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Abstract: The Internet of Things (IoT) has become an infrastructure for various domain applications such as smart 

homes, smart cities, wearables, smart grids, etc. Due to these applications, the internet of things search engines has 

attained some attention from various researchers, industry, and users. The search throughput of IoT search engines is 

crucial because they must execute hundreds of spatial-time-keyword inquiries in a second. Moreover, IoT search 

engines use cloud resources to execute tasks. Some of the tasks might have a small workflow but some of the tasks 

might have a larger workflow and require more virtual machines. Instead of using the virtual machine the best option 

is to utilize a caching mechanism. In recent years, there are only a few methods that use the caching mechanism for 

the execution of the task. Furthermore, these methods are not reliable, and efficient and have not considered multi-

core edge-cloud computing. To overcome this issue, this paper proposes a high-reliability method using the cache-

failure mechanism for the multi-core edge-cloud computing architecture. The proposed High Reliability through 

cache-failure minimization (HRCFM) technique's main aim was to provide better tradeoffs during the execution of the 

task using the caching mechanism and reduce energy consumption. The results have been compared with the existing 

energy minimizing scheduling (EMS) and reliability (REL) technique in terms of execution time, power sum, power 

average, and energy consumption. The results have been compared and it shows that the proposed HRCFM technique 

reduces the time, energy consumption, power sum, and average by 83.3%, 90.92%, 38.44%, and 91.59% for EMS 

technique and 81.91%, 91.4%, 41.24% and 91.85% for REL technique respectively. 

Keywords: Internet of things, Workflow, Cache failure, Reliability, Multi-core, Edge-cloud. 

 

 

1. Introduction 

Globally, organizations are adopting 

transformational change, although in most instances 

organizations should re-evaluate the capacity of their 

current technological infrastructures to satisfy the 

needs of information growth, edge development, IoT, 

and remote workers. As a result of the fact that 

information is created and consumed throughout 

multiple clouds, multi-core edge clouds, data centres, 

and other locations, there exists a substantial risk that 

data warehouses will form all across organizations 

[1]. This will restrict an organization's tendency to 

begin making an appropriate decision that are driven 

by data. Although the vast majority of information 

still is stored on-premises, it is anticipated that the 

number of different kinds of information which are 

gathered, analysed and maintained only at multi-core 

edge cloud outside of standard data centres or cloud 

infrastructure will rapidly increase in the not-too-

distant future [2]. This is not an easy effort to manage 
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workstreams among all of those distant locations in 

addition to those that are located on-premises to 

assure every time connection, security, and 

compliance in the most cost-effective way possible 

[3]. It is necessary to have infrastructures, capacities, 

advising and consultancy services that allow 

businesses to handle, safeguard, and capitalize on all 

of their data, from the multi-core edge cloud 

platforms to the cloud [4]. Further, temporarily 

saving files or data enabling fast retrieving by users 

is nothing new; caching has served as the standard 

method for this for a long time [5]. As the need for 

digital resources increases around the world, from 

major cities to remote areas, edge computing has 

emerged as the leading method for bridging the gap 

between developers and online users [6]. Edge 

caching alleviates strain on large networks and boosts 

content distribution by relocating memory storage 

closest to end users [7]. This is achieved by 

establishing a structure in the memory space between 

central processing units, edge nodes, and local 

storage devices. In the edge computing environment, 

conventional data centers may have the most capacity, 

but their capabilities are rarely utilized by network 

end users [8]. Comparatively, edge servers can only 

store a little amount of data, but they contain files that 

are accessed often. Last but not least, local storage 

takes up the least space yet is where you'll find 

frequently accessed data and files [9]. As edge 

caching provides better results and there is a 

probability that there would be some failure during 

the retrieval of the information from the multi-core 

edge cloud. Hence, we propose a model which 

provides high reliability through cache failure 

minimization technique for workload execution 

under multi-core edge-cloud platforms. The proposed 

method comes with a multi-core edge-cloud platform 

that can execute workloads with a high level of 

reliability by employing a strategy to minimize cache 

failure. Further, to ensure that the presented multicore 

architecture and scheduling techniques are effective, 

we must first put them to the test using a variety of 

data-intensive and scientific workloads from the 

DAG. 

In section 2, various studies have been conducted 

and the significance of the proposed work has been 

given. Further, in section 3, the proposed technique 

for scheduling scientific workload in a cloud 

computing environment using the caching technique 

has been given. In section 4, the results have been 

discussed with two existing methods. Finally, in 

section 5, the conclusion along with the future work 

has been given for the proposed model.  

 

 

2. Literature survey 

In [10], developed a resource optimizing 

approach for finding optimal system resources 

allotment to assure optimal availability and reliability 

at the minimum possible cost. This approach can 

utilize one of two resource optimization iterations, 

based on the traffic. Experiments outcome shows 

cooperative task scheduling is better than non-

cooperative like Shortest-Job First-Scheduling and 

Earliest-Deadline First-Scheduling. However, the 

model failed reduce energy during task scheduling. In 

[11], they suggested an approach to minimize 

scheduling length, hence easing reliability constraints. 

To reduce energy consumption, they also suggested a 

processor-merging technique and a slack-time 

reclaiming method. The slack time method reduces 

task and processor speeds to save energy for 

execution of parallel workflows. However, the model 

to meet energy constraint result in increased 

execution time and doesn’t provide information on 

how cache resource optimization can be done.  

