑎𝑘(𝑡) Size of the 𝐿2 𝑐𝑎𝑐ℎ𝑒 partitions

 𝕗𝑘(𝑡) Frequency of the processing

element

 𝕗𝑘↑(𝑡) Peak frequency at a given 𝐵𝑘

𝐴 The entire capacity of

𝐿2 𝑐𝑎𝑐ℎ𝑒

𝑀𝑘𝑝 Task operational time

𝑠𝑘𝑝(𝑡) Frequency-independent phase

 𝐷𝑘𝑝, 𝐻𝑘𝑝 and 𝑋𝑘𝑝 Quantifiable characteristics of

jobs

𝑋𝑘𝑝 Size of the operational-set

within that job

ℎ𝑘(𝑡) Approximated processing-

element resource utilization

𝑞𝑘𝑝 Job-rate within the operational

time period 𝑀𝑘𝑝

∆ℎ𝑘(𝑡) Linear function with regard to

𝑙𝑘(𝑡)
∆𝑎𝑘(𝑡) Difference between 𝑎𝑘(𝑡) and

𝑎𝑘(𝑡 − 1)
𝐸 The estimated range for the

device's pattern based on the

computations performed

𝑆𝑘 , 𝑌𝑘, and 𝐶𝑘 Processing element power

consumption of VCN

𝒟ℊ Caching benefits

𝒯𝑔 Size of the data being

processed by the task

𝒰𝑠𝑒𝑒𝑘 Time required to place the data

in the cache partition

𝒬𝑔 The ease with which the data

may be retrieved from the

cache

𝒟↓ The worst possible outcome of

cache cost benefits

𝒟↑ Best possible outcome

𝒬ℓ Probability with which data

blocks ℓ are accessed

𝑎𝑐𝑐𝑒𝑠𝑠ℓ The frequency with which data

blocks ℓ are accessed

𝒬ℓ𝒿 The probability of data blocks

in the session 𝓍𝒿

ℴ Partition size of data blocks for

a certain job

𝒯ℓ Standard data block size

𝑎𝑐𝑡𝑖𝑣𝑒ℓ The active mode of data blocks

ℓ

ℛ↓ Least favourable outcome of

the cost benefit of replacing the

cache

ℛ↑ Most favourable outcome of

the cost benefit of replacing the

cache

VCMs at every processing-node are sorted as per

LLC failures and afterward combined all together in

compliance with respective failed LLCs of shared

memory. Group A consists of all VCMs that

experienced a catastrophic failure of their LLC, while

Group B contains all VCMs that had the maximum

number of L3 cache hits. Group A consists of VCMs

that have a low rate of LLC failure, while Group B

consists of VCMs that have a low rate of last-level

caches. Work in the proposed scheduling model is

carried out utilizing VCMs from either of the two

categories. As a result, the scheduler can bring into

existence not one but two types of VCMs, those with

the fewest LLC failures and those with the most. In

addition, the suggested model switches VCMs if

there is a large disparity in the failure rates of the last

few levels of caches. By gradually decreasing the

frequency of cache failure only at the final level in a

heterogeneous computing system, the suggested

model accomplishes its scheduling in two stages.

Through the use of optimal cache optimization-

based workload-scheduling, we provide a method for

making the most of available resources in a cloud-

computing environment that is heterogeneous (i.e.,

multi-core). By eliminating the dynamic boundary

minimizing issue, the technique helps to lower the

energy consumption of cloud-computing's computing

nodes by decreasing their reliance on the cache. The

following equation is used to calculate the energy-

dissipation 𝑃(𝑡) in a heterogeneous computing

system.

𝑃(𝑡) = 𝑒(𝑡)𝑀𝑎 , (1)

Where 𝑒(𝑡) represents the overall energy consumed

under the heterogeneous-cloud conceptual model

processing-element, which is mainly comprised of

the operating frequency-level of the processor core

𝐵𝑘 as well as the current 𝐿2 cache size. This is in

contrast to 𝑃(𝑡) , which presents the energy

Received: December 21, 2022. Revised: February 12, 2023. 490

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

Algorithm 1: Proposed technique for scheduling

scientific workload in the cloud computing

environment

Step 1 𝑺𝒕𝒂𝒓𝒕
Step 2 𝑪𝒐𝒎𝒑𝒖𝒕𝒆 and establish 𝑁𝕃 (i.e., last

level cache miss of each virtual

computing machine (VCM).

Step 3 𝑪𝒐𝒎𝒑𝒖𝒕𝒆 and establish 𝑊𝕃 (i.e.,

last level cache miss of virtual

computing machines in every

processing node.

