
Received: January 2, 2023. Revised: February 12, 2023. 477

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

Deep Learning-Based Rate Prediction Model for Recommender System Using

Clustering Techniques

Ammar Abdulsalam Al-Asadi1* Mahdi Nsaif Jasim2

1Informatics Institute for Postgraduate Studies, Iraqi Commission for Computers and Informatics, Iraq

2College of Business Informatics, University of information technology and communications, Iraq
* Corresponding author’s Email: phd202010553@iips.icci.edu.iq

Abstract: Many deep learning-based recommender systems have been proposed recently. Where they involve all the

users in datasets to build the latent representation of input data to be used later for predicting the missing rates.

Despite the fact that, users have different interests, and these differences reduce the model prediction accuracy. This

paper proposed a novel cluster-based denoising autoencoder model (cluster-based DAE) for rate prediction

recommender systems. Instead of building a single model, it builds K models by using k-means algorithm to divide

the users into groups based on their preferences. Each group trains a DAE model to generate recommendations for its

members. The proposed method was trained and tested with MovieLens (100K, 1M, and 10M) datasets where 80%

of the data are used for training and 20% for testing. The performance of the proposed method compared against

other state-of-the-art methods that use deep learning to build rate prediction models. It outperformed the other

compared methods in term of mean absolute error (with 12.9%, 14.7%, and 22.3%) and root mean squared error

(with 24.2%, 18%, and 21.1%) using MovieLens 100K, 1M, and 10M datasets respectively.

Keywords: Recommender system, Deep learning, Denoising autoencoder, Clustering, K-means.

1. Introduction

The fast growth of internet applications and

services produces a huge amount of information

daily. It becomes a hard task for users to find

contents that satisfy their desire when they use

online applications with that rapid development of

information [1]. For that reason, recommender

systems (RSs) have become very necessary for users.

RSs exclude unnecessary items to generate a list of

recommended items for users based on their

historical preferences [2]. Users’ preferences can be

represented in form of user-item interactions, where

the interaction could be rate, buy, like, or click.

Users and items features can be also utilized by RSs

to generate personalized recommendations [3]. In

the last decade, several recommender systems have

been proposed. They can be nearly categorized into

three types: collaborative filtering models (CF),

content-based models (CB), and hybrid-based

models [4].

CF approach has been quite effective approach.

It utilizes the similarity among the users’

preferences to generate recommendations [5]. It is

based on the assumption that suggests users with

similar tastes most likely have a similar opinion on

an item [6]. On the other hand, CB approach try to

recommend items that are most similar to the ones

that are preferred by a user previously. Hybrid

filtering combines CF and CB techniques to

overcome the limitations of RSs [7].

Clustering techniques are the most widely used

techniques in RSs for grouping users based on their

similar interests [8]. They are unsupervised

techniques that try to divide the data samples into

clusters, where each cluster has the most similar

samples (in terms of features) and they are different

from the other cluster’s samples [9].

There are many non-deep learning-based

approaches of CF [6]. Matrix factorization (MF)

techniques, such as probabilistic matrix factorization

(PMF) [10] and biased matrix factorization

Received: January 2, 2023. Revised: February 12, 2023. 478

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

(BiasedMF) are particularly popular [11].