In [12], they develop S-Cache to provide edge 

cloud cache. They've established a novel cache-

replacement technique to enhance hit rates. The 

developed cache-replacement technique outperforms 

least frequently (LFU) and greedy dual size 

frequency (GDSF). In each of these two databases, 

the aggregate cache hit-rates jump by 39% as well as 

the aggregate cache-replacement latency drops by 

41% and 38%. multi-core edge cloud functionality, 

such as caching, computing, communication, and 

other processing, has been surveyed in [13]. The 

purpose of this review is to show how cache 

processing techniques can be essential in making this 

future a reality. In [14], the authors offer a video 

caching method built on multi edge-computing 

(MEC), wherein only certain maximum possible bit-

rate video was cached and transcoded towards the 

desired lower bit-rate variant utilizing its processing 

capabilities just at MEC. They demonstrate that their 

approach improves the cache hit-rate, reduces the 

backhaul traffic burden, and speeds up video load 

time compared to the standard store and forward 

caching methodology. Nonetheless, how cache 

optimization meeting energy constraint is not 

addressed in their work.  In [15], researchers analysed 

previous research from their perspective. In 

comparison to certain other literature reviews, theirs 

contains comprehensive research on the complete 

edge caching method, from policy development and 

caching location optimizations to content distribution. 

In [16], researchers worked on collaborative service-

caching and task-offloading to improve edge-server 

and cloud-resource cooperation. In this approach, 
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they first framed this issue as mix-integer-nonlinear-

programming, which really is NP-hard. Then, a three-

stage heuristic for completing the task in polynomial 

time was proposed. In its early stages, this approach 

attempted to pre-offload as many tasks as possible to 

the cloud. Their method improved the efficiency of 

cloud-offloaded tasks by re-offloading part of them 

to edge-resources. Multiple mock experiments were 

used to evaluate their strategy. With respect to user 

happiness, resource effectiveness, and processing 

speed, their solution is up to 155%, 56.1%, and 155% 

better than both traditional and state-of-the-art 

alternatives respectively. However, these models 

have been tested using non-direct acyclic graph 

(DAG) application. 

In [17], they have proposed an approach that 

explores Data, User, and power allocation (DUPA3) 

to serve as many consumers as necessary while 

maximizing the total data rate. First, they developed 

DUPA3 as a future game that had at least one Nash 

equilibrium and presented DUPA3. Further, in the 

results they explained that the dynamic cache 

reconfiguration improves energy consumption and 

efficiency in single-core computers. However, the 

model will exhibit poor performance for execution of 

DAG application. In [18], offers a static profiling-

based method enabling vulnerability-aware energy-

optimization in real-time multicore systems. Their 

method allows easy discovery of cache 

configurations and partition schemes for energy-

optimization while meeting job constraints and 

vulnerability limits. Compared to state-of-the-art 

alternatives, their technique saves 19.2% more 

energy and reduces vulnerability by 49.3%. 

Nonetheless, work only for task with no 

interdependencies. In [19], researchers explored 

collaborative-edge data-caching (CEDC) issue to 

minimize network expenses including data caching, 

data migration, and QoS penalties. They developed a 

CEDC-O, an online method, to tackle the problem 

throughout all time periods. CEDC-O outperforms 

two main approaches on a real-world data set. 

Similarly, In [20], extended the work of [19] and 

proposed CEDC-IP for Integer-Programming CEDC. 

They also revealed the approximations ratio of 

CEDC-A, a method for quickly finding extensive 

CEDC solutions. Real-world and synthetic data are 

used to evaluate CEDC-IP and CEDC-A. The results 

show that the existing four popular approaches failed 

to match the proposed model. Nonetheless, the ILP 

formulation takes significantly higher computation 

overhead. In [21], they build a non-cooperative game 

among users, compute the corresponding Pure-Nash-

Equilibrium (PNE), also known as the optimum data-

offloading, and provide a decentralized low-

complexity technique that responds to the PNE. 

Through modelling and testing, the efficiency of the 

proposed system as well as its fundamental principles 

are demonstrated. However, offloading of task 

doesn’t consider energy constraint in scheduling 

reconfiguration. In [22], they examined cache-

placement in Fog-RANs using adjustable 

transmission algorithms and user-content options. An 

approximate technique is offered to reach a solution 

around a constant-factor of either the best. In 

distributed system, a belief propagation-based 

distributed technique with iterative updates at each 

base station based on local data is provided. 

Simulations demonstrate that transmissions-aware 

caching can lower customers' average download 

delay by utilizing caching and cooperation 

improvements. However, the model failed to 

consider energy-makespan scheduling problem. Due 

to all these above issues found in the literature survey, 

we propose the significance of the research work as 

follows 

1. One way that multi-core edge-cloud platforms 

can execute workloads with a high level of 

reliability is by employing a strategy to minimize 

cache failure. 

2. To ensure that the presented multicore 

architecture and scheduling techniques are 

effective, we must first put them to the test using 

a variety of data-intensive and scientific 

workloads from the DAG. 

3. Model 

The purpose of this research is to develop a 

methodology for scheduling scientific workloads to 

reduce the number of Last-Level-Cache (LLC) 

failures. Because of the difficulty in allocating 

resources to several users, the cache-aware resource 

consumption algorithm was developed in this 

research. In the next stage, the computing-node is 

moved to a new location to cut down on LLC-failures 

in the distributed computing setting. The concept of 

allocation of resources consists of two stages. The 

first stage is for all virtual-computing-nodes (VCNs) 

to pool their cache memory and share it among the 

working nodes. This helps increase the system's 

throughput and storage space.  