Phase 1

Step 4 𝑭𝒐𝒓 𝒆𝒂𝒄𝒉 processing node 𝑗 from 1

to 𝑦 do (i.e, establish the last level

cache failure of each virtual

computing machine in processing

node 𝑗.
Step 5 𝑛𝑥𝑗 ← collects (𝑗)

Step 6 𝑊𝕃 ← 𝑠𝑜𝑟𝑡 (𝑛𝑥𝑗)

(i.e., arrange virtual computing node

with last level cache failures).

Step 7 𝑶𝒃𝒕𝒂𝒊𝒏 (𝑊𝕃)
Step 8 𝑬𝒏𝒅 𝒇𝒐𝒓

Phase 2 Obtain processing node with maximal

and minimal last level cache failures

Step 9 MaximalNode ← find

MaximalNode(𝑁𝕃)
Step 10 MinimalVCM ← findminimalVCM(

MinimalNode)

// establish (i.e., find) a virtual

computing machine that is composed

of maximal and minimal last level

cache failures

Step 11 MaximalVCM ← findmaximalVCM(

MaximalNode)

Step 12 MinimalVCM ← findminimalVCM(

MinimalNode)

Step 13 if 𝑇 < 𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒𝕃𝕃ℂ −
 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒𝕃𝕃ℂ
then

Step 14 interchange

(maximalVCM,mimimalVCM)

Step 15 𝑺𝒕𝒐𝒑.

consumed under heterogeneous cloud conceptual

model processing-element for a specific (i.e., 𝑡𝑡ℎ)

time duration. After that, the capacity of the 𝐿2 cache

as well as the workload of the system will, for the

most part, remain the same throughout the specified

time of operation 𝑀𝑎. In this instance, 𝑀𝑎 represents

the operational interval to release multiple different

information regarding every workload task during the

process of 𝑡𝑡ℎ operational period.

The below equation can be used to determine the

optimal cache partition-size and frequency to achieve

a balance between minimizing energy usage and

maximizing performance.

min
𝑎𝑘(𝑡)|1 ≤𝑘≤𝑖,𝕗𝑘(𝑡)|1≤𝑘≤𝑖

∑ [𝑉𝑘 − 𝑣𝑘(𝑡)]
2,𝑖

𝑘=1 (2)

𝑚𝑖𝑛
𝑎𝑘(𝑡)|1 ≤𝑘≤𝑖,𝕗𝑘(𝑡)|1≤𝑘≤𝑖

𝑃(𝑡) (3)

where 𝑣𝑘(𝑡) represents the usage of processing core

𝐵𝑘 in the 𝑡𝑡ℎ operational period, 𝑉𝑘 represents

resource consumption sets 𝑉 = [𝑉1, …… . , 𝑉𝑖]
𝑇 for

every frequency range [𝑅↑,𝑘, , 𝑅↓,𝑘] for every

processor core 𝐵𝑘 , and to minimize variation in

processor-core utilization 𝑣𝑘(𝑡) and utilization-sets

(𝑉𝑘) , the cache-memory partitioning size is

represented by {𝑎𝑘(𝑡)|1 ≤ 𝑘 ≤ 𝑖 } , and the

operation frequency of the processing cores is

represented by {𝕗𝑘(𝑡)|1 ≤ 𝑘 ≤ 𝑖} at the 𝑡𝑡ℎ

operational period. There are 2 cache elements,

𝐿1 𝑐𝑎𝑐ℎ𝑒 and 𝐿2 𝑐𝑎𝑐ℎ𝑒 that make up the processor

element of a cloud-computing system. In a multi-core

sharing computing architecture, such caches are

accessible by multicore processors at once. In this

setup, every single processor is DVFS-ready. This

will help save a considerable amount of the available

energy resources. Cache-memory is divided up and

used for many different purposes. Taking into

account the amount of the processing-cores, 𝐵𝑘 ,

𝑎𝑘(𝑡) represents the size of the 𝐿2 𝑐𝑎𝑐ℎ𝑒 partitions.

The size of the peak frequency at a given 𝐵𝑘 is

denoted by 𝕗𝑘↑(𝑡). The constraints given below in Eq.

(4) and Eq. (5) must be met by Eq. (2) and Eq. (3).

𝑅↓,𝑘 ≤ 𝕗𝑘(𝑡) ≤ 𝑅↑,𝑘 𝑤ℎ𝑒𝑟𝑒, (1 ≤ 𝑘 ≤ 𝑖) (4)

∑ 𝑎𝑘(𝑡) ≤ 𝐴
𝑖
𝑘=1 (5)

where 𝐴 is the entire capacity of 𝐿2 𝑐𝑎𝑐ℎ𝑒 that can

be used in a cloud environment with varying

hardware configurations. Eq. (2) shows the least

amount of energy that will be wasted when carrying

out a specific job inside a heterogeneous cloud

computing architecture while using a specific amount

of power generation 𝑒(𝑡) for the 𝑡𝑡ℎ operational

period. The processor frequency is depicted by Eq.

