
Received: December 13, 2022. Revised: February 10, 2023. 464

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

Unprecedented Security Analysis Results for a Novel Steganography Approach

Based on Protein Sequences

Radhwan Jawad Kadhim1* Hussein K. Khafaji2

1Iraqi Commission for Computers and Informatics, Informatics Institute for Postgraduate Studies, Baghdad, Iraq

2Computer Engineering Department-Al-Rafidain University College, Baghdad, Iraq
* Corresponding author’s Email: phd202110686@iips.icci.edu.iq, hussain.ketan.elce@ruc.edu.iq

Abstract: With the rapid advancement of the digital network, information technology, digital libraries, and especially

the services of the world wide web, many types of information can be retrieved at any time. Thus, the issue of security

has become one of the most important problems in distributing new information. It is essential to protect this

information while it is passing through unsecured channels. Steganography offers a powerful approach to hiding

confidential data in suitable media vectors such as images, audio files, text files, and video files. In the field of

steganography, the most common measurements of hiding the intended data in a cover media are hiding capacity,

cracking probability, payload, and bit per nucleotide (bpn), and these measurements are considered the most of the

prime challenges in the field of steganography. The main objective of this research is to provide a novel data hiding

schema using protein-based steganography that provides good security performance measurement and outperforms

DNA-based steganography approaches, where protein sequences are not utilized for steganography purposes.

According to the proposed method, each byte of the secret message is partitioned into two 4-bit parts, and then these

parts are converted into the decimal system. Finally, the decimal values of the secret message are randomly included

in the cover protein sites using a pseudo random number generator (PRNG) for each cover protein base value instead

of being sequentially embedded in the cover protein bases. It is considered that this random distribution increases

system security. The proposed method works with a one-digit protein decimal coding rule (PDCR), and the byte of the

message will be embedded in two bases of amino acids. From the experimental results, it has been found that the

proposed method preserves the reference protein's original function (zero modification rate in the original protein

sequence) and achieves a very high hiding capacity of 4 bpn when the sequence's bases are entirely data-embedded, a

very low cracking probability, and a payload of zero. Furthermore, the proposed method saves 50% of the bandwidth

compared with the other existing technique.

Keywords: Security analysis, Data hiding, steganography, Protein sequence, Protein decimal coding rule, Hiding

capacity, BPN, Cracking probability.

1. Introduction

Due to the great advances in information

technology and the growing demand for

communications, there is an urgent need to transmit

all different types of data in a secure communication

channel over internet networks to keep sensitive data

more secure from unauthorized access. As a result,

the transmission of confidential data over a safe

communication channel becomes a more challenging

problem. Information security safeguards data

against illegal access and use, data interruption,

disclosure, and modification. Numerous techniques,

such as steganography and cryptography, can be used

to empower information security [1]. Cryptography

is the science that uses a certain algorithm, called an

encryption algorithm, to transform the confidential

message (plain text) into an incomprehensible format

(ciphertext) by using a secret key to change the

meaning of the explicit text so that anyone other than

the sender and the recipient can't interpret it. The

reversing process of cryptography is called

decryption [2]. While the science of steganography

works on concealing a secret message inside the

Received: December 13, 2022. Revised: February 10, 2023. 465

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

cover media (such as images, text, audio, video, and

DNA) so that the attacker doesn't know where the

secret message is inside the cover media, this is

regarded as one of the main benefits of utilizing

steganographic techniques [3, 4]. The science of

steganography consists of two algorithms:

embedding and extracting. The embedding algorithm

is used to conceal the confidential data in a cover

media to produce a stego-media, which will be sent

to the reception side, while the extracting algorithm

is used to extract the confidential data from the stego-

media. The process of using a key in the embedding

and extracting algorithms is optional to increase the

level of security [5, 6].

In literature, there are different kinds of

steganographic techniques that have been introduced

based on the type of carrier medium for the

information. The most common methods are text,

images, audio, video, and DNA steganography.

There are a number of algorithms for image

steganography that have been developed, but an

image's capacity for hiding information is very low,

making it unable to contain a large amount of data [7].

In addition, any distortion of the image leads to

attracting the attention of the attacker [8] but the

protein sequences are composed of 20 bases (letters),

which are meaningless for the majority of people.

This means that if the structure of the protein is

changed, it does not attract the attention of most

people.

Numerous algorithms and approaches have been

developed for the steganography techniques

mentioned above. However, these strategies have

relatively little hiding capacity [7]. In this paper, a

novel hiding scheme based on protein sequences is

proposed to increase a cover medium's capacity to

conceal data. The proposed method increases the

hiding capacity to 4 bpn when all bases in the

sequence are embedded with data, which outperforms

the hiding capacity of all DNA steganographic

algorithms. The proposed method for hiding

confidential information is considered blind, so it

does not need to exchange the original protein

sequence. Also, the payload of the proposed approach

is zero, and the cracking probability is very low,

making it challenging to discern the original message.

The remaining sections of the paper are arranged

as follows: A brief biological background for protein

synthesis is introduced in section 2. Section 3

presents the motivations and objectives. Section 4

presents briefly related work. The proposed method

is described in section 5. Section 6 describes the

security analysis. Experimental results are presented

and discussed in section 7. Section 8 concludes by

summarizing the findings.

Table 1. The genetic code [12]

2. Biological background for protein

synthesis

To explain the proposed methods of

steganography based on bioinformatics concepts, it is

necessary to explain the biological background of

material synthesis, and the central dogma of

molecular biology, is that, how a DNA sequence

ultimately led to a protein sequence.

DNA (deoxyribose nucleic acid) is a very large

molecule that holds genetic information and features

which is very essential for execution and growth of

all living organisms [9]. DNA usually consists of two

long strands as a double helix running in opposite

directions, and each strand is made up of a long chain

of sub-units. The sub-units are called nucleotides,

where each nucleotide comprises a purine or a

pyrimidine base and it is made up of a sugar called

deoxyribose, a phosphate group and nitrogenous base.