Further, the notation table of all the variables used in 

the equations has been denoted using Table 1. 

When an LLC fails in the second stage of the 

computing environment, the scheduler will modify 

the virtual-computing-machines (VCMs) on the 

failing nodes. Algorithm 1 depicts the suggested 

technique operational flow. Specifically, the whole  
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Table 1. Notation Table 

Variable Definition 

𝑃(𝑡) Energy-dissipation 

𝑒(𝑡) Consumption of energy under 

the heterogenous cloud 

𝑀𝑎 Operational interval 

𝐵𝑘 Processor core 

𝑣𝑘(𝑡) Usage of processing core 𝐵𝑘 

𝑉𝑘 Resource consumption sets 

𝑉 =  [𝑉1, …… . , 𝑉𝑖]
𝑇 for every 

frequency range [𝑅↑,𝑘, , 𝑅↓,𝑘] 

for every processor core 𝐵𝑘 

{𝑎𝑘(𝑡)|1 ≤ 𝑘
≤ 𝑖 } 

Cache-memory partitioning 

size 

{𝕗𝑘(𝑡)|1 ≤ 𝑘 ≤ 𝑖} The operation frequency of the 

processing cores 

𝑎𝑘(𝑡) Size of the 𝐿2 𝑐𝑎𝑐ℎ𝑒 partitions 

 𝕗𝑘(𝑡) Frequency of the processing 

element 

 𝕗𝑘↑(𝑡) Peak frequency at a given 𝐵𝑘 

𝐴 The entire capacity of 

𝐿2 𝑐𝑎𝑐ℎ𝑒 

𝑀𝑘𝑝 Task operational time 

𝑠𝑘𝑝(𝑡) Frequency-independent phase 

 𝐷𝑘𝑝, 𝐻𝑘𝑝  and 𝑋𝑘𝑝 Quantifiable characteristics of 

jobs 

𝑋𝑘𝑝 Size of the operational-set 

within that job 

ℎ𝑘(𝑡) Approximated processing-

element resource utilization 

𝑞𝑘𝑝 Job-rate within the operational 

time period 𝑀𝑘𝑝 

∆ℎ𝑘(𝑡) Linear function with regard to 

𝑙𝑘(𝑡) 
∆𝑎𝑘(𝑡) Difference between 𝑎𝑘(𝑡) and 

𝑎𝑘(𝑡 − 1) 
𝐸 The estimated range for the 

device's pattern based on the 

computations performed 

𝑆𝑘 , 𝑌𝑘, and 𝐶𝑘 Processing element power 

consumption of VCN 

𝒟ℊ Caching benefits 

𝒯𝑔 Size of the data being 

processed by the task 

𝒰𝑠𝑒𝑒𝑘  Time required to place the data 

in the cache partition 

𝒬𝑔 The ease with which the data 

may be retrieved from the 

cache 

𝒟↓ The worst possible outcome of 

cache cost benefits 

𝒟↑ Best possible outcome 

𝒬ℓ Probability with which data 

blocks ℓ are accessed 

𝑎𝑐𝑐𝑒𝑠𝑠ℓ The frequency with which data 

blocks ℓ are accessed 

𝒬ℓ𝒿  The probability of data blocks 

in the session  𝓍𝒿 

ℴ Partition size of data blocks for 

a certain job 

𝒯ℓ Standard data block size 

𝑎𝑐𝑡𝑖𝑣𝑒ℓ The active mode of data blocks 

ℓ 

ℛ↓ Least favourable outcome of 

the cost benefit of replacing the 

cache 

ℛ↑ Most favourable outcome of 

the cost benefit of replacing the 

cache 

 

VCMs at every processing-node are sorted as per 

LLC failures and afterward combined all together in 

compliance with respective failed LLCs of shared 

memory. Group A consists of all VCMs that 

experienced a catastrophic failure of their LLC, while 

Group B contains all VCMs that had the maximum 

number of L3 cache hits. Group A consists of VCMs 

that have a low rate of LLC failure, while Group B 

consists of VCMs that have a low rate of last-level 

caches. Work in the proposed scheduling model is 

carried out utilizing VCMs from either of the two 

categories. As a result, the scheduler can bring into 

existence not one but two types of VCMs, those with 

the fewest LLC failures and those with the most. In 

addition, the suggested model switches VCMs if 

there is a large disparity in the failure rates of the last 

few levels of caches. By gradually decreasing the 

frequency of cache failure only at the final level in a 

heterogeneous computing system, the suggested 

model accomplishes its scheduling in two stages.  

Through the use of optimal cache optimization-

based workload-scheduling, we provide a method for 

making the most of available resources in a cloud-

computing environment that is heterogeneous (i.e., 

multi-core). By eliminating the dynamic boundary 

minimizing issue, the technique helps to lower the 

energy consumption of cloud-computing's computing 

nodes by decreasing their reliance on the cache. The 

following equation is used to calculate the energy-

dissipation 𝑃(𝑡)  in a heterogeneous computing 

system. 

 

𝑃(𝑡) = 𝑒(𝑡)𝑀𝑎 ,                                   (1) 

 

Where 𝑒(𝑡) represents the overall energy consumed 

under the heterogeneous-cloud conceptual model 

processing-element, which is mainly comprised of 

the operating frequency-level of the processor core 

𝐵𝑘  as well as the current 𝐿2 cache size. This is in 

contrast to 𝑃(𝑡) , which presents the energy  
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Algorithm 1: Proposed technique for scheduling 

scientific workload in the cloud computing 

environment 

Step 1 𝑺𝒕𝒂𝒓𝒕 
Step 2 𝑪𝒐𝒎𝒑𝒖𝒕𝒆 and establish 𝑁𝕃 (i.e., last 

level cache miss of each virtual 

computing machine (VCM). 