(3) and can be found inside the range of every

processor core when the presented model is used. The

difference in frequency-range is dependent on the

type of processing-element that is being employed.

The sum of all of the cache memory that has been

partitioned is depicted by Eq. (5), and it is extremely

close to being equal to the entire memory that is

Received: December 21, 2022. Revised: February 12, 2023. 491

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

accessible. Cache-aware resource utilization

approach adjusts the caching partition-size and its

core frequency for every processor core to minimize

the difference between resource-utilization 𝑣𝑘(𝑡)
and utilization sets 𝑉𝑘 . Nevertheless, the operation

time of a heterogeneous-computational system is

impacted by the expense of optimizing frequency

statically based on varied cache-partition sizes.

Therefore, a dynamic optimizing approach is

proposed to reduce processing time. Within 𝑡𝑡ℎ

operational period, the model keeps the balance

between 𝑣𝑘(𝑡), the central frequency 𝕗𝑘(𝑡), and the

optimization of feature 𝑎𝑘(𝑡) . Specifically, the

dynamic optimization model provides the best

possible correlation between the parameters 𝑏𝑘𝑝(𝑡),

task operational time 𝑀𝑘𝑝, optimizing feature 𝕗𝑘(𝑡),

and 𝑎𝑘(𝑡) for each core 𝐵𝑘 in the 𝑡𝑡ℎ operational

period. The following equation describes two

possible strategies for optimizing the relation

characteristic 𝑏𝑘𝑝(𝑡) , one of which is frequency

independent.

𝑏𝑘𝑝(𝑡) = 𝑠𝑘𝑝(𝑡) + 𝑖𝑘𝑝. (𝕗𝑘(𝑡))
−1
 , (6)

Since the computation time of input and

output devices is not based on the frequencies of each

core and 𝑖𝑘𝑝. (𝕗𝑘(𝑡))
−1

, the notation 𝑠𝑘𝑝(𝑡) is used

to describe the frequency-independent phase taking

into account the relevant task operational time 𝑀𝑘𝑝.

Since the frequencies of the cores in operation affects

the shape of the segment depicted by 𝑖𝑘𝑝. (𝕗𝑘(𝑡))
−1

,

we call this the frequency dependent phase. 𝑠𝑘𝑝(𝑡) is

the amount of cache-memory set aside for each task's

operational time 𝑀𝑘𝑝 when a given input and

output device is excluded from the job execution.

The optimum link between cache-failure and cache-

memory size is mediated by the parameter 𝑠𝑘𝑝(𝑡).

The following equation provides an approximation of

the optimal relationship between 𝑠𝑘𝑝(𝑡), 𝑎𝑘𝑝(𝑡), and

assigned caches for the heterogeneous computing

environment 𝐵𝑘.

𝑠𝑘𝑝(𝑡) =

 {
𝐷𝑘𝑝𝑎𝑘𝑝(𝑡) + 𝐻𝑘𝑝 0 ≤ 𝑎𝑘𝑝(𝑡) ≤ 𝑋𝑘𝑝
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑘𝑝(𝑡) ≥ 𝑋𝑘𝑝

 (7)

where 𝐷𝑘𝑝 , 𝐻𝑘𝑝 and 𝑋𝑘𝑝 are quantifiable

characteristics of jobs, and 𝑀𝑘𝑝 is an instance of a job

operational session and 𝑋𝑘𝑝 is the size of the

operational-set within that job. Eq. (7) demonstrates

that the cache-memory capacity enhances and helps

minimize the operation time period whenever the size

of the operation set 𝑋𝑘𝑝 is larger than 𝑎𝑘𝑝(𝑡),. Cache

failure is also worse and cannot be fixed by adding

more caching memory if the size of the operation set

𝑋𝑘𝑝 is smaller than 𝑎𝑘𝑝(𝑡) . The below equation

establishes the relationship between the overall cache

size 𝑎𝑘𝑝(𝑡) provided to the processor core 𝐵𝑘 in a

heterogeneous computing system, the total

independent frequency and operation session

instance of each job in that system, and the total cache

size 𝑎𝑘𝑝(𝑡), of all systems in the system.

𝑠𝑘(𝑡) =

 {
∑ 𝐷𝑘𝑝

′𝑎𝑘(𝑡) + ∑ 𝐻𝑘𝑝 𝑝𝑝 0 ≤ 𝑎𝑘(𝑡) ≤ 𝑋𝑘
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑘(𝑡) ≥ 𝑋𝑘

 (8)

where 𝐷𝑘𝑝
′ =

𝐷𝑘𝑝𝑎𝑘𝑝(𝑡)

(𝑎𝑘(𝑡))
 and 𝑋𝑘 = ∑ 𝑋𝑘𝑝𝑝

Cumulating Eq. (7) for each task executed on the 𝐵𝑘.

heterogeneous computational processor elements are

depicted in Eq. (8). Therefore, the below equation

describes how the suggested architecture helps to

reduce interference in shared caches used by various

processing elements.