Nitrogenous bases are classified into two classes: the

purine bases; adenine (A) and guanine (G), the

pyrimidine bases; thymine (T) and cytosine (C)which

represent the “genetic code”. Adenine (A) pairs with

thymine (T) and guanine (G) pairs with cytosine (C)

[10, 11].

The organization of these four bases, which

determines the kind of protein molecule and is

responsible for all activity in living cells, is crucial to

the biological system of living organisms.

Additionally, different types of proteins have various

functionalities [12]. Through a complicated and long

process called central dogma, DNA is transformed

into RNA (Ribonucleic Acid), which is considered to

be a step in the process of synthesizing proteins, and

this process is called transcription [11]. The process

of transforming RNA into the amino acids that make

up a protein molecule is known as translation. The

collection of three consecutive nucleotides, known as

a codon, is obtained from RNA during translation,

Received: December 13, 2022. Revised: February 10, 2023. 466

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

and each codon designates an amino acid, where the

function and structure of the resulting protein are

determined by the arrangement of the amino acids [10,

12-14].

Twenty amino acids can be made from different

codons, and Table 1 shows that the majority of them

can be made from several codons. In addition to

amino acids, three STOP codons act as extra

indicators for the end of the protein sequence [15].

3. Motivations & objectives

The proposed protein-based steganography is

motivated primarily by the desire to improve hiding

capacity over DNA-based steganography and other

digital media. Due to the complexity of Protein's

structure, its computational power as a base-20

numeric system, it's very high levels of redundancy

and randomness, and its ability to store huge amounts

of data, Protein is used as a cover media for

concealing the data, which prompts us to suggest this

new method to hide the data. The overall objective of

this research is to enhance biological-based

steganography methods by considering a high BPN,

a very low cracking probability, a high data hiding

capacity, a zero payload, a high degree of randomness,

preserving a reference protein sequence's

functionality, and saving bandwidth. Therefore, the

proposed system has very high security against

unauthorized access to the data.

4. Related works

Recently, all bioinformatic steganography

algorithms use DNA and RNA to conceal data by

using their four-base structures as a cover to conceal

the data inside. Through our research, we did not find

anyone using a protein sequence for the purpose of

hiding data. In this paper, a protein sequence is used

instead of a DNA sequence to conceal the secret

message to increase randomness and dispersion, and

hence security, because the protein sequence is

represented by 20 amino acids. Therefore, in this part,

we will discuss the most recent works related to data

hiding based on DNA sequence.

Shiu et al. [8] proposed three approaches to

concealing data using DNA-based steganography.

These approaches are the insertion-based,

complementary pair-based, and substitution-based

ones. In the insertion-based approach, the secret data

and the DNA sequence are converted to binary form

and then divided into several segments. At the

beginning of each binary segment of the reference

DNA sequence, one bit of the secret data is inserted.

The size of the DNA file will be expanded along with

the size of the data to be hidden in this approach. In

the complementary pair-based approach, the secret

data is converted to binary form and then partitioned

into number of segments in order to select the longest

complementary substring pairs. Then, one segment of

the secret data is inserted at the beginning of each

complementary pair. The original DNA sequence's

length is also increased by using this technique. In the

substitution-based approach and according to the

complementary rules (AC), (CG), (GT) or (TA), each

nucleotide base of the reference DNA is substituted

with one bit of the secret data. So, in this method, the

reference DNA is not expanded, but the cracking

probability is high compared with the above two

methods. The hiding capacity (bpn) of all three

methods is low. Guo et al. [16] proposed a new data

hiding approach for DNA-based steganography. The

secret data are converted to binary form and then each

of two bits are substituted with the repeated character

in a DNA sequence according to complementary

pairs rules. This method does not work well when the

number of secret data segments is less than the

number of repeated characters, the BPN is less than

one and the cracking probability is high when

compared with our method. Taur et al. [17] proposed

a data hiding method, where the secret data is

concealed in a DNA sequence by substituted each

nucleotide base with another nucleotide base based

on two bits of the secret data in a lookup table. With

this algorithm, the hiding capacity is two secret bits

in a nucleotide base, which is still low. Khalifa and

Hamad [18] proposed a new hiding method called

Least Significant Base Substitution, which exploit

codon degeneracy to produce silent mutations into

DNA sequences. But this method hides one bit per

redundant codon, and does not exploit all the codons

for the purpose of hiding, so the data hiding rate is

very low. Malathi et al. [19] proposed a data hiding

scheme based on DNA steganography. The binary

message is XORed with key 1, then the DNA

sequence is transformed to binary, segmented into n

segments according to key 2, and each bit from the

XORed message is inserted at the beginning of each

segment to generate a new binary string, which is

then converted into a fake DNA sequence. This

method suffers from the expansion of the DNA

sequence, the cracking probability is high when

compared with our proposed method, and the hiding

capacity (bpn) is low. Saha et al. [20] proposed a

framework for data hiding based on DNA sequences

using Balanced Tree Data Structure. In this method,

the message is converted to binary form and then to a

DNA sequence according to the DNA dictionary rule

to get the encrypted DNA message. After that,

generate a random cover DNA sequence depending

on the size of the encrypted DNA message, then

Received: December 13, 2022. Revised: February 10, 2023. 467

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

construct the balance tree with a random DNA

sequence. Finally, to obtain the reference DNA

sequence, each leaf node in the random DNA

sequence is replaced with the DNA message. The size

of cover media are increases with the increasing

amount of data, Furthermore, the capacity of this

method is still low. Mohammed et al. [21] proposed

data hiding algorithm based on DNA sequence and

neural networks. The binary message is converted to

DNA message using the DNA encoding rule. In the

reverse order, the resulting DNA message is hidden

in the reference DNA and its positions are stored,

then convert the positions and the reference DNA into

their binary equivalent. Finally, use backpropagation

algorithm to train the network by assigning the input

with the binary DNA sequence and the target with the

binary position. The final weights are transferred to

the receiver after accomplishing the training. In this

method, the process of training a neural network

takes a lot of time to generate final weights, the

number of secret bits that can be embedded in the

reference DNA sequence in each nucleotide(bpn) for

this method is 2 bits which is low, and the cracking

probability is high when compared with our proposed

method. Mohammed and Abdel-Razeq [22] proposed

a method of DNA based steganography using genetic

algorithm. The secret message is encrypted using

RSA algorithm and converting the result into a binary

form, then convert the binary form of the secret

message into DNA sequence using the binary coding

rule (A = 00; C = 01; G = 10; T = 11). Then, dividing

the resultant DNA sequence into segments with key2

(1, 2, 4, 8 etc.). Obtain the best solution of choosing

positions in the DNA file Using the genetic algorithm

to embed these segments of the secret message.