Step 3 𝑪𝒐𝒎𝒑𝒖𝒕𝒆 and establish 𝑊𝕃 (i.e., 

last level cache miss of virtual 

computing machines in every 

processing node.    

Phase 1  

Step 4 𝑭𝒐𝒓 𝒆𝒂𝒄𝒉 processing node 𝑗 from 1 

to 𝑦 do (i.e, establish the last level 

cache failure of each virtual 

computing machine in processing 

node 𝑗. 
Step 5        𝑛𝑥𝑗  ← collects (𝑗) 

Step 6        𝑊𝕃  ← 𝑠𝑜𝑟𝑡 (𝑛𝑥𝑗)  

(i.e., arrange virtual computing node 

with last level cache failures). 

Step 7        𝑶𝒃𝒕𝒂𝒊𝒏 (𝑊𝕃) 
Step 8 𝑬𝒏𝒅 𝒇𝒐𝒓 

Phase 2 Obtain processing node with maximal 

and minimal last level cache failures 

Step 9 MaximalNode ← find 

MaximalNode(𝑁𝕃) 
Step 10 MinimalVCM ← findminimalVCM(

MinimalNode) 

// establish (i.e., find) a virtual 

computing machine that is composed 

of maximal and minimal last level 

cache failures 

Step 11 MaximalVCM ← findmaximalVCM(

MaximalNode) 

Step 12 MinimalVCM ← findminimalVCM(

MinimalNode) 

Step 13 if 𝑇 <  𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒𝕃𝕃ℂ −
 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑁𝑜𝑑𝑒𝕃𝕃ℂ   
then 

Step 14 interchange 

(maximalVCM,mimimalVCM) 

Step 15 𝑺𝒕𝒐𝒑. 
 

consumed under heterogeneous cloud conceptual 

model processing-element for a specific (i.e., 𝑡𝑡ℎ ) 

time duration. After that, the capacity of the 𝐿2 cache 

as well as the workload of the system will, for the 

most part, remain the same throughout the specified 

time of operation 𝑀𝑎. In this instance, 𝑀𝑎 represents 

the operational interval to release multiple different 

information regarding every workload task during the 

process of 𝑡𝑡ℎ operational period. 

The below equation can be used to determine the 

optimal cache partition-size and frequency to achieve 

a balance between minimizing energy usage and 

maximizing performance. 

 

min
𝑎𝑘(𝑡)|1 ≤𝑘≤𝑖,𝕗𝑘(𝑡)|1≤𝑘≤𝑖 

∑ [𝑉𝑘 − 𝑣𝑘(𝑡)]
2,𝑖

𝑘=1         (2) 

 

𝑚𝑖𝑛
𝑎𝑘(𝑡)|1 ≤𝑘≤𝑖,𝕗𝑘(𝑡)|1≤𝑘≤𝑖 

𝑃(𝑡)           (3) 

 

where 𝑣𝑘(𝑡) represents the usage of processing core 

𝐵𝑘  in the 𝑡𝑡ℎ  operational period, 𝑉𝑘  represents 

resource consumption sets 𝑉 = [𝑉1, …… . , 𝑉𝑖]
𝑇  for 

every frequency range [𝑅↑,𝑘, , 𝑅↓,𝑘]  for every 

processor core 𝐵𝑘 , and to minimize variation in 

processor-core utilization 𝑣𝑘(𝑡)  and utilization-sets 

(𝑉𝑘) , the cache-memory partitioning size is 

represented by {𝑎𝑘(𝑡)|1 ≤ 𝑘 ≤ 𝑖 } , and the 

operation frequency of the processing cores is 

represented by {𝕗𝑘(𝑡)|1 ≤ 𝑘 ≤ 𝑖}  at the 𝑡𝑡ℎ 

operational period. There are 2 cache elements, 

𝐿1 𝑐𝑎𝑐ℎ𝑒 and 𝐿2 𝑐𝑎𝑐ℎ𝑒 that make up the processor 

element of a cloud-computing system. In a multi-core 

sharing computing architecture, such caches are 

accessible by multicore processors at once. In this 

setup, every single processor is DVFS-ready. This 

will help save a considerable amount of the available 

energy resources. Cache-memory is divided up and 

used for many different purposes. Taking into 

account the amount of the processing-cores, 𝐵𝑘 , 

𝑎𝑘(𝑡) represents the size of the 𝐿2 𝑐𝑎𝑐ℎ𝑒 partitions. 

The size of the peak frequency at a given 𝐵𝑘   is 

denoted by  𝕗𝑘↑(𝑡). The constraints given below in Eq. 

(4) and Eq. (5) must be met by Eq. (2) and Eq. (3). 

 

𝑅↓,𝑘 ≤ 𝕗𝑘(𝑡)  ≤  𝑅↑,𝑘   𝑤ℎ𝑒𝑟𝑒, (1 ≤ 𝑘 ≤ 𝑖)     (4) 

 

∑ 𝑎𝑘(𝑡)  ≤ 𝐴
𝑖
𝑘=1                           (5) 

 

where 𝐴 is the entire capacity of 𝐿2 𝑐𝑎𝑐ℎ𝑒 that can 

be used in a cloud environment with varying 

hardware configurations. Eq. (2) shows the least 

amount of energy that will be wasted when carrying 

out a specific job inside a heterogeneous cloud 

computing architecture while using a specific amount 

of power generation 𝑒(𝑡)  for the 𝑡𝑡ℎ  operational 

period. The processor frequency is depicted by Eq. 