ℎ𝑘(𝑡) = ∑ 𝑖𝑘𝑝𝑝 𝑞𝑘𝑝 . (𝕗𝑘(𝑡))
−1
+

 ∑ 𝐷𝑘𝑝
′𝑞𝑘𝑝𝑎𝑘(𝑡) + ∑ 𝐻𝑘𝑝 𝑞𝑘𝑝𝑝𝑝 (9)

where ℎ𝑘(𝑡) represents the approximated

processing-element resource utilization and 𝑞𝑘𝑝

represents the job-rate within the operational time

period 𝑀𝑘𝑝 for the heterogeneous computing

system 𝐵𝑘. where ℎ𝑘(𝑡) represents the approximated

processing-element resource utilization and 𝑞𝑘𝑝

represents the job-rate. By utilizing Eq. (9), it is

possible to demonstrate that ℎ𝑘(𝑡) is proportionally

inverse concerning the frequency of the processing

element 𝕗𝑘(𝑡). The following equation describes the

estimated variance in resource use that occurs during

∆ℎ𝑘(𝑡) for the heterogeneous computing framework

𝐵𝑘.

∆ℎ𝑘(𝑡) = 𝑙𝑘(𝑡)∑ 𝑖𝑘𝑝𝑝 𝑞𝑘𝑝 + ∆𝑎𝑘(𝑡)∑ 𝐷𝑘𝑝
′𝑞𝑘𝑝𝑝

(10)

where ∆ℎ𝑘(𝑡) is a linear function with regard to 𝑙𝑘(𝑡)

which is defined as the difference between (
1

 𝕗𝑘(𝑡)
)

and (
1

 𝕗𝑘(𝑡−1)
) , and ∆𝑎𝑘(𝑡) is defined as the

difference between 𝑎𝑘(𝑡) and 𝑎𝑘(𝑡 − 1). In Eq. (10),

change the direct frequency utilization of the

processing element 𝕗𝑘(𝑡) to 𝑙𝑘(𝑡). The solution to

Received: December 21, 2022. Revised: February 12, 2023. 492

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

Eq. (10) demonstrates that the property ∆ℎ𝑘(𝑡)
proportionate concerning 𝑖𝑘𝑝 and 𝐷𝑘𝑝

′ is true. As a

result, the cost function of a heterogeneous

computational environment can be minimized by

utilizing a regulator for heterogeneous processing

element called 𝐵𝑘 and the equation that follows.

𝑍𝑘(𝑡) = ∑ ‖𝑣𝑘(𝑡 + 𝑐 − 1|𝑡) − 𝛽𝕗𝑘(𝑡 + 𝑐 −
𝐸
𝑐=1

1|𝑘)‖2 + ‖𝑢𝑘(𝑡|𝑡) − 𝑢𝑘(𝑡 − 1|𝑡)‖
2 (11)

where,

𝑅↓,𝑘 ≤ 𝕗𝑘(𝑡) ≤ 𝑅↑,𝑘 (12)

𝑎𝑘(𝑡) ≤ 𝑎𝑞𝑢𝑜𝑡𝑎,𝑘 (13)

Where 𝛽𝕗𝑘(𝑡 + 1|𝑡) is the pattern depicting how

resource utilization influences/features 𝛽𝕗𝑘(𝑡 + 1|𝑡)
must transform its current utilization influence 𝑣𝑘(𝑡)

to 𝑉𝑘, 𝑢𝑘(𝑡) = [
𝑙𝑘(𝑡)

∆𝑎𝑘(𝑡)
]. In case 𝐸 of an operational

session, 𝐸 represents the estimated range for the

device's pattern based on the computations performed.

When using a heterogeneous computing architecture

𝐵𝑘, the cache size 𝑎𝑘(𝑡) is constrained by 𝑎𝑞𝑢𝑜𝑡𝑎,𝑘 to

ensure Eq. (5). Consequently, the cache memory can

be efficiently optimized by minimizing the least

square problem using a dynamic model. The

following equation describes an effective resource

use model that can be used to optimize power

consumption.