Finally, the fake DNA, key2, and the positions list are

sent to the receiver. The number of the secret bits that

can be embedded in the reference DNA sequence in

each nucleotide(bpn) for this method is 2 bits which

is low, the cracking probability is higher than our

method, and when the size of the data is very large,

the genetic algorithm takes a long time to find the

hiding positions. Nabi et al. [23] proposed two new

methods based on DNA to hide and encrypt the data,

the substitution and insertion methods. In the

substitution method, the secret data is concealed in a

DNA sequence by substituting each nucleotide base

with another nucleotide base based on two bits of the

secret data. The BPN of this method is 2, and the

cracking probability is high compared with our

proposed method. In the insertion method, two DNA

sequences (DA, DB) are selected from the database

based on a private key (K1), then the two sequences

must be encoded into binary form according to the

second key (K2), and concatenated to produce the

binary sequence DAB. In the next step of the algorithm,

dividing each binary sequence (DA and DB) into

segments according to key (K3). After that, the binary

message will be divided into two segments; M1 and

M2. And inserting the bits of segment M1 at the start

of segment DA, then concatenating these segments to

produce D’A; similarly, inserting the bits of segment

M2 at the start of segment DB, then concatenating

these segments to produce D’B. According to key

(K4), the binary sequence D’A will be concatenated

with the binary sequence D’B to produce binary

sequence D’AB. Then, XORing the binary sequence

(DAB) before inserting the message with the binary

sequence (D’AB) after inserting the message. Finally,

the previous step's binary sequence will be converted

back into a DNA sequence using the binary coding

rule and sent to the receiver via this step. The

drawbacks of this method are: the payload is not zero,

the BPN is less than one and the cracking probability

is very high compared with our proposed method.

Sabry et al. [24] proposed a method for exploiting the

redundant codons of amino acids to conceal a secret

information in a DNA sequence. The drawbacks of

this method are: there is a large expansion in DNA

sequence, where the payload is not zero, the BPN is

less than one and the cracking probability is high

compared with our method. Hassan et al. [25]

proposed a hybrid encryption algorithm, where in the

first phase, the plain text is encrypted using DNA

binary encoding rules and Huffman Coding. Then,

the second phase involves hiding a ciphertext into a

DNA sequence using least significant base method.

The hiding process starts by scanning the DNA

sequence from the left to right, and takes the bases

positions that are of multiples of 3 (i.e., 3, 6, 9, 12, ...

etc), Then, according to some substitution rules and

the binary value of the ciphertext (from left to right),

the algorithm replaces each base with another base.

The main disadvantages of this method are: it

requires a DNA sequence that is three times longer

than the length of the ciphertext because the number

of the secret bits that can be embedded in each

nucleotide (bpn) is one bit, and the cracking

probability is high compared with our proposed

method.

5. Proposed method

To clarify how our proposed method works, we

need to explain some important things that related to

the process of hiding and retrieving the data:

5.1 Suggested protein decimal coding rule (PDCR)

In bioinformatics, there are twenty amino acids

(aa) used to represent the protein molecule, where 5-

Received: December 13, 2022. Revised: February 10, 2023. 468

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

Table 2. Protein Decimal Coding Rule (PDCR)

Amino Acid

Three

letters

Code

One

letter

Code

5 bits

Binary

code

One

Digit

code

Alanine Ala A 00000 0

Cysteine Cys C 00001 1

Aspartic Acid Asp D 00010 2

Glutamic Acid Glu E 00011 3

Phenylalanine Phe F 00100 4

Glycine Gly G 00101 5

Histidine His H 00110 6

Isoleucine Ile I 00111 7

Lysine Lys K 01000 8

Leucine Leu L 01001 9

Methionine Met M 01010 10

Asparagine Asn N 01011 11

Proline Pro P 01100 12

Glutamine Gln Q 01101 13

Arginine Arg R 01110 14

Serine Ser S 01111 15

Threonine Thr T 10000 16

Valine Val V 10001 17

Tryptophan Trp W 10010 18

Tyrosine Tyr Y 10011 19

bit binary (or one digit in ASCII) is sufficient

information to represent the protein molecule. In the

proposed method, a one-digit coding rule is created

to replace each protein base in the protein sequence

with a one-digit code or vice versa, as indicated in

Table 2.

Since the amino acids in Table 2 can be

arbitrarily assigned, there are totally 20! =

(2432902008176640000) possible permutations for

this table.

5.2 Suggested amino acid permutation decision

table (AAPDT)

As explained in Table 3, the amino acid

permutation decision table (AAPDT) is developed to

swap out each digit in the decimal protein sequence

with one digit that matches the four bits input

message. The first row of Table 3 shows that if the

amino acid in the reference protein sequence is

Glycine (value of 5) and the secret message value is

2 (0010), the resulting fake amino acid is either

Leucine (value of 9) or Methionine (value of 10).

That is, 9/10 = ℾ (5,2). Also, in the reverse process if

the amino acid is (Glycine = 5) in the reference

protein sequence and the resultant faked amino acid

is (either Leucine = 9 or Methionine = 10), then the

secret message value is 2 (0010). That is, 2 = ℾ

(5,9/10). Another case, 1(Cysteine) = ℾ (12(Proline),

5(0101)) and 5(0101) =ℾ (1(Cysteine), 12(Proline)).