Deep learning-based recommender systems have

been ardently studied lately, where the features of

items and users are joint to generate predictions by

following many perceptron layers [12]. Furthermore,

deep learning (DL) techniques are being used in CF

as well. For example, R. Salakhutdinov used

restricted Boltzmann machines (RBM) in

collaborative filtering with unsupervised nonlinear

learning method [13]. Sedhain proposed AutoRec

which is a novel framework for collaborative

filtering. It uses autoencoder network to extract the

latent space [14]. Zheng proposed a neural

autoregressive architecture for collaborative filtering

tasks, which is inspired by RBM model and neural

autoregressive distribution estimator (NADE), the

model called CF-NADE [15]. Zhuang proposed a

framework called recommendation via dual-

autoencoder (ReDa). It learns the latent

representation of items and users using autoencoders,

and reduces the variations of training data [16]. Yi

proposed a deep learning-based CF framework,

named as deep matrix factorization (DMF), which

can integrate side information efficiently in a model

[17]. Lee proposed a novel scalable deep learning-

based collaborative filtering algorithm (Scalable

DL) by using normalized vectors as inputs to a

neural network to prevent network from overfitting

[18]. Wang presented a deep learning-based RS

model with two stages called TDR. Two separate

marginalized stacked denoising auto-encoder

models are applied to the items and users’ features

at the first stage to learn the latent space, then the

output is used as input for the deep neural network

(DNN) component for optimizing the model at the

second stage [19]. Khan proposed a hybrid RS

model named as deep semantic based topic driven

hybrid RS (DST-HRS); it uses item’s semantics

description that is influenced by its topics

information [20]. Zhang proposed a probabilistic

matrix factorization model based on

backpropagation neural network ensemble learning,

bagging, and fuzzy clustering (FCM-bagging-BP-

PMF) [21]. Sarridis proposed a neural interaction

matrix factorization (NIMF) method that is applied

to the rating matrix. In order to extract user and item

embeddings; it takes a normalized rating matrix as

input to the neural network [22]. Mondal presented

DeCS which addressed the cold start problem in RSs

by using deep neural network framework to learn

low-dimensional embeddings and side information

of the user and item [23]. Boudiba developed a tag-

based model, which is extracted from contextual

BERT. The proposed model uses multi perceptron

layers architecture and named as neural CF-MLP

[24].

The problem with the reviewed deep learning-

based CF models is that, they use the rates of all

users in dataset to build the latent space which will

be used later to predict the missing rates of each user.

Despite the fact that, users have different interests,

and these differences reduce the model predictions

accuracy.

This research proposes a novel model that

involves the users with most similar preferences in

recommendations generation process, instead of

involving all the users. In other words, it distributes

the users over multiple models based on their

similarity. The proposed system combines clustering

technique such as K-means, with a deep learning

model such as denoising autoencoder (DAE) to

improve the prediction accuracy.

The proposed method has some important

differences if it is compared with other autoencoder-

based models:

a) Instead of using the whole users in the dataset

to train the DAE model, it divides the users

into k clusters based on their interest

similarity by using K-means algorithm, then it

uses the members of each cluster to train their

own DAE model.

b) It uses explicit feedback (1-5 rates) in form of

item-user interactions with added noise

(corruption) to the input data, to learn latent

representations of corrupted item-user

preferences that can best reconstruct the full

input.

The rest of the paper is structured as follows:

Section 2 presented the theoretical background of

the techniques that are used in the proposed method;

proposed method is explained in section 3; results

and performance evaluation are presented in section

4 and section 5 covers the paper conclusions.

2. Background and theories

Our method is based on the following

techniques: clustering and autoencoders. In this

section, we will briefly discuss these topics.

2.1 Clustering

K-Means is an unsupervised clustering

algorithm. It is the simplest, most used, and

computationally efficient clustering algorithm [25].

K-means is used for partitioning data into K clusters

using clusters’ centres (centroids). The centroid of

each cluster is computed by taking the average of all

data points in the cluster. Determining the number

Received: January 2, 2023. Revised: February 12, 2023. 479

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

of clusters before the model training is required in

this method. The main 4 steps of the K-means

algorithm are described as follow [26]:

1. Randomly select K data points as initial

centroids.

2. Assign each data point Xi to the closest

cluster by calculating its distance to all

centroids using Euclidean distance.

3. Update the centroids by calculating the mean

of the assigned points.

4. Repeat steps 2 and 3 until no convergence or

maximum iteration is met.

The optimal number of clusters (k) can be

determined by using Silhouette method. It validates

the consistency of data within each cluster. The

silhouette method measures how much a point is

similar to its cluster compared to other clusters by

calculates silhouette coefficients of each point [27].

The silhouette coefficient for a sample is

computed as follows:

Silhouette Coefficient =
(𝑏−𝑎)

𝑚𝑎𝑥(𝑎,𝑏)
 (1)

Where, a is the mean intra-cluster distance, and

b is the mean nearest-cluster distance.