𝑒𝑘(𝑡) = 𝑆𝑘𝕗𝑘(𝑡)
3 + 𝑌𝑘𝑎𝑘(𝑡) + 𝐶𝑘 (14)

where,

𝑅↓,𝑘 ≤ 𝕗𝑘(𝑡) ≤ 𝑅↑,𝑘 (15)

𝑎𝑘(𝑡) ≤ 𝑎𝑞𝑢𝑜𝑡𝑎,𝑘 (16)

Where 𝑆𝑘 , 𝑌𝑘 , and 𝐶𝑘 represent the processing

element power consumption of VCN in a

heterogeneous computing system. Various shared

caches and processing elements contribute to the

overall power consumption of a heterogeneous

computational system. Power dissipation 𝐶𝑘 and the

dynamic power component 𝑆𝑘𝕗𝑘(𝑡)
3 determine the

overall power usage. Therefore, the proposed model

can be used to reduce the amount of energy used by

the cache memory. In addition, the caching cost is

computed in this study so that the advantage of

caching may be calculated. The larger the data, the

greater the cost of caching it, therefore keep that in

mind while estimating the benefit of caching your

workload tasks' data. Cache benefits are often

quantified by how much faster subsequent data

accesses are. Therefore, caching is most beneficial

when reaction times are reduced. As a result, the

following equation is used to explain the benefits of

data caching in terms of cost.

𝒟ℊ = {
0 𝒬𝑔 = 0

𝒬𝑔 ∗ (𝒰𝑠𝑒𝑒𝑘 +
𝒯𝑔

ℬ𝒲𝑐𝑎𝑐ℎ𝑒
) 𝒬𝑔 ≠ 0

 (17)

Where 𝒟ℊ depicts caching benefits, 𝒯𝑔 represents the

size of the data being processed by the task, 𝒰𝑠𝑒𝑒𝑘

represents the time required to place the data in the

cache partition, and 𝒬𝑔 represents the ease with

which the data may be retrieved from the cache. In

this case, the equation below describes the maximum-

minimum advantages of cache cost for fixing data

comparability problems.

𝒟𝐵𝑒𝑛 =
(𝒟ℊ−𝒟↓)

(𝒟↑−𝒟↓)
 (18)

where 𝒟↓ reflects the worst possible outcome of

cache cost benefits and 𝒟↑ the best possible outcome.

There may also be a cost associated with clearing the

cache and recaching the data. This work uses the

number of unused (i.e. garbage) partitions in a data

set as the metric for determining the cost of

replacement. These data are less likely to be replaced

if the respective data blocks are in active/hot mode.

As a result, they have a lower replacement cost.

Taking into account window sampling x, the

following equation can be used to define the access

probability of each data block:

𝒬ℓ =
𝑎𝑐𝑐𝑒𝑠𝑠ℓ

𝑎𝑐𝑐𝑒𝑠𝑠
 (19)

where 𝒬ℓ describes the probability with which data

blocks ℓ are accessed, 𝑎𝑐𝑐𝑒𝑠𝑠ℓ represents the

frequency with which data blocks ℓ are accessed, and

access represents the total number of times data

blocks ℓ are accessed in period 𝓍 . Separate the

session time into 𝓍1, 𝓍2, … , 𝓍ℴ sub-windows.

Following that, we determine the probability of

accessing data blocks ℓ during the various parts of a

session by doing the following.

{

𝒬ℓ1 = 𝑎𝑐𝑐𝑒𝑠𝑠ℓ1 𝑎𝑐𝑐𝑒𝑠𝑠1⁄

𝒬ℓ2 = 𝑎𝑐𝑐𝑒𝑠𝑠ℓ2 𝑎𝑐𝑐𝑒𝑠𝑠2⁄
…

𝒬ℓℴ = 𝑎𝑐𝑐𝑒𝑠𝑠ℓℴ 𝑎𝑐𝑐𝑒𝑠𝑠ℴ⁄

 (20)

Received: December 21, 2022. Revised: February 12, 2023. 493

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

With 𝒬ℓ𝒿 representing the probability of data blocks

in the session 𝓍𝒿 , 𝑎𝑐𝑐𝑒𝑠𝑠ℓ𝒿 representing the

frequency with which data block ℓ is accessed in the

session 𝓍𝒿 , and 𝑎𝑐𝑐𝑒𝑠𝑠𝒿 representing the overall

frequency with which all data blocks are accessed in

a session 𝓍𝒿. The following equation can be used to

get the number of active mode data blocks, ℓ.

𝑎𝑐𝑡𝑖𝑣𝑒ℓ =
𝒬ℓ2
𝒬ℓ1

∗
𝒬ℓ3
𝒬ℓ2

∗
𝒬ℓ4
𝒬ℓ3

∗
𝒬ℓ5
𝒬ℓ4

…∗
𝒬ℓℴ
𝒬ℓℴ−1

=
𝒬ℓℴ
𝒬ℓ1

(21)