Keep in mind that the input message can be

accurately extracted because the entries (amino

acids) in each permutation (Per)column must be

assigned with different digits. Since the amino acids

in Table 3 can be arbitrarily assigned, there are totally

(20!)20 possible permutations for this table.

5.3 The suggested data hiding algorithm

The Suggested data hiding algorithm is listed in

Algorithm 1. To implement this proposed method, it

is essential to have four prerequisites in place, which

must be known only to the sender and recipient,

including a reference protein sequence (PSI), protein

decimal coding rule (PDCR) and an acid permutation

decision table (AAPDT). The proposed algorithm in

Step 1 starts by reading the first protein sequence

(PSI). These protein sequences can be obtained freely

by accessing the NCBI (national center for

biotechnology information) database [26]. Step 2

requires the creation of a second fake protein

sequence (PSII) at random with the same length PSI.

The algorithm begins with plain text (M) and convert

it to ASCII code (MA), then to binary form (BM) as

explained in step 3. Step 4 and 5 used to find the

random locations as explained in section 5.5. In step

6 and 7, each 8-bits message is divided into two

partitions, where each partition is 4-bits partition.

After partitioning process, the data must be converted

to decimal form (𝑴𝑩⸍ = { 𝑚1
⸍ , 𝑚2

⸍ , …, 𝑚𝑛−1
⸍ ,

𝑚𝑛
⸍ }),where one digit in decimal system corresponds

to 4 bits in binary system. In order to starts with the

data hiding process, the two protein sequences (PSI

and PSII) must be converted to Decimal system

according to Table 2 as shown in step 8 and 9. In step

10, let 𝑚𝑗
⸍ indicates the secret message value in

decimal system, 𝑝𝑠𝑖(𝑅𝐿[j])
⸍ indicates to an amino acid

of a reference protein sequence (in decimal system,

see Table 2) in the random location j,

and𝑝𝑠𝑖𝑖(𝑹𝑳[j])
⸍ indicates to an amino acid of a faked

protein sequence (in decimal system, also see Table

2) with the same random location j. Using the Amino

Acid Permutation Decision Table, the permutation

function 𝑝𝑠𝑖𝑖(𝑅𝐿[j])
⸍ = ℾ (𝑝𝑠𝑖(𝑅𝐿[j])

⸍ ,𝑚𝑗
⸍) is used to

conceal the secret message values. After the

permutation process is completed, the decimal values

of the amino acids of the two protein sequences are

converted to a single letter using Table 2 and send

(PSII) to the recipient as explained in step 11 and 12

of Algorithm 1.

Received: December 13, 2022. Revised: February 10, 2023. 469

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

Table 3. Amino Acid Permutation Decision Table (AAPDT)

0

(Ala)

1

(Cys)

2

(Asp)

3

(Glu)

4

(Phe)

5

(Gly)

6

(His)

7

(Ile)

8

(Lys)

9

(Leu)

M
sg

P
er

M
sg

p
er

M
sg

P
er

M
sg

P
er

M
sg

P
er

M
sg

P
er

M
sg

p
er

M
sg

p
er

M
sg

p
er

M
sg

P
er

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1 2 3 4 5 6 7 8 9 10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
6

1
10

1
11

3 4 5 6 7 8 9 10 11 12

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

5 6 7 8 9 10 11 12 13 14

3
6

3
7

3
8

3
9

3
10

3
11

3
12

3
13

3
14

3
15

7 8 9 10 11 12 13 14 15 16

4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17

5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18

6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19

7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 0

8 12 8 13 8 14 8 15 8 16 8 17 8 18 8 19 8 0 8 1

9 13 9 14 9 15 9 16 9 17 9 18 9 19 9 0 9 1 9 2

10 14 10 15 10 16 10 17 10 18 10 19 10 0 10 1 10 2 10 3

11 15 11 16 11 17 11 18 11 19 11 0 11 1 11 2 11 3 11 4

12 16 12 17 12 18 12 19 12 0 12 1 12 2 12 3 12 4 12 5

13 17 13 18 13 19 13 0 13 1 13 2 13 3 13 4 13 5 13 6

14 18 14 19 14 0 14 1 14 2 14 3 14 4 14 5 14 6 14 7

15 19 15 0 15 1 15 2 15 3 15 4 15 5 15 6 15 7 15 8

10

(Met)

11

(Asn)

12

(Pro)

13

(Gln)

14

(Arg)

15

(Ser)

16

(Thr)

17

(Val)

18

(Trp)

19

(Tyr)

M
sg

P
er

M
sg

p
er

M
sg

P
er

M
sg

P
er

M
sg

p
er

M
sg

P
er

M
sg

p
er

M
sg

p
er

M
sg

p
er

M
sg

P
er

0

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19

11 12 13 14 15 16 17 18 19 0

1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 0 1 1

13 14 15 16 17 18 19 0 1 2

2 14 2 15 2 16 2 17 2 18 2 19 2 0 2 1 2 2 2 3

15 16 17 18 19 0 1 2 3 4

3 16 3 17 3 18 3 19 3 0 3 1 3 2 3 3 3 4 3 5

17 18 19 0 1 2 3 4 5 6

4 18 4 19 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7

5 19 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8

6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9

7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10

8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 8 10 8 11

9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 10 9 11 9 12

10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13

11 5 11 6 11 7 11 8 11 9 11 10 11 11 11 12 11 13 11 14

12 6 12 7 12 8 12 9 12 10 12 11 12 12 12 13 12 14 12 15

13 7 13 8 13 9 13 10 13 11 13 12 13 13 13 14 13 15 13 16

14 8 14 9 14 10 14 11 14 12 14 13 14 14 14 15 14 16 14 17

15 9 15 10 15 11 15 12 15 13 15 14 15 15 15 16 15 17 15 18

Received: December 13, 2022. Revised: February 10, 2023. 470

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

Algorithm 1. Proposed data embedding algorithm

for sender side

Input: A reference Protein sequences (PSI), a plain

text (M), Protein Decimal Coding Rule

(PDCR), Amino Acid Permutation Decision

Table (AAPDT)