(3) and can be found inside the range of every 

processor core when the presented model is used. The 

difference in frequency-range is dependent on the 

type of processing-element that is being employed. 

The sum of all of the cache memory that has been 

partitioned is depicted by Eq. (5), and it is extremely 

close to being equal to the entire memory that is 
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accessible. Cache-aware resource utilization 

approach adjusts the caching partition-size and its 

core frequency for every processor core to minimize 

the difference between resource-utilization 𝑣𝑘(𝑡) 
and utilization sets 𝑉𝑘 . Nevertheless, the operation 

time of a heterogeneous-computational system is 

impacted by the expense of optimizing frequency 

statically based on varied cache-partition sizes. 

Therefore, a dynamic optimizing approach is 

proposed to reduce processing time. Within 𝑡𝑡ℎ 

operational period, the model keeps the balance 

between 𝑣𝑘(𝑡), the central frequency 𝕗𝑘(𝑡), and the 

optimization of feature 𝑎𝑘(𝑡) . Specifically, the 

dynamic optimization model provides the best 

possible correlation between the parameters 𝑏𝑘𝑝(𝑡), 

task operational time 𝑀𝑘𝑝, optimizing feature 𝕗𝑘(𝑡), 

and 𝑎𝑘(𝑡)  for each core 𝐵𝑘  in the 𝑡𝑡ℎ   operational 

period. The following equation describes two 

possible strategies for optimizing the relation 

characteristic 𝑏𝑘𝑝(𝑡) , one of which is frequency 

independent. 

 

𝑏𝑘𝑝(𝑡) = 𝑠𝑘𝑝(𝑡) + 𝑖𝑘𝑝. (𝕗𝑘(𝑡))
−1
 ,              (6) 

 

Since the computation time of input and 

output devices is not based on the frequencies of each 

core and 𝑖𝑘𝑝. (𝕗𝑘(𝑡))
−1

, the notation 𝑠𝑘𝑝(𝑡) is used 

to describe the frequency-independent phase taking 

into account the relevant task operational time 𝑀𝑘𝑝. 

Since the frequencies of the cores in operation affects 

the shape of the segment depicted by 𝑖𝑘𝑝. (𝕗𝑘(𝑡))
−1

, 

we call this the frequency dependent phase.  𝑠𝑘𝑝(𝑡) is 

the amount of cache-memory set aside for each task's 

operational time 𝑀𝑘𝑝  when a given input and 

output device is excluded from the job execution. 

The optimum link between cache-failure and cache-

memory size is mediated by the parameter 𝑠𝑘𝑝(𝑡). 

The following equation provides an approximation of 

the optimal relationship between 𝑠𝑘𝑝(𝑡), 𝑎𝑘𝑝(𝑡), and 

assigned caches for the heterogeneous computing 

environment 𝐵𝑘. 

 

𝑠𝑘𝑝(𝑡) =  

 {
𝐷𝑘𝑝𝑎𝑘𝑝(𝑡) + 𝐻𝑘𝑝        0 ≤  𝑎𝑘𝑝(𝑡)  ≤ 𝑋𝑘𝑝
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                 𝑎𝑘𝑝(𝑡)  ≥  𝑋𝑘𝑝   

  (7) 

 

where  𝐷𝑘𝑝 , 𝐻𝑘𝑝  and 𝑋𝑘𝑝  are quantifiable 

characteristics of jobs, and 𝑀𝑘𝑝 is an instance of a job 

operational session and 𝑋𝑘𝑝  is the size of the 

operational-set within that job. Eq. (7) demonstrates 

that the cache-memory capacity enhances and helps 

minimize the operation time period whenever the size 

of the operation set 𝑋𝑘𝑝 is larger than 𝑎𝑘𝑝(𝑡),. Cache 

failure is also worse and cannot be fixed by adding 

more caching memory if the size of the operation set 

𝑋𝑘𝑝  is smaller than  𝑎𝑘𝑝(𝑡) . The below equation 

establishes the relationship between the overall cache 

size  𝑎𝑘𝑝(𝑡) provided to the processor core 𝐵𝑘  in a 

heterogeneous computing system, the total 

independent frequency and operation session 

instance of each job in that system, and the total cache 

size  𝑎𝑘𝑝(𝑡), of all systems in the system. 

 

𝑠𝑘(𝑡) =  

 {
∑ 𝐷𝑘𝑝

′𝑎𝑘(𝑡) + ∑ 𝐻𝑘𝑝     𝑝𝑝 0 ≤  𝑎𝑘(𝑡)  ≤ 𝑋𝑘
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                          𝑎𝑘(𝑡)  ≥  𝑋𝑘    

    (8) 

 

where 𝐷𝑘𝑝
′ =

𝐷𝑘𝑝𝑎𝑘𝑝(𝑡)

(𝑎𝑘(𝑡))
 and  𝑋𝑘 = ∑ 𝑋𝑘𝑝𝑝   

Cumulating Eq. (7) for each task executed on the  𝐵𝑘. 

heterogeneous computational processor elements are 

depicted in Eq. (8). Therefore, the below equation 

describes how the suggested architecture helps to 

reduce interference in shared caches used by various 

processing elements. 