As a result, the following equation can be used to

describe the expense of data replacement

ℛ𝑔 = ∑
𝒬ℓ

𝑎𝑐𝑡𝑖𝑣𝑒ℓ∗𝒯ℓ

ℴ
ℓ=1 (22)

where ℴ represents the partition size of data blocks

for a certain job, 𝒯ℓ represents the standard data block

size, 𝑎𝑐𝑡𝑖𝑣𝑒ℓ represents the active mode of data

blocks ℓ, and 𝒬ℓ represents the data block access

probability for session 𝓍. In a manner analogous to

the cache cost, we use Max-Min for the computation

of the replacement cost as follows:

ℛ𝐵𝑒𝑛 =
(ℛ−ℛ↓)

(ℛ↑−ℛ↓)
 (23)

where ℛ↓ illustrates the least favorable outcome of

the cost benefit of replacing the cache, and ℛ↑ depicts

the most favorable outcome of the cost-benefit of

replacing the cache. Therefore, by utilizing the

proposed model, we can bring about excellent

tradeoffs between reducing the amount of energy that

is lost and boosting the system performance of a

heterogeneous cloud computing environment. This is

experimentally demonstrated in the section that

follows.

4. Results and discussions

In this section, the results have been compared

with the existing EMS [11] method. The results have

been compared in terms of total simulation time,

power sum, power average, and energy consumption.

The Inspiral workload is used for validating the

performance of our proposed model and existing

model. The Inspiral workload is memory and CPU

intensive and is used for analyzing binary neutron

stars and black holes. More details of workload can

be obtained from [23].

Figure. 1 Total simulation time

4.1 Total simulation time

In Fig. 1, the total simulation time required for the

execution of the different number of tasks has been

presented. The existing EMS [11] and REL [24]

techniques have been compared with the proposed

HRCFM technique. When compared with the

existing EMS technique and HRCFM technique, the

proposed HRCFM technique performs better by

69.93%, 82.125%, 89.23%, and 92.22% for Insipral

30, 50, 100 and 1000 respectively for total simulation

time. Further, when compared with the REL

technique, the HRCFM technique performs better by

66.57%, 80.44%, 88.67%, and 91.97% for Insipral 30,

50, 100, and 1000 respectively for total simulation

time. The proposed HRCFM technique consumes

less time for the execution of the task when compared

with the existing EMS and REL techniques by 83.3%

and 81.91% respectively.

4.2 Power sum

In Fig. 2, the power sum required for the

execution of the different number of tasks has been

presented. The existing EMS [11] and REL [24]

techniques have been compared with the proposed

HRCFM technique. When compared with the

existing EMS technique and HRCFM technique, the

proposed HRCFM technique performs better by

82.37%, 89.51%, 93.68%, and 98.13% for Insipral 30,

50, 100, and 1000 respectively for power sum.

Further, when compared with the REL technique, the

HRCFM technique performs better by 83.44%,

89.88%, 93.74%, and 98.29% for Insipral 30, 50, 100,

and 1000 respectively for power sum. The proposed

HRCFM technique consumes less power sum for the

execution of the task when compared with the

existing EMS and REL techniques by 90.92% and

91.34% respectively.

0

50000

100000

150000

200000

Inspiral 30 Inspiral 50 Inspiral

100

Inspiral

1000

S
ec

o
n

d
s

(s
)

Total Simulation Time

EMS REL HRCFM

Received: December 21, 2022. Revised: February 12, 2023. 494

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

Figure. 2 Power sum

Figure. 3 Power average

Figure. 4 Energy consumption

4.3 Power average

In Fig. 3, the power average required for the

execution of the different number of tasks has been

presented. The existing EMS [11] and REL [24]

techniques have been compared with the proposed

HRCFM technique. When compared with the

existing EMS technique and HRCFM technique, the

proposed HRCFM technique performs better by

41.357%, 41.356%, 41.355%, and 29.72% for

Insipral 30, 50, 100, and 1000 respectively for power

Table 2. Comparison Table

 EMS [11] REL [24] HRCFM

[Proposed]

Reliability No Yes Yes

Multi-Cloud No Yes Yes

Energy

Optimization

Yes No Yes

Workload

Type

Small-

Large

Small-

Large

Small-

Large

Cache

Utilization

No No Yes

average. Further, when compared with the REL

technique, the HRCFM technique performs better by

43.01%, 43.80%, 44.57%, and 33.58% for Insipral 30,

50, 100, and 1000 respectively for power average.

The proposed HRCFM technique consumes less

power on average for the execution of the task when

compared with the existing EMS and REL techniques

by 38.44% and 41.24% respectively.

4.4 Energy consumption

In Fig. 4, the energy consumed for the execution

of the different number of tasks has been presented.

The existing EMS [11] and REL [24] techniques have

been compared with the proposed HRCFM technique.