Output: A faked protein sequences(𝑷𝑺𝑰𝑰) and Key

Step1. Read a Protein sequence (PSI) from NCBI

Step2.Generate a Protein sequence (PSII)

 randomly with same length of PSI

Step3. Covert the plain text (M) to ASCII code

 (MA), then binary form (BM)

Step4. Find the length of secret message (ML) and

 the length of protein sequence (PSL):

 ML(Key) = |MA| * 2; PSL = | PSI| or | PSII |

Step5. Send PSL and ML(Key) to Algorithm 3 to

 find the random locations:

 RL = {𝐿1, 𝐿2, …, 𝐿𝑛}

Step6. Divide each Byte from (BM) in step 3 into

 two partitions:

 MB = {𝑚1, 𝑚2, …, 𝑚𝑛−1, 𝑚𝑛} // each

 partition 4-bit

Step7. Convert each 4-bit partition in step 6 into

 one digit ASCII code:

 𝑴𝑩⸍= {𝑚1
⸍ , 𝑚2

⸍ , … , 𝑚𝑛−1
⸍ , 𝑚𝑛

⸍ }

Step8. Convert the amino acid in a protein sequence

 (PSI) into ASCII code as in Table 2:

 𝑷𝑺𝑰⸍ = ℾ (PSI) = {𝑝𝑠𝑖1
⸍, 𝑝𝑠𝑖2

⸍ , …, 𝑝𝑠𝑖𝑛
⸍ }

Step9. Convert the amino acid in a protein sequence

(PSII) into ASCII code as in Table 2:

 𝑷𝑺𝑰𝑰⸍ = ℾ (PSII) = {𝑝𝑠𝑖𝑖1
⸍, 𝑝𝑠𝑖𝑖2

⸍ , …, 𝑝𝑠𝑖𝑖𝑚
⸍ }

Step10. For integer j from 1 to | RL | // j: is the index

of a fragmented message in step 7

 𝒑𝒔𝒊𝒊(𝑹𝑳[j])
⸍ = ℾ (𝒑𝒔𝒊(𝑹𝑳[j])

⸍ ,𝑚𝑗
⸍)//

 ℾ is a permutation function as in Table 3

 Return 𝑷𝑺𝑰𝑰⸍
Step11. Convert the digital protein sequence

(𝑷𝑺𝑰⸍and 𝑷𝑺𝑰𝑰⸍) from ASCII code into

string according to Table 2:

 PSI= ℾ(𝑷𝑺𝑰⸍)

 PSII= ℾ(𝑷𝑺𝑰𝑰⸍)

Step12. Send PSII and Key to the receiver side

We'll use the example below to demonstrate the

steps involved in systematically hiding data: Given a

protein sequence PSI, plain text(M), PDCR, and

AAPDT

➢ M = Stego

➢ PDCR: the same in Table 2

➢ AAPDT: the same in Table 3

Step1: Read sequence one from NCBI(2NB7_A),

 PSI= SNAMENTSITIEFSSKF

Step2: Generate sequence two randomly,

 PSII= PHCDKPMKVWMGQNAHE

Step3: Convert a plain text into ASCII, then to

 binary form:

• MA = {83, 116, 101, 103,111}

• BM = {01010011, 01110100, 01100101,

01100111, 01101111}

Step4: Key = |MA| * 2 = 10, PSL = | PSI | = 17

Step5: Send the values (10, 17) to Algorithm 3:

 RL = {3, 9, 10, 13, 5, 15, 11, 16, 14, 8}

Step6: partitioning binary plain text:

• MB = {0101, 0011, 0111, 0100, 0110,

0101,0110, 0111, 0110, 1111}

Step7: Convert the partitions in step 6 into one digit

 ASCII code:

• 𝑴𝑩⸍ = {5, 3, 7, 4, 6, 5, 6, 7, 6, 15}

Step 8, Step 9, Step 10 and Step11 are clarified in

Table 4.

Step12: Send (PSII and Key=10) to the receiver.

5.4 The proposed data extracting algorithm

In order to extracting the confidential message,

the recipient side applies the extraction algorithm as

clarified in Algorithm 2. The inputs to the data

retrieval algorithm are the same as the inputs to the

hiding algorithm in addition to the secret key and the

faked protein sequence (PSII) containing the hidden

data, where the extracting process is the inverse of the

hiding process.

Table 4. Example of Hiding a plain text (Stego)

Locations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PSI S N A M E N T S I T I E F S S K F

PSII P H C D K P M K V W M G Q N A H E

𝑷𝑺𝑰𝑰⸍ 12 6 1 2 8 12 10 8 17 18 10 5 13 11 0 6 3

𝑷𝑺𝑰⸍ 15 11 0 10 3 11 16 15 7 16 7 3 4 15 15 8 4

𝑴𝑩⸍

5

 6

15

3

7

6

4

6

5

7

𝑷𝑺𝑰𝑰⸍ 12 6 9 2 13 12 10 14 14 7 17 5 12 5 4 19 3

PSII P H L D Q P M R R I V G P G F Y E

PSI S N A M E N T S I T I E F S S K F

Received: December 13, 2022. Revised: February 10, 2023. 471

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

Table 5. Example of extracting a plain text (Stego)
Locations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PSI S N A M E N T S I T I E F S S K F

PSII P H L D Q P M R R I V G P G F Y E

𝑷𝑺𝑰⸍ 15 11 0 10 3 11 16 15 7 16 7 3 4 15 15 8 4

𝑷𝑺𝑰𝑰⸍

12

6

9

2

13

12

10

14

14

7

17

5

12

5

4

19

3

Algorithm 2. Proposed data extracting algorithm

for receiver side

Input: A faked Protein sequence (PSII), A reference

Protein sequence (PSI), Protein Decimal

Coding Rule (PDCR), Amino Acid

Permutation Decision Table (AAPDT),

length of secret message (Key).