2.2 Autoencoder

Autoencoder (AE) was first presented in 1991

by Kramer [28]. It exploited feed-forward neural

networks to learn the latent representation of an

input with low dimensions [29]. The output of the

AE aims to reconstruct the input. Then, the network

is trained by back-propagating the loss score (e.g.,

mean squared error) during the reconstruction, it

consists of two parts as below,

Encoder φ: 𝑥 → 𝑧 (2)

Decoder Ψ: 𝑧 → 𝑥 (3)

Where φ, Ψ = arg𝑚𝑖𝑛φ, Ψ ||𝑥 − (φ . Ψ) 𝑥||2. In

the simplest case, there is only one hidden layer,

where the encoder takes input x and maps it to z,

then the decoder maps z into reconstruction x,

Encoder: z = σ(Wx + b) (4)

Decoder: x = σ(W′z + b′) (5)

Where σ is a non-linear activation function, 𝑥 ∈
𝑅𝑑 is the input, 𝑧 ∈ 𝑅𝑑 is the hidden node, 𝑊 ∈
𝑅𝑑.𝑘 is weight matrix mapping input to hidden node,

W′ ∈ 𝑅𝑑.𝑘 is the weight matrix mapping hidden

node to reconstruction node, 𝑏 ∈ 𝑅𝑘 , b′ ∈ 𝑅𝑑 as

bias vectors [30].

2.3 Denoising autoencoder

Vincent [31] introduced the denoising

autoencoder (DAE) to discover more robust features

through autoencoders and learning the identity

function. DAE applies, corrupted version of input x

as x ̃, and the network is trained to denoise and

reconstruct input x. Many corruption ways can be

used, but the most common choices are

multiplicative mask-out/ drop-out noise and additive

Gaussian noise. In this paper, the drop-out noise is

used which randomly masks entries of the input by

setting them to zero [32].

3. Proposed method

The proposed method consists of two main

steps: users clustering and training DAE model. The

first step divides the users into clusters based on

their similar preferences. These preferences are

extracted from the rates that are given by a user to

items’ features. MovieLens dataset is used in the

proposed system, where movies represent the items

and genres represent the items’ features. Two tables

have been used out of the dataset:

1) Ratings: it has all the rates given by users to

movies on a scale between 1 and 5.

2) Movies: it has all movies with their genres,

for example, action, drama, comedy, etc.

there are 19 different genres.

3.1 Users clustering

The proposed system groups the users with

similar interests together (clustering) by applying k-

means algorithm. The similarities among users are

found by extracting the average rates that is given

by a user to each genre. Fig. 1 shows a part of the

users-genres interaction matrix. This matrix is

obtained by merging ratings with movies tables

based on movies’ ids. In order to find the best

number of clusters (K) for the experimented dataset,

silhouette method is applied by using Eq. (1).

Silhouette score is computed by trying different

values of K and the value with highest score is

selected.

3.2 Training DAE model

In the training step, the dataset will be divided

into K sets, based on the cluster value. Each set will

Received: January 2, 2023. Revised: February 12, 2023. 480

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

Figure. 1 a part of the users-genres interaction matrix

Figure. 2 The proposed model structure

be further divided into training and testing sets with

80% and 20% of data respectively. All the clusters

use the same model structure.

The proposed model follows item-based

structure, where it uses the items-users matrix as

input (𝑟𝑖), where items are represented as rows and

users as columns, the inter-section between a row

and a column represents the actual rate that is given

by a user to an item. Item-based structure is used

because the number of users is less than items, as a

result of the clustering process, and that will reduce

the number of nodes in the input and output layers.

The proposed model structure is shown in Fig. 2.

3.2.1. DAE model design

The proposed DAE model is designed as

follows:

1) Input layer

The number of nodes in the input layer equals

the number of users, where the inputs nodes

represent the interaction between an item 𝑖 and all

users in a specific cluster, 𝑟𝑖 = {𝑅1𝑖, 𝑅2𝑖, 𝑅3𝑖, 𝑅𝑚𝑖}

where 𝑅 is the rate value, m is the number of users

and 𝑖 is an item.

Dropout noise will be applied to mask out the

input data by setting them to zero randomly, with a

noise ratio equal to (50%) to introduce a corrupted

version of input data 𝑟�̃�.

2) Hidden layer

𝑟�̃� will be fully connected to the hidden layer

which has (256) nods to represent the latent space of

the input data. The activation function that is used in

the hidden layer is the sigmoid function. The output

of the hidden layer is computed as follows:

𝑧 = 𝑓(𝑊 ∗ 𝑟�̃� + 𝑏) (6)

Where, 𝑓 is the sigmoid activation function, 𝑟�̃� is

a corrupted input data, 𝑊 and 𝑏 are the weights and

bias of the hidden layer respectively.

3) Output layer

The output layer is fully connected with the

hidden layer where it has the same number of nods

that is in the input layer with weights’ values (V).