When compared with the existing EMS technique

and HRCFM technique, the proposed HRCFM

technique performs better by 83.271%, 90.40%,

93.53.355%, and 99.19% for Insipral 30, 50, 100, and

1000 respectively for energy consumption. Further,

when compared with the REL technique, the

HRCFM technique performs better by 83.61%,

90.88%, 93.69%, and 99.23% for Insipral 30, 50, 100,

and 1000 respectively for energy consumption. The

proposed HRCFM technique consumes less energy

for the execution of the task when compared with the

existing EMS and REL techniques by 91.59% and

91.85% respectively.

4.5 Discussions

From the results, it can be seen that the proposed

HRCFM model attains better performance in terms of

energy consumption, power average, power sum, and

total cost. Further, the comparison table has been

given in Table 2. The EMS [11], model has not

considered reliability and a multi-cloud environment

for the execution of the tasks. Further, the REL [24]

model has not considered the energy optimization

problem. Also, the EMS and REL models have not

used any caching technique in their models. The

proposed model provides reliability in a multi-cloud

environment considering energy optimization

techniques for the execution of the tasks. Also, the

0

200000000

400000000

600000000

800000000

1E+09

1.2E+09

Inspiral

30

Inspiral

50

Inspiral

100

Inspiral

1000

W
at

t
(W

)

Power Sum

EMS REL HRCFM

0

20

40

60

80

Inspiral 30 Inspiral 50 Inspiral 100 Inspiral

1000

W
at

ts
 (

W
)

Power Average

EMS REL HRCFM

0

500000

1000000

1500000

2000000

Inspiral 30Inspiral 50 Inspiral

100

Inspiral

1000

W
at

t
H

o
u

r
(W

H
)

Energy Consumption

EMS REL HRCFM

Received: December 21, 2022. Revised: February 12, 2023. 495

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

proposed HRCFM technique has used caching

technique. Due to this, the proposed HRCFM model

is better than the existing models.

5. Conclusion

In this research work, first, a survey has been done

on various edge cloud computing research works.

Further, we have surveyed various cache failure

minimization techniques which will help us to

provide significance for the proposed research work.

A system has been proposed to provide high

reliability through cache failure during the execution

of various tasks or workloads. After this, the model

has been experimented with using the Inspiral

workflow. The results have been compared with the

existing Energy Minimizing Scheduling (EMS) and

Reliability (REL) technique in terms of execution

time, power sum, power average, and energy

consumption. The results have been compared and it

shows that the proposed HRCFM technique reduces

the time, energy consumption, power sum, and

average by 83.3%, 90.92%, 38.44%, and 91.59% for

EMS technique and 81.91%, 91.4%, 41.24% and

91.85% for REL technique respectively. Moreover,

our model provides better performance when the

number of tasks are more. For future work, we would

consider other scientific workflows such as Montage,

SIPHT, and Epigenomics for the evaluation of the

proposed HRCFM technique.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Hrushikesh Joshi and Dr. Uttam Patil conceived

the presented idea. Hrushikesh Joshi developed the

theory and performed the computations. Dr. Uttam

Patil and Dr. Kuldeep P. Sambrekar verified the

analytical methods. Dr. Uttam Patil and Dr. Kuldeep

P. Sambrekar encouraged Hrushikesh Joshi to

investigate new methods for improving the models

and supervised the findings of this work. All authors

discussed the results and contributed to the final

manuscript.

References

[1] B. Wang, C. Wang, W. Huang, Y. Song, and X.

Qin, “A Survey and Taxonomy on Task

Offloading for Edge-Cloud Computing”, IEEE

Access, Vol.8, pp.186080-186101, 2020.

[2] I. Ayo, T. Williams, and J. Yahaya, “Cloud

Management and Monitoring-A Systematic

Mapping Study”, Indonesian Journal of

Electrical Engineering and Computer Science,

Vol. 21, No. 3, pp.1648, 2021.

[3] M. Allakonda and K. Sagar, “A Survey on data

security challenges in multi cloud environment”,

In: Proc. of 2021 IEEE International

Conference on Electronics, Computing and

Communication Technologies (CONECCT), pp.

1-5, 2021.

[4] A. Chandrashekhar and S. Suryakanth, “A

Combined Computing Framework for Load

Balancing in Multi-Tenant Cloud Eco-System”,

International Journal of Electrical and

Computer Engineering, Vol. 12, No. 5, pp. 5630,

2022.

[5] D. Abramson, J. Carroll, C. Jin, M. Mallon, Z.

Iperen, H. Nguyen, A. McRae, and L. Ming, “A

Cache-Based Data Movement Infrastructure for

on-Demand Scientific Cloud Computing”,

Supercomputing Frontiers, pp.38–56, 2019.

[6] W. Stallings, “An Overview of Cloud

Computing”, Cloud Computing Security, pp.

13–30, 2020.

[7] Y. Tang, D. Rajendiran, and M. Moh, “Cache

Management for Cloud RAN and Multi-Access

Edge Computing with Dynamic Input”, In: Proc.

of 2019 International Conference on High

Performance Computing & Simulation (HPCS),

pp. 716-723, 2019.