Output: The hidden plaintext (M)
Step1. Find the length of the protein sequence,

 where PSL = | PSI | or | PSII |

Step2. Send Key and PSL to Algorithm 3 to find the

 random locations: RL = {𝐿1, 𝐿2, …, 𝐿𝑛}

Step3. Convert the amino acid in faked protein

 sequence (PSII) into ASCII as in Table 2:

 𝑷𝑺𝑰𝑰⸍ = ℾ (PSII) = {𝑝𝑠𝑖𝑖1
⸍ , 𝑝𝑠𝑖𝑖2

⸍ , …, 𝑝𝑠𝑖𝑖𝑚
⸍ }

Step4. Convert the amino acid in reference protein

 sequence into ASCII as in Table 2:

 𝑷𝑺𝑰⸍ = ℾ (PSI) = {𝑝𝑠𝑖1
⸍, 𝑝𝑠𝑖2

⸍ , …, 𝑝𝑠𝑖𝑛
⸍ }

Step5. Initialize a message (𝑴𝑩⸍) as an empty set

Step6. For integer j from 1 to | RL |

 {𝑚𝑗
⸍} = ℾ (𝒑𝒔𝒊𝒊(𝑹𝑳[j])

⸍ , 𝒑𝒔𝒊(𝑹𝑳[j])
⸍)

 𝑴𝑩⸍= 𝑴𝑩⸍ + {𝑚𝑗
⸍}

 Return 𝑴𝑩⸍

Step7. Convert each digit in the set 𝑴𝑩⸍ into

 Binary form MB to produce 4-bit element

Step8. Concatenate each two elements in step 7:

 BM = { (𝑚1+ 𝑚2), …, (𝑚𝑛−1 + 𝑚𝑛) }

Step9. Covert each two concatenated elements in

 step8 into ASCII code (MA)

Step10. Convert ASCII code in step 9 (MA) into a

 plain text (M)

To illustrate the process of extracting data step

by step, we will take the following example: Given

a protein sequence PSI, PSII, Key, PDCR, AAPDT

➢ PSI= SNAMENTSITIEFSSKF

➢ PSII = PHLDQPMRRIVGPGFYE

➢ Key = 10

➢ PDCR: the same in Table 2

➢ AAPDT: the same in Table 3

Step1: PSL = | PSI | = 17

Step2: Send the values (10, 17) to Algorithm 3:

 RL = {3, 9, 10, 13, 5, 15, 11, 16, 14, 8}

Step 3 and Step 4 are clarified in Table 5.

Step5: 𝑴𝑩⸍= { }

Step6: 𝑴𝑩⸍= {5, 3, 7, 4, 6, 5, 6, 7, 6, 15}

Step7: MB = {0101, 0011, 0111, 0100, 0110,

 0101,0110, 0111, 0110, 1111}

Step8: BM= {01010011, 01110100, 01100101,

 01100111, 01101111}

Step9: MA = {83, 116, 101, 103, 111}

Step10: M = Stego

5.5 The algorithm of generating the positions of

data hiding and extracting using PRNG

To explain how one can find the random

positions for hiding or extracting the secret a plain

text, the pseudo random number generator (PRNG)

was used. A random number generator is utilized to

randomly distribute and conceal the bits of a secret

plain text into bases within a cover protein sequence.

Both the sending and receiving end share the key of

stego. The key of stego is considered as a seed to

select the number of locations in a cover protein

sequence for concealing and extracting the secret

plain text and the output are random numbers (𝐿1, 𝐿2,

…, 𝐿𝑛) represents the positions of hiding and

extracting a plain text, where n is the required

number of locations. So, the size of the key increases

with the size of the data. Algorithm 3 starts by

searching for the first largest prime number P, such

that: 1 ≤ P ≤ PSL, then a first primitive root a is

obtained, which is a number whose powers generate

all the distinct integers from 1 to (p-1) in a random

order [27]. Each power of this primitive root to

generate these random integers is called the discrete

algorithm. Then this primitive root a, is used to

generate a set of random and unrepeated numbers.

The number of these random numbers is the same

numbers of amino acids in the protein sequence. And

according to the value of the key, the number of the

required positions is chosen for the purpose of hiding

or retrieving the data.

Algorithm 3. Generating data hiding positions

using pseudo random number generator

Input: Length of secret message (Key) and the

 length of protein sequence (PSL)

Received: December 13, 2022. Revised: February 10, 2023. 472

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

Output: Random locations RL = {𝐿1, 𝐿2, …, 𝐿𝑛}

Step1. Choose the largest prime number P, such

 that: 1 ≤ P ≤ PSL

Step2. Find the results of first primitive root to P,

 using:

 𝒚𝒊 = 𝒂𝒊 𝒎𝒐𝒅 𝒑, a, i = 1, 2, …, P-1

Step3. Find the random locations RL:

For integer j from 1 to Key

 RL [j] = y [j]

6. Security analysis

This section will illustrate some of the most

important measurements parameters that is used to

evaluate the performance and analysis the security of

our proposed algorithm. These measurements are

cracking probability, capacity, payload, and BPN (bit

per nucleotide) as illustrated below:

6.1 Cracking probability (CP)

A computation of the likelihood that a brute

force attempt to guess the secret message concealed

in the protein sequence would succeed using the

suggested algorithm. To extract the secret message

hidden inside the reference protein sequence, the

attacker needs to have the following information:

❖ The number of protein sequences now available

online in NCBI database is

1098741385 sequences [26]. Therefore, the

probability to predict a reference protein

sequence is:

1

1098741385
=

1

𝑛𝑝

❖ The probability to predict the protein decimal

coding rule (Table 2) is:

1

20 !