The output of this layer is the predicted rates 𝑟�̂�, it is

computed as follows:

𝑟�̂� = 𝑓(𝑉 ∗ 𝑧 + �̀�) (7)

Where, 𝑓 is the linear activation function, 𝑧 is

the output of the hidden layer, 𝑉 and �̀� are the

weights and bias of the output layer respectively.

4) Loss function

The proposed model uses mean squared error

(MSE) as a loss function. But, since it doesn’t make

sense to predict zeros in the item’s representation

Received: January 2, 2023. Revised: February 12, 2023. 481

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

vector 𝑅𝑚𝑖 , the approach from [14] is flowed to

optimize masked mean squared error (MMSE) loss

[6].

MMSE =
∑ 𝑚𝑖.(𝑟𝑖−𝑟�̂�)2𝑖=𝑛

𝑖=1

∑ 𝑚𝑖
𝑖=𝑛
𝑖=1

 (8)

Where 𝑟𝑖 is actual rating, 𝑟�̂� is reconstructed, or

predicted rating, and 𝑚𝑖 is a mask function such that

𝑚𝑖 = 1 if 𝑟𝑖 ≠ 0 else 𝑚𝑖 = 0.

5) Optimization algorithm

Adam optimization algorithm has been used to

update the network’s weights. It combines ‘gradient

descent with momentum algorithm’ and the ‘root

mean square propagation algorithm’ by using the

following equations:

𝑝𝑡 = 𝑚1. 𝑝𝑡−1 + (1 − 𝑚1) [
𝜕𝑓

𝜕𝑤
] (9)

Where, 𝑝 is aggregate of gradients, 𝑚 is the

moving average parameter, 𝜕𝑓 is derivative of loss

function, and ∂w is derivative of weights.

𝑞𝑡 = 𝑚2. 𝑞𝑡−1 + (1 − 𝑚2) [
𝜕𝑓

𝜕𝑤
] (10)

Where, 𝑞𝑡 is the sum of square of past gradients.

𝑝�̂� =
𝑝𝑡

(1−𝑚1
𝑡)

 (11)

𝑞�̂� =
𝑞𝑡

(1−𝑚2
𝑡)

 (12)

Where, 𝑝�̂� and 𝑞�̂� are the bias corrected weight

parameters.

𝑊𝑡 = 𝑊𝑡−1 − 𝑎 . (
𝑝�̂�

√𝑞�̂�+∈
) (13)

Where, 𝑊𝑡 is the new weight, 𝑎 is the learning

rate, and ∈ is a small positive constant to avoid

division by zero.

The main steps of the proposed model are

illustrated in algorithm 1.

3.3. Evaluation metrics

Root mean squared error (RMSE) and mean

absolute error (MAE) are used as evaluation

matrices. They evaluate the accuracy of the

predicted rates by comparing them with the actual

testing data. RMSE has a straightforward relation

with MMSE score.

Algorithm 1. Cluster-based denoising autoencoder

RS

Input: Ratings data;

Output: Predicted rates;

1 k ← max cluster value

2 𝑖 ← 0

3 while 𝑖 <= k do

4 Get all ratings of cluster 𝑖

5 m ← number of items rated in cluster 𝑖

6 n ← number of users in cluster 𝑖

7 Create m×n ratings array 𝑟𝑖

8 Split the array into train and test sets

9 Build AE model with input/output nodes =

number of users in cluster 𝑖

10 For each item in train set do

11 𝑟�̃� ← dropout_noise(𝑟𝑖, 0.5)

12 Calculate z using Eq. (6)

13 Calculate 𝑟�̂� using Eq. (7)

14 Calculate MMSE using Eq. (8)

15 Update parameters using Eq. (9, 10, 11, 12,

and 13)

16 End for

17 Generate predictions

19 𝑖 ←𝑖 +1

20 End while

RMSE = √𝑀𝑀𝑆𝐸 (14)

MAE computes the mean of the absolute

differences between the actual rating 𝑟𝑖 and the

reconstructed rating 𝑟�̂� as follows:

MAE =
∑ 𝑚𝑖.|𝑟𝑖−𝑟�̂�|𝑖=𝑛

𝑖=1

∑ 𝑚𝑖
𝑖=𝑛
𝑖=1

 (15)

Where, 𝑚𝑖 = 1 if 𝑟𝑖 ≠ 0 else 𝑚𝑖 = 0.