 

ℎ𝑘(𝑡) =  ∑ 𝑖𝑘𝑝𝑝 𝑞𝑘𝑝 . (𝕗𝑘(𝑡))
−1
+  

 ∑ 𝐷𝑘𝑝
′𝑞𝑘𝑝𝑎𝑘(𝑡) + ∑ 𝐻𝑘𝑝 𝑞𝑘𝑝𝑝𝑝                 (9) 

 

where ℎ𝑘(𝑡)  represents the approximated 

processing-element resource utilization and 𝑞𝑘𝑝 

represents the job-rate within the operational time 

period 𝑀𝑘𝑝  for the heterogeneous computing 

system 𝐵𝑘. where ℎ𝑘(𝑡) represents the approximated 

processing-element resource utilization and 𝑞𝑘𝑝 

represents the job-rate. By utilizing Eq. (9), it is 

possible to demonstrate that ℎ𝑘(𝑡) is proportionally 

inverse concerning the frequency of the processing 

element  𝕗𝑘(𝑡). The following equation describes the 

estimated variance in resource use that occurs during 

∆ℎ𝑘(𝑡) for the heterogeneous computing framework 

𝐵𝑘. 

 

∆ℎ𝑘(𝑡) =  𝑙𝑘(𝑡)∑ 𝑖𝑘𝑝𝑝 𝑞𝑘𝑝 + ∆𝑎𝑘(𝑡)∑ 𝐷𝑘𝑝
′𝑞𝑘𝑝𝑝   

(10) 

 

where ∆ℎ𝑘(𝑡) is a linear function with regard to 𝑙𝑘(𝑡) 

which is defined as the difference between (
1

 𝕗𝑘(𝑡)
) 

and (
1

 𝕗𝑘(𝑡−1)
) , and ∆𝑎𝑘(𝑡)  is defined as the 

difference between 𝑎𝑘(𝑡) and 𝑎𝑘(𝑡 − 1). In Eq. (10), 

change the direct frequency utilization of the 

processing element  𝕗𝑘(𝑡) to 𝑙𝑘(𝑡). The solution to 
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Eq. (10) demonstrates that the property ∆ℎ𝑘(𝑡) 
proportionate concerning 𝑖𝑘𝑝 and 𝐷𝑘𝑝

′ is true. As a 

result, the cost function of a heterogeneous 

computational environment can be minimized by 

utilizing a regulator for heterogeneous processing 

element called  𝐵𝑘 and the equation that follows. 

 

𝑍𝑘(𝑡) =  ∑ ‖𝑣𝑘(𝑡 + 𝑐 − 1|𝑡) −  𝛽𝕗𝑘(𝑡 + 𝑐 −
𝐸
𝑐=1

1|𝑘)‖2 + ‖𝑢𝑘(𝑡|𝑡) − 𝑢𝑘(𝑡 − 1|𝑡)‖
2      (11) 

 

where,  

 

𝑅↓,𝑘 ≤ 𝕗𝑘(𝑡)  ≤  𝑅↑,𝑘                     (12) 

 

𝑎𝑘(𝑡) ≤  𝑎𝑞𝑢𝑜𝑡𝑎,𝑘                      (13) 

 

Where 𝛽𝕗𝑘(𝑡 + 1|𝑡)  is the pattern depicting how 

resource utilization influences/features 𝛽𝕗𝑘(𝑡 + 1|𝑡) 
must transform its current utilization influence 𝑣𝑘(𝑡) 

to 𝑉𝑘, 𝑢𝑘(𝑡) =  [
𝑙𝑘(𝑡)

∆𝑎𝑘(𝑡)
]. In case 𝐸 of an operational 

session, 𝐸  represents the estimated range for the 

device's pattern based on the computations performed. 

When using a heterogeneous computing architecture 

𝐵𝑘, the cache size 𝑎𝑘(𝑡) is constrained by 𝑎𝑞𝑢𝑜𝑡𝑎,𝑘 to 

ensure Eq. (5). Consequently, the cache memory can 

be efficiently optimized by minimizing the least 

square problem using a dynamic model. The 

following equation describes an effective resource 

use model that can be used to optimize power 

consumption. 

 

𝑒𝑘(𝑡) =  𝑆𝑘𝕗𝑘(𝑡)
3 + 𝑌𝑘𝑎𝑘(𝑡) + 𝐶𝑘            (14) 

 

where,  

 

𝑅↓,𝑘 ≤ 𝕗𝑘(𝑡)  ≤  𝑅↑,𝑘                (15) 

 

𝑎𝑘(𝑡) ≤  𝑎𝑞𝑢𝑜𝑡𝑎,𝑘                  (16) 

 

Where 𝑆𝑘 , 𝑌𝑘 , and 𝐶𝑘  represent the processing 

element power consumption of VCN in a 

heterogeneous computing system. Various shared 

caches and processing elements contribute to the 

overall power consumption of a heterogeneous 

computational system. Power dissipation  𝐶𝑘 and the 

dynamic power component 𝑆𝑘𝕗𝑘(𝑡)
3  determine the 

overall power usage. Therefore, the proposed model 

can be used to reduce the amount of energy used by 

the cache memory. In addition, the caching cost is 

computed in this study so that the advantage of 

caching may be calculated. The larger the data, the 

greater the cost of caching it, therefore keep that in 

mind while estimating the benefit of caching your 

workload tasks' data. Cache benefits are often 

quantified by how much faster subsequent data 

accesses are. Therefore, caching is most beneficial 

when reaction times are reduced. As a result, the 

following equation is used to explain the benefits of 

data caching in terms of cost. 