[8] K. Cao, Y. Liu, G. Meng, and Q. Sun “An

Overview on Edge Computing Research”, IEEE

Access, Vol. 8, pp. 85714–85728, 2020.

[9] W. Suadi, S. Djanali, and R. Anggoro, “Ghost-

Cache CRFP Algorithm Simulator Based on

Trace and File System”, Indian Journal of

Computer Science and Engineering, Vol. 12, No.

4, pp. 827–832, 2021.

[10] A. Amer, I. Talkhan, R. Ahmed, and T. Ismail,

“An Optimized Collaborative Scheduling

Algorithm for Prioritized Tasks with Shared

Resources in Mobile-Edge and Cloud

Computing Systems”, Mobile Network

Applications, Vol. 27, pp. 1444-1460, 2022.

[11] B. Hu, Z. Cao, and M. Zhou, “Energy-

Minimized Scheduling of Real-Time Parallel

Workflows on Heterogeneous Distributed

Computing Systems”, IEEE Transactions on

Services Computing, Vol. 15, No. 5, pp. 2766-

2779, 2022.

[12] C. Huang and S. Shen, “Enabling Service Cache

in Edge Clouds”, ACM Transactions on Internet

of Things, Vol. 2, No.3, pp. 1-24, 2021.

[13] S. Barbarossa, S. Sardellitti, E. Ceci, and M.

Merluzzi, “The Edge Cloud: A Holistic View of

Communication, Computation, and Caching”,

Received: December 21, 2022. Revised: February 12, 2023. 496

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.39

Cooperative and Graph Signal Processing, pp.

419-444, 2018.

[14] S. Kumar, D. Vineeth, and A. Franklin “Edge

Assisted Dash Video Caching Mechanism for

Multi-Access Edge Computing”, In: Proc. of

2018 IEEE International Conference on

Advanced Networks and Telecommunications

Systems (ANTS), pp. 1-6, 2018.

[15] H. Wu, Y. Fan, Y. Wang, H. Ma, and L. Xing,

“A Comprehensive Review on Edge Caching

from the Perspective of Total Process:

Placement, Policy and Delivery”, Sensors, Vol.

21, No. 15, p. 5033, 2021.

[16] X. Chen, T. Gao, H. Gao, B. Liu, M. Chen, and

B. Wang, “A Multi-Stage Heuristic Method for

Service Caching and Task Offloading to

Improve the Cooperation between Edge and

Cloud Computing”, PeerJ Computer Science,

Vol. 8, p. 1012, 2022.

[17] X. Xia, F. Chen, Q. He, G. Cui, J. Grundy, M.

Abdelrazek, X. Xu, and H. Jin, “Data, User and

Power Allocations for Caching in Multi-Access

Edge Computing”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 33, No. 5,

pp. 1144-1155, 2022.

[18] Y. Huang and P. Mishra, “Vulnerability-Aware

Energy Optimization Using Reconfigurable

Caches in Multicore Systems”, In: Proc. of 2017

IEEE International Conference on Computer

Design (ICCD), pp. 241-248, 2017.

[19] X. Xia, F. Chen, Q. He, G. Cui, J. Grundy, M.

Abdelrazek, X. Xu, and H. Jin, “Online

Collaborative Data Caching in Edge

Computing”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 32, No. 2, pp.

281–294, 2021.

[20] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H.

Jin, and Q. He, “Constrained App Data Caching

over Edge Server Graphs in Edge Computing

Environment”, IEEE Transactions on Services

Computing, Vol. 15, No. 5, pp. 2635-2647, 2021.

[21] P. Apostolopoulos, E. Tsiropoulou, and S.

Papavassiliou, “Risk-Aware Data Offloading in

Multi-Server Multi-Access Edge Computing

Environment”, IEEE/ACM Transactions on

Networking, Vol. 28, No. 3, pp. 1405-1418,

2020.

[22] J. Liu, B. Bai, J. Zhang, and K. Letaief, “Cache

Placement in Fog-RANs: From Centralized to

Distributed Algorithms”, IEEE Transactions on

Wireless Communications, Vol. 16, No. 11, pp.

7039-7051, 2017.

[23] S. Bharathi, A. Chervenak, E. Deelman, G.

Mehta, M. Su, and K. Vahi, “Characterization of

scientific workflows”, In: 2008 Third Workshop

on Workflows in Support of Large-Scale Science,

Austin, TX, pp. 1-10, 2008.

[24] X. Tang, “Reliability-Aware Cost-Efficient

Scientific Workflows Scheduling Strategy on

Multi-Cloud Systems”, IEEE Transactions on

Cloud Computing, Vol. 10, No. 4, pp. 2909-2919,

2022.