4. Results and discussion

Three of MovieLens (ML) datasets (ML-100K,

ML-1M, and ML-10M) are applied to the proposed

method. All of datasets have the same tables with

the same attributes. But they have different numbers

of users, movies, and ratings as shown in Table 1.

Table 2. Datasets statistics

Dataset Users Movies Ratings

ML-100K 943 1,682 100,000

ML-1M 6,040 3,706 1,000,209

ML-10M 69,878 10,681 10,000,052

Received: January 2, 2023. Revised: February 12, 2023. 482

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

In order to determine the number of clusters (K)

for each dataset, Silhouette method is used to

compute the scores of different values of K

(between 2 and 20) and the highest score is selected.

The selected K values for the experimented datasets

were as follows: 5, 11, and 23 clusters for ML-100K,

ML-1M, and ML-10M datasets respectively. Where

it is obvious that, as the size of data increases the

number of clusters increases too.

MovieLens datasets are used to train and test the

proposed model (cluster-based DAE). They are

divided into 80% and 20% for training and testing

respectively. The hyperparameters configuration is

selected by trying different settings and they are

evaluated based on the MAE and RMSE scores. The

hyperparameters of the proposed model are:

• Sigmoid and linear activation functions for

hidden and output layers respectively.

• Adam optimizer with learning rate (0.0001).

• The noise ratio is 50%.

• Regularization rate is (0.0001).

• Number of epochs is (500).

• The number of hidden nodes is (256) in

ML-100K and ML-1M datasets models, and

(512) in ML-10M dataset model.

The experiment was performed on a laptop PC

equipped with an Intel(R) Core(TM) i7-11800H

CPU@2.3GHz, NVIDIA GeForce RTX 3060 GPU,

and 16 GB RAM. The proposed model is

implemented by using python 3.9.12 programming

language with keras 2.9.0, tensorflow 2.9.1, numpy

1.22.4, pandas 1.4.2, and scikit-learn 1.1.1.

The experimental results of the proposed model

are performed over the three datasets by computing

the average of MAE and RMSE of all clusters’

models. Tables 2, 3, and 4 present the results of

applying ML-100K, ML-1M and ML10M datasets

respectively. Fig. 3 summarizes the performance

results of the proposed model over the three datasets.

Table 2. Results of each cluster’s model in ML-100K

dataset

Cluster
Items

(Samples)

#Users

(Input

nodes)

MAE RMSE

1 1570 234 0.6043 0.6760

2 1036 177 0.5041 0.5035

3 1346 134 0.4683 0.7480

4 1335 226 0.6339 0.4950

5 1022 172 0.6495 0.5149

Total:

943

Average:

0.5720

Average:

0.6313

Table 3. Results of each cluster’s model in ML-1M

dataset

Cluster
Items

(Samples)

#Users

(Input

nodes)

MAE RMSE

1 3194 742 0.5823 0.6760

2 2715 377 0.4690 0.5035

3 3268 652 0.6440 0.7480

4 2483 361 0.4574 0.4950

5 2386 375 0.4818 0.5149

6 2404 370 0.5355 0.5836

7 2281 326 0.4551 0.4925

8 3563 783 0.6617 0.7840

9 2616 510 0.5490 0.6034

10 2839 542 0.5795 0.6539

11 3533 1002 0.6300 0.7441

Total:

6040

Average:
0.5496

Average:
0.6181

Table 4. Results of each cluster’s model in ML-10M

dataset

Cluster
Items

(Samples)

#Users

(Input

nodes)

MAE RMSE

1 5946 5625 0.5013 0.5738

2 10232 7881 0.56 0.6712

3 4224 1708 0.467 0.5145

4 10632 6853 0.5877 0.7121

5 4196 1401 0.4688 0.5135

6 3526 2689 0.4523 0.4976

7 5462 3670 0.5197 0.5844

8 6823 1829 0.5039 0.5673

9 8765 7944 0.5336 0.6253

10 7003 2187 0.4739 0.5389

11 5574 1631 0.4804 0.5365

12 7866 1924 0.4627 0.5187

13 4389 2047 0.5138 0.5646

14 6118 2795 0.523 0.5872

15 4664 2098 0.5044 0.5589

16 3422 1175 0.4394 0.4812

17 6648 5304 0.5263 0.6006

18 3847 2473 0.4892 0.5381

19 4357 2570 0.4851 0.5392

20 5132 858 0.4654 0.5033

21 6478 2485 0.5097 0.571

22 5919 967 0.4697 0.518

23 7127 1764 0.4937 0.5548

Total:

69878

Average:

0.4970

Average:

0.5596

Received: January 2, 2023. Revised: February 12, 2023. 483

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

Figure. 3 Performance of the proposed model over

different MovieLens datasets

Tables 2, 3, and 4 show the number of items and

users that is used to train each cluster’s model with

their interactions over ML-100K, ML-1M, and ML-

10M datasets respectively. The MAE and RMSE

scores of all clusters’ models are evaluated. The

average MAE and RMSE of ML-100K dataset are

(0.5720) and (0.6313) respectively. In ML-1M

dataset the average MAE and RMSE are (0.5496)

and (0.6181) respectively. Where the average MAE

and RMSE of ML-10M are (0.4970) and (0.5596)

respectively.

The proposed model is compared with other

state-of-the-art deep learning-based rate prediction

methods in terms of prediction quality (MAE and

RMSE) using ML-100K, ML-1M, and ML-10M

datasets. Tables 5, 6, and 7 show the MAE and

RMSE results of deep learning-based models that

are compared with our proposed model in ML-100K,

ML-1M, and ML-10M datasets respectively.

Table 5 shows the effectiveness of the proposed

method on ML-100K dataset, which outperformed

the other compered methods in term of MAE (by a

range between 21% and 12.9%) and RMSE (by a

range between 33.9% and 24.2%). Table 6 proved

that the proposed method has outperformed the

other methods in term of MAE (by a range between

Table 5. Compassion between the proposed model and

other models on ML-100k dataset

Methods MAE RMSE

PMF * 0.782 0.970

ReDa [16] 0.720 0.919

Scalable DL [18] - 0.907

NIMF [22] - 0.894

DeCS [23] 0.676 0.891

DMF+ * 0.655 0.889

TDR [19] 0.701 0.873

Cluster-based DAE

(proposed)
0.572 0.631

*: Taken from [17].

Table 6. Compassion between the proposed model and

other models on ML-1M dataset

Methods MAE RMSE

PMF * 0.697 0.889

RBM ** - 0.854

ReDa [16] 0.665 0.849

Scalable DL [18] - 0.848

DST-HRS [20] - 0.846

BiasedMF ** - 0.845

DeCS [23] 0.628 0.842

TDR [19] 0.655 0.835

DMF+ * 0.608 0.832

AutoRec ** - 0.831

CF-NADE [15] - 0.829

NIMF [22] - 0.829

FCM-bagging-BP-

PMF [21]
0.731 0.798

Cluster-based DAE

(proposed)
0.550 0.618

*: Taken from [17].

**: Taken from [14].

Table 7. Compassion between the proposed model and

other models on ML-10M dataset

Methods MAE RMSE

Neural CF-MLP [24] 0.720 0.930

BiasedMF ** - 0.845

RBM ** - 0.825

AutoRec ** - 0.782

NIMF [22] 0.781

DST-HRS [20] - 0.779

CF-NADE [15] - 0.771

Cluster-based DAE

(proposed)
0.497 0.560

*: Taken from [17].

**: Taken from [14].

18.1% and 14.7%) and RMSE (by a range between

27.1% and 18%). The effectiveness of the proposed

method on ML-10M dataset presented in Table 7,

which outperformed the other compered methods in

term of MAE (by 22.3%) and RMSE (by a range

between 37% and 21.1%).

The reason that makes the proposed method

outperforms the other compared methods is that, we

utilized the similarity of users’ preferences to

distribute the users over K models (instead of single

model), where the predictions are generated by

similar users.

On the other hand, the training time of the

proposed method is longer than training the same

model without clustering. For example, in ML-1M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ML-100K ML-1M ML-10M

MAE RMSE

Received: January 2, 2023. Revised: February 12, 2023. 484

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

dataset the proposed method took (7 minutes and 45

seconds) to train cluster-based DAE. Whereas, it

took (1 minutes and 50 seconds) to train a DAE

model without clustering. Because, the proposed

method trains multiple models instead of one.