 

𝒟ℊ = {
0                                            𝒬𝑔 = 0

𝒬𝑔 ∗ (𝒰𝑠𝑒𝑒𝑘 +
𝒯𝑔

ℬ𝒲𝑐𝑎𝑐ℎ𝑒
) 𝒬𝑔 ≠ 0

      (17) 

 

Where 𝒟ℊ depicts caching benefits, 𝒯𝑔 represents the 

size of the data being processed by the task, 𝒰𝑠𝑒𝑒𝑘 

represents the time required to place the data in the 

cache partition, and 𝒬𝑔  represents the ease with 

which the data may be retrieved from the cache. In 

this case, the equation below describes the maximum-

minimum advantages of cache cost for fixing data 

comparability problems. 

 

𝒟𝐵𝑒𝑛 =
(𝒟ℊ−𝒟↓)

(𝒟↑−𝒟↓)
                         (18) 

 

where 𝒟↓  reflects the worst possible outcome of 

cache cost benefits and 𝒟↑ the best possible outcome. 

There may also be a cost associated with clearing the 

cache and recaching the data. This work uses the 

number of unused (i.e. garbage) partitions in a data 

set as the metric for determining the cost of 

replacement. These data are less likely to be replaced 

if the respective data blocks are in active/hot mode. 

As a result, they have a lower replacement cost. 

Taking into account window sampling x, the 

following equation can be used to define the access 

probability of each data block: 

 

𝒬ℓ =
𝑎𝑐𝑐𝑒𝑠𝑠ℓ

𝑎𝑐𝑐𝑒𝑠𝑠
                            (19) 

 

where 𝒬ℓ describes the probability with which data 

blocks ℓ  are accessed, 𝑎𝑐𝑐𝑒𝑠𝑠ℓ  represents the 

frequency with which data blocks ℓ are accessed, and 

access represents the total number of times data 

blocks ℓ  are accessed in period 𝓍 . Separate the 

session time into  𝓍1, 𝓍2, … , 𝓍ℴ  sub-windows. 

Following that, we determine the probability of 

accessing data blocks ℓ during the various parts of a 

session by doing the following. 

 

{
 

 
𝒬ℓ1 = 𝑎𝑐𝑐𝑒𝑠𝑠ℓ1 𝑎𝑐𝑐𝑒𝑠𝑠1⁄

𝒬ℓ2 = 𝑎𝑐𝑐𝑒𝑠𝑠ℓ2 𝑎𝑐𝑐𝑒𝑠𝑠2⁄
…

𝒬ℓℴ = 𝑎𝑐𝑐𝑒𝑠𝑠ℓℴ 𝑎𝑐𝑐𝑒𝑠𝑠ℴ⁄

                 (20) 
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With 𝒬ℓ𝒿  representing the probability of data blocks 

in the session  𝓍𝒿 , 𝑎𝑐𝑐𝑒𝑠𝑠ℓ𝒿  representing the 

frequency with which data block ℓ is accessed in the 

session 𝓍𝒿 , and 𝑎𝑐𝑐𝑒𝑠𝑠𝒿   representing the overall 

frequency with which all data blocks are accessed in 

a session 𝓍𝒿. The following equation can be used to 

get the number of active mode data blocks, ℓ. 

 

𝑎𝑐𝑡𝑖𝑣𝑒ℓ =
𝒬ℓ2
𝒬ℓ1

∗
𝒬ℓ3
𝒬ℓ2

∗
𝒬ℓ4
𝒬ℓ3

∗
𝒬ℓ5
𝒬ℓ4

…∗
𝒬ℓℴ
𝒬ℓℴ−1

=
𝒬ℓℴ
𝒬ℓ1

 

(21) 

 

As a result, the following equation can be used to 

describe the expense of data replacement 

 

ℛ𝑔 = ∑
𝒬ℓ

𝑎𝑐𝑡𝑖𝑣𝑒ℓ∗𝒯ℓ

ℴ
ℓ=1                     (22) 

 

where ℴ represents the partition size of data blocks 

for a certain job, 𝒯ℓ represents the standard data block 

size, 𝑎𝑐𝑡𝑖𝑣𝑒ℓ  represents the active mode of data 

blocks ℓ, and  𝒬ℓ  represents the data block access 

probability for session 𝓍. In a manner analogous to 

the cache cost, we use Max-Min for the computation 

of the replacement cost as follows: 

 

ℛ𝐵𝑒𝑛 =
(ℛ−ℛ↓)

(ℛ↑−ℛ↓)
                             (23) 

 

where ℛ↓  illustrates the least favorable outcome of 

the cost benefit of replacing the cache, and ℛ↑ depicts 

the most favorable outcome of the cost-benefit of 

replacing the cache. Therefore, by utilizing the 

proposed model, we can bring about excellent 

tradeoffs between reducing the amount of energy that 

is lost and boosting the system performance of a 

heterogeneous cloud computing environment. This is 

experimentally demonstrated in the section that 

follows. 

4. Results and discussions 

In this section, the results have been compared 

with the existing EMS [11] method. The results have 

been compared in terms of total simulation time, 

power sum, power average, and energy consumption. 

The Inspiral workload is used for validating the 

performance of our proposed model and existing 

model. The Inspiral workload is memory and CPU 

intensive and is used for analyzing binary neutron 

stars and black holes. More details of workload can 

be obtained from [23]. 