❖ The probability to predict the number of all

possible column's permutation (Table 3) are:

1

(20!)20

❖ The total probability of guessing each segment

of the decimal secret message is:
1

24 =
1

16
 , since each decimal segment of a

secret message consist of 4-bits.

❖ The random locations that are used to hide the

secret message within a faked protein sequence.

The proposed method hides each four secret bits

(one digit in decimal) of the binary form of the

message (MB⸍) in the faked protein sequence

(PSII) to conceal it in arbitrary positions.

According to the pseudo random numbers

generated within [1, |PSII|]. So, the number of

required tries to obtain the used set of random

numbers is (|PSII|)! So, the cracking probability

will be further improved as PSII grows.

Therefore, the overall likelihood to predict the

correct location sets is:

1

(|PSII|)!

Finally, the total probability to discover the

secret message hidden within the reference protein

sequence using the proposed method is:

C=
1

np
 ×

1

20!
 ×

1

(20!)20 ×
1

16
 ×

1

(|PSII|)!
 (1)

From Eq. 1, we conclude that the cracking

probability of our proposed method is nearly equal to

zero.

6.2 Capacity (C)

The capacity refers to the overall length of the

extended sequence after the secret message is

concealed within it [3], therefore, we can calculate

the hiding capacity of the proposed method by the

following equation:

 C =|𝑃𝑆𝐼𝐼| (2)

where:
|𝑃𝑆𝐼𝐼| is the length of a cover protein sequence.

6.3 Bit per nucleotide (BPN)

Is the average number of secret bits that can be

Figure .1 The performance of the proposed algorithm for

the same data size on different protein sequences

3.32
3.99 3.9 3.5 3.71 3.8 3.99

0
1
2
3
4
5

A
ve

ra
ge

 B
P

N

Accession Number

BPN

Received: December 13, 2022. Revised: February 10, 2023. 473

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

concealed in each amino acid (character)of the

embedded protein sequence. The optimal bpn of the

proposed method is four bits. When all letters in the

sequence are utilized to conceal the data, the bpn

works as optimal [17].

 BPN =
|𝐁𝐌|

|𝐶|
 (3)

 where:
|𝐵𝑀| is the total length of a secret message in

bits.

6.4 Payload

Is the length of a protein sequence after and

before steganography process, and the best value

when payload equals zero [22].

Payload=|PSII|−|PSI| (4)

where:

|PSII| is the length of the fake protein sequence,

and |PSI| is the length of the reference protein

sequence.

7. Experimental results

7.1 Experimentations on sample protein

sequences

This section assesses the effectiveness of the

suggested approach. The proposed method was

tested on Intel(R) Core (TM) i5-6200U CPU @ 2.4

GHz personal computer with RAM of 4 GB. The

MATLAB R2021a program used to implement the

proposed method. Seven protein sequences were

chosen as test samples, as can be seen in Table 6.

Each protein sequence is recognized by its accession

number, which is taken from the NCBI database.

22,630 bytes of textual data were randomly selected

and used as the secret message. In addition, as shown

in Table 6, the capacity provided by the protein

sequence, payload, and BPN is shown, as these

parameters were described in section 6. From Figure

1, notice that as the sequence size decreases, the BPN

increases; in 22,630 bytes of data, if the sequence

length was 45260 amino acids, then the BPN was 4.

7.2 Comparison the proposed method with other

techniques in term of Capacity

In this sub-section, using different data sizes, the

length of the faked DNA sequences is measured by

some of the existing techniques to prove the ability

of the proposed method compared to the other

technique in Table 7. As shown in Table 7 and in the

case of (10) KBs, the worst capacity over all methods

was achieved by those based on DNA sequences in

A4 and A11, which required the highest number of

DNA bases (245,760), due to hiding (0.333) bits per

DNA base. A2 works by hiding the data in the

repeated bases of the DNA sequence, and these bases

may not be sufficient to hide the data, so the length

of the sequence must be increased for the purpose of

searching for the repeated bases and exploiting them

in the hiding process. The capacity of A5 is 122,880,

bases because of adding extra bases to the original

sequence, and these extra bases are the secret

message. The capacity of A1 and A10 are 81920 and

87149 bases, due to hiding (1 and 0.94) bits per DNA

base, respectively. In A6, the secret message must be

hidden in the leaf nodes, and there are 46,656 leaf

nodes for hiding 81920 bits, as a result, there are

74,649 nodes in total. A3, A7, A8 and A9 have the

best capacity over all these previous methods that are

based on DNA sequences, since they hide two bits

per base, but the capacity of the proposed method

outperformed the capacity of all these previous

methods (A1-A11), which required the lowest

number of bases (20,480 amino acids), due to hiding

four bits for each amino acid. Therefore, the

proposed method saves 50% bandwidth compared

with the approaches in (A1-A11) for each

communication that transmits 10 kilo Bytes between

sender and receiver.

7.3 Comparisons the proposed method with other

existing techniques in term of average BPN,

payload, protein conserve functionality and

cracking probability

As shown in Table 8, the best algorithms in term

of BPN for data hiding that based on DNA sequences

is in [21-23] for hiding 20K Bytes data, since it uses

Table 6. The results of using proposed method to hide

22,630 bytes (22,630 × 8 = 181040 bits) secret message

within various tested protein sequences

Accession

Number

No of

amino

acids C
a

p
a

ci
ty

P
a

y
lo

a
d

B
P

N

TSR51413 54498 54498 0 3.32

UCB56787 45376 45376 0 3.99

CAH0927406 46359 46359 0 3.90

KAI4565070 51741 51741 0 3.50

KAI4552952 48746 48746 0 3.71

KAI4551092 47538 47538 0 3.80

KAA0715513 45354 45354 0 3.99

Average bpn 3.74

Received: December 13, 2022. Revised: February 10, 2023. 474

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

Table 7. The required generated length for the sequence after hiding a secret message that is applied by proposed method

vs some other techniques based on DNA sequence

IDs
Approach

T
y

p
e

o
f

S
eq

u
en

ce

Secret data size

(10) KBs

(81920)