5. Conclusion

This research proposed a cluster-based denoising

autoencoder model for rate prediction recommender

systems. It distributed the users over K models

instead of a single model. The proposed system

utilized k-means algorithm to divide the users into K

clusters based on their similar interests. Each

cluster’s members cooperate to extract the latent

space of items-users interactions to predict the

missing rates using denoising autoencoder model.

The proposed method was trained and tested with

MovieLens (100K, 1M, and 10M) datasets where

80 % of the data are used for training and 20% for

testing. The performance of the proposed method

compared against other state-of-the-art methods that

use deep learning to build rate prediction models. It

outperformed the other compared methods in term

of MAE (with 12.9%, 14.7%, and 22.3%) and

RMSE (with 24.2%, 18%, and 21.1%) using 100K,

1M, and 10M datasets respectively. The proposed

model requires more training time than using the

same model without clustering which we will try to

reduce it in future work. Moreover, the parallel

computing of proposed method is also worth

exploring.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Ammar A. Al-Asadi provided the idea,

technique, software, formal analysis, materials, data

collection, and writing-original version preparation.

Mahdi Nsaif Jasim provided supervision, revision,

and editing the research.

References

[1] A. Neamah and A. E. Ameer, “Design and

Evaluation of a Course Recommender System

Using Content-Based Approach”, In: Proc. of

2018 International Conference on Advanced

Science and Engineering (ICOASE), pp. 1–6,

2018.
[2] S. Lazemi and H. E. Komleh, “Improving

collaborative recommender systems via

emotional features”, In: Proc. of 2016 IEEE

10th International Conference on Application

of Information and Communication

Technologies (AICT), pp. 1–5, 2016.

[3] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep

learning based recommender system: A survey

and new perspectives”, ACM Computing

Surveys (CSUR), Vol. 52, No. 1, pp. 1–38, 2019.

[4] G. Zhang, Y. Liu, and X. Jin, “A survey of

autoencoder-based recommender systems”,

Front Comput Sci, Vol. 14, No. 2, pp. 430–450,

2020.

[5] Y. Koren, S. Rendle, and R. Bell, “Advances in

collaborative filtering”, Recommender Systems

Handbook, pp. 91–142, 2022.

[6] O. Kuchaiev and B. Ginsburg, “Training deep

autoencoders for collaborative filtering”, ArXiv

Preprint ArXiv:1708.01715, 2017.

[7] M. Mohamed, M. Khafagy, and M. Ibrahim,

“Recommender systems challenges and

solutions survey”, In: Proc. of 2019

International Conference on Innovative Trends

in Computer Engineering (ITCE), 2019, pp.

149–155.

[8] R. Logesh, V. Subramaniyaswamy, D. Malathi,

N. Sivaramakrishnan, and V. Vijayakumar,

“Enhancing recommendation stability of

collaborative filtering recommender system

through bio-inspired clustering ensemble

method”, Neural Comput Appl, Vol. 32, No. 7,

pp. 2141–2164, 2020.

[9] R. Rashidi, K. Khamforoosh, and A.

Sheikhahmadi, “Proposing improved meta-

heuristic algorithms for clustering and

separating users in the recommender systems”,

Electronic Commerce Research, Vol. 22, No. 2,

pp. 623–648, 2022.

[10] A. Mnih and R. Salakhutdinov, “Probabilistic

matrix factorization”, Adv Neural Inf Process

Syst, Vol. 20, 2007.

[11] Y. Koren, R. Bell, and C. Volinsky, “Matrix

factorization techniques for recommender

systems”, Computer (Long Beach Calif), Vol.

42, No. 8, pp. 30–37, 2009.

[12] P. Covington, J. Adams, and E. Sargin, “Deep

neural networks for youtube recommendations”,

In: Proc of the 10th ACM Conference on

Recommender Systems, pp. 191–198, 2016.

[13] R. Salakhutdinov, A. Mnih, and G. Hinton,

“Restricted Boltzmann machines for

collaborative filtering”, In: Proc of the 24th

International Conference on Machine Learning,

pp. 791–798, 2007.

[14]S. Sedhain, A. K. Menon, S. Sanner, and L. Xie,

“Autorec: Autoencoders meet collaborative

filtering”, In: Proc of the 24th International

Conference on World Wide Web, pp. 111–112,

Received: January 2, 2023. Revised: February 12, 2023. 485

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.38

2015.