 

 

 

 
Figure. 1 Total simulation time 

4.1 Total simulation time 

In Fig. 1, the total simulation time required for the 

execution of the different number of tasks has been 

presented. The existing EMS [11] and REL [24] 

techniques have been compared with the proposed 

HRCFM technique. When compared with the 

existing EMS technique and HRCFM technique, the 

proposed HRCFM technique performs better by 

69.93%, 82.125%, 89.23%, and 92.22% for Insipral 

30, 50, 100 and 1000 respectively for total simulation 

time. Further, when compared with the REL 

technique, the HRCFM technique performs better by 

66.57%, 80.44%, 88.67%, and 91.97% for Insipral 30, 

50, 100, and 1000 respectively for total simulation 

time. The proposed HRCFM technique consumes 

less time for the execution of the task when compared 

with the existing EMS and REL techniques by 83.3% 

and 81.91% respectively.  

4.2 Power sum 

In Fig. 2, the power sum required for the 

execution of the different number of tasks has been 

presented. The existing EMS [11] and REL [24] 

techniques have been compared with the proposed 

HRCFM technique. When compared with the 

existing EMS technique and HRCFM technique, the 

proposed HRCFM technique performs better by 

82.37%, 89.51%, 93.68%, and 98.13% for Insipral 30, 

50, 100, and 1000 respectively for power sum. 

Further, when compared with the REL technique, the 

HRCFM technique performs better by 83.44%, 

89.88%, 93.74%, and 98.29% for Insipral 30, 50, 100, 

and 1000 respectively for power sum. The proposed 

HRCFM technique consumes less power sum for the 

execution of the task when compared with the 

existing EMS and REL techniques by 90.92% and 

91.34% respectively.  
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Figure. 2 Power sum 

 

 
Figure. 3 Power average 

 

 
Figure. 4 Energy consumption 

4.3 Power average 

In Fig. 3, the power average required for the 

execution of the different number of tasks has been 

presented. The existing EMS [11] and REL [24] 

techniques have been compared with the proposed 

HRCFM technique. When compared with the 

existing EMS technique and HRCFM technique, the 

proposed HRCFM technique performs better by 

41.357%, 41.356%, 41.355%, and 29.72% for 

Insipral 30, 50, 100, and 1000 respectively for power  

 

Table 2. Comparison Table 

 EMS [11] REL [24] HRCFM 

[Proposed] 

Reliability No Yes Yes 

Multi-Cloud No Yes  Yes 

Energy 

Optimization 

Yes No Yes 

Workload 

Type 

Small-

Large 

Small-

Large 

Small-

Large 

Cache 

Utilization 

No No Yes 

 

average. Further, when compared with the REL 

technique, the HRCFM technique performs better by 

43.01%, 43.80%, 44.57%, and 33.58% for Insipral 30, 

50, 100, and 1000 respectively for power average. 

The proposed HRCFM technique consumes less 

power on average for the execution of the task when 

compared with the existing EMS and REL techniques 

by 38.44% and 41.24% respectively.  

4.4 Energy consumption 

In Fig. 4, the energy consumed for the execution 

of the different number of tasks has been presented. 

The existing EMS [11] and REL [24] techniques have 

been compared with the proposed HRCFM technique. 

When compared with the existing EMS technique 

and HRCFM technique, the proposed HRCFM 

technique performs better by 83.271%, 90.40%, 

93.53.355%, and 99.19% for Insipral 30, 50, 100, and 

1000 respectively for energy consumption. Further, 

when compared with the REL technique, the 

HRCFM technique performs better by 83.61%, 

90.88%, 93.69%, and 99.23% for Insipral 30, 50, 100, 

and 1000 respectively for energy consumption. The 

proposed HRCFM technique consumes less energy 

for the execution of the task when compared with the 

existing EMS and REL techniques by 91.59% and 

91.85% respectively.  

4.5 Discussions 

From the results, it can be seen that the proposed 

HRCFM model attains better performance in terms of 

energy consumption, power average, power sum, and 

total cost. Further, the comparison table has been 

given in Table 2. The EMS [11], model has not 

considered reliability and a multi-cloud environment 

for the execution of the tasks. Further, the REL [24] 

model has not considered the energy optimization 

problem. Also, the EMS and REL models have not 

used any caching technique in their models. The 

proposed model provides reliability in a multi-cloud 

environment considering energy optimization 

techniques for the execution of the tasks. Also, the 
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proposed HRCFM technique has used caching 

technique. Due to this, the proposed HRCFM model 

is better than the existing models.  

5. Conclusion 

In this research work, first, a survey has been done 

on various edge cloud computing research works. 

Further, we have surveyed various cache failure 

minimization techniques which will help us to 

provide significance for the proposed research work. 

A system has been proposed to provide high 

reliability through cache failure during the execution 

of various tasks or workloads. After this, the model 

has been experimented with using the Inspiral 

workflow. The results have been compared with the 

existing Energy Minimizing Scheduling (EMS) and 

Reliability (REL) technique in terms of execution 

time, power sum, power average, and energy 

consumption. The results have been compared and it 

shows that the proposed HRCFM technique reduces 

the time, energy consumption, power sum, and 

average by 83.3%, 90.92%, 38.44%, and 91.59% for 

EMS technique and 81.91%, 91.4%, 41.24% and 

91.85% for REL technique respectively. Moreover, 

our model provides better performance when the 

number of tasks are more. For future work, we would 

consider other scientific workflows such as Montage, 

SIPHT, and Epigenomics for the evaluation of the 

proposed HRCFM technique. 
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