[15] Y. Zheng, B. Tang, W. Ding, and H. Zhou, “A

neural autoregressive approach to collaborative

filtering”, In: Proc. of International Conference

on Machine Learning, pp. 764–773, 2016.

[16] F. Zhuang, Z. Zhang, M. Qian, C. Shi, X. Xie,

and Q. He, “Representation learning via dual-

autoencoder for recommendation”, Neural

Networks, Vol. 90, pp. 83–89, 2017.

[17] B. Yi, X. Shen, H. Liu, Z. Zhang, W. Zhang, S.

Liu, and N. Xiong, “Deep matrix factorization

with implicit feedback embedding for

recommendation system”, IEEE Trans Industr

Inform, Vol. 15, No. 8, pp. 4591–4601, 2019.

[18] H. Lee and J. Lee, “Scalable deep learning-

based recommendation systems”, ICT Express,

Vol. 5, No. 2, pp. 84–88, 2019.

[19] R. Wang, Y. Jiang, and J. Lou, “TDR: Two-

stage deep recommendation model based on

mSDA and DNN”, Expert Syst Appl, Vol. 145,

p. 113116, 2020.

[20] Z. Khan, N. Iltaf, H. Afzal, and H. Abbas,

“DST-HRS: A topic driven hybrid

recommender system based on deep semantics”,

Comput Commun, Vol. 156, pp. 183–191, 2020.

[21] Z. Zhang, G. Huang, Y. Zhang, S. Wei, B. Shi,

J. Jiang, and B. Liang, “Research on PMF

Model Based on BP Neural Network Ensemble

Learning Bagging and Fuzzy Clustering”,

Complexity, Vol. 2021, 2021.

[22] I. Sarridis and C. Kotropoulos, “Neural

Factorization Applied to Interaction Matrix for

Recommendation”, In: Proc. of 2021 29th

European Signal Processing Conference

(EUSIPCO), pp. 1336–1340, 2021.

[23] R. Mondal and B. Bhowmik, “DeCS: A Deep

Neural Network Framework for Cold Start

Problem in Recommender Systems”, In: Proc.

of 2022 IEEE Region 10 Symposium

(TENSYMP), pp. 1–6, 2022.

[24] T. Boudiba and T. Dkaki, “Exploring

Contextualized Tag-based Embeddings for

Neural Collaborative Filtering”, In: Proc. of

International Conference on Agents and

Artificial Intelligence, pp. 158–166, 2022.

[25] X. Ran, X. Zhou, M. Lei, W. Tepsan, and W.

Deng, “A novel k-means clustering algorithm

with a noise algorithm for capturing urban

hotspots”, Applied Sciences, Vol. 11, No. 23, p.

11202, 2021.

[26] T. Puraram, P. Chaovalit, A. Peethong, P.

Tiyanunti, S. Charoensiriwath, and W. Kimpan,

“Thai Food Recommendation System using

Hybrid of Particle Swarm Optimization and K-

Means Algorithm”, In: Proc. of 2021 6th

International Conference on Machine Learning

Technologies, pp. 90–95, 2021.

[27] P. Rousseeuw, “Silhouettes: a graphical aid to

the interpretation and validation of cluster

analysis”, J Comput Appl Math, Vol. 20, pp.

53–65, 1987.

[28] M. Kramer, “Nonlinear principal component

analysis using autoassociative neural networks”,

AIChE Journal, Vol. 37, No. 2, pp. 233–243,

1991.

[29] M. Yu, T. Quan, Q. Peng, X. Yu, and L. Liu,

“A model-based collaborate filtering algorithm

based on stacked AutoEncoder”, Neural

Comput Appl, Vol. 34, No. 4, pp. 2503–2511,

2022.

[30] Y. Pan, F. He, and H. Yu, “A novel enhanced

collaborative autoencoder with knowledge

distillation for top-N recommender systems”,

Neurocomputing, Vol. 332, pp. 137–148, 2019.

[31] P. Vincent, H. Larochelle, Y. Bengio, and P. A.

Manzagol, “Extracting and composing robust

features with denoising autoencoders”, In: Proc

of the 25th International Conference on

Machine Learning, pp. 1096–1103, 2008.

[32] Y. Xiong and R. Zuo, “Robust feature

extraction for geochemical anomaly recognition

using a stacked convolutional denoising

autoencoder”, Math Geosci, Vol. 54, No. 3, pp.

623–644, 2022.