Bits

(1164) KBs

(9535488)

Bits

(3000) KBs

(24576000)

bits

A1 Shiu et al., 2010 [8],Substitution method DNA 81,920 9,535,488 24,576,000

A2 Guo et al., 2012 [16] DNA 156,848 17,542,634 52,545,224

A3 Taur et al., 2012 [17] DNA 40,960 4,767,744 12,288,000

A4 Khalifa and Hamad, 2015 [18] DNA 245,760 28,606,464 73,728,000

A5 Malathi et al., 2017 [19] DNA 122,880 14,303,232 36,864,000

A6 Saha et al., 2019 [20] DNA 74,649 16,124,313 36,279,705

A7 Mohammed et al., 2019 [21] DNA 40,960 4,767,744 12,288,000

A8 Mohammed and Abdel-Razeq, 2020 [22] DNA 40,960 4,767,744 12,288,000

A9 Nabi et al., 2021[23],Substitution method DNA 40,960 4,767,744 12,288,000

A10 Sabry et al., 2019 [24] DNA 87,149 10,144,137 26,144,681

A11 Hassan et al., 2022 [25] DNA 245,760 28,606,464 73,728,000

PA Proposed Method Protein 20,480 2,383,872 6,144,000

Table 8. A comparison between the suggested algorithm with DNA-based algorithms

R
es

ea
rc

h

A
p

p
ro

ac
h

A
v

er
ag

e

B
p

n

P
ay

lo
ad

F
u

n
ct

io
n

al
it

y

co
n

se
rv

ed
?

 Cracking Probability

Ref [8]

Insertion

Method
0.58

|M|

2
 No

1

1.63 ×108
 ×

1

n-1
 ×

1

2m-1
×

1

2s-1
 ×

1

24

Complement

ary Method
0.07 |M|(k+3

1

2
) No

1

1.63 ×108
 ×

1

242

Substitution

Method
0.82 0 No

1

1.63 ×108
 ×

1

6

Ref [16]
Complement

ary Method
0.587 0 No

1

1.63 ×108 ×
1

6
 ×

1

24

Ref [17]
TLSM

Method
1.64 0 No

1

1.63 ×108
 ×

1

244
×

1

r

Ref [18] LSBase 0.333 0 Yes Not defined

Ref [19]
Insertion

Method
1.52

|M|

2
 No

1

1.63 ×108 ×
1

24
 ×

1

n-1
×

1

2m-1
×

1

2s-1 ×
1

28m

Ref [20]
Balanced

Tree
0.97 Not defined No Not defined

Ref [21]
self-adaptive

DNABS
2 0 Yes

1

2
×

1

1.63 ×108
 ×

1

24
 ×

1

m × n2× p × R2

Ref [22]
Substitution

Method
2 0 No

1

1.63 ×106
 ×

1

y-1
 ×

1

2m−1
×

1

24
 ×

1

L(y-1)

Ref [23]
Substitution

Method
2 0 No

1

1.63 ×108
 ×

1

24

Ref [24]
Substitution

Method
0.94 N−

101

128
×|M| Yes

1

1.63 ×108
 ×

1

2N/3

Ref [25]
Substitution

Method
0.333 0 Yes

1

1.63 × 108 × (𝑛 − 6) × 4! × 4! × 4

Proposed

Method
Permutation

Method
4 0 Yes

1

np
 ×

1

20 !
 ×

1

(20 !)20
 ×

1

16
 ×

1

(|PSII|)!

Received: December 13, 2022. Revised: February 10, 2023. 475

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

a DNA bases to hide on maximum only two bits,

while the suggested method doubles the hiding

capacity (average BPN) by employing a base to hide

up to four bits. The payload of the proposed method

is Zero, since no expansion in the faked protein

sequence after the embedding process. Also, the

proposed method preserves the functionality of the

protein reference sequence, since the protein

reference sequence (PSI) is used only to determine

the amino acids that must be permuted with another

amino acids in the faked generated protein sequence

(PSII). Finally, according to Table 8, the proposed

method has lowest cracking probability over all

existing methods.

8. Conclusions

This paper presents a novel steganographic

technique that uses a protein sequence as a cover. The

proposed method consists of two modules:

embedding and extraction. The embedding module

starts by partitioning each byte of the secret message

into two 4-bit parts, and then these parts are converted

into decimal numbers. Finally, the decimal values of

the secret message are randomly included in the cover

protein sites using a pseudo random number

generator (PRNG) for each cover protein base value

instead of being sequentially embedded in the cover

protein bases. It is considered that this random

distribution increases system security. The proposed

method works with a one-digit protein decimal

coding rule (PDCR) and the byte of the message will

be embedded in two bases of amino acids. In contrast,

the extraction module reverses the embedding

process stages to disclose the secret message.

The experimental results showed a unique high

performance of the proposed method compared to all

the existing techniques that depend on DNA

sequences as a carrier medium to conceal the data in

terms of capacity, BPN and cracking probability. The

proposed technique succeeded in achieving higher

capacity and hiding 4-bit per amino acid (BPN),

which is the highest among all methods; therefore,

the proposed method saves 50% bandwidth

compared with the other existing technique.

Furthermore, the proposed method has been shown to

be resistant to brute force attacks, making it nearly

impossible to extract the secret message because its

cracking probability is close to zero. So, the proposed

method provides a higher level of security. We

believe that the proposed method and its

unprecedented results open a wide door for new

steganography research based on protein sequences.

Conflicts of interest

The authors declare no conflict of interest .

Author contributions

The concept, method, programs, formal analysis,

validation, resources, data curation and writing-

original draft preparation were all contributed by

Radhwan Jawad Kadhim. Hussein K. Khafaji

Supervised, revised, and edited the work.

References

[1] H. Antonio, P. W. C. Prasad, and A. Alsadoon,

“Implementation of cryptography in

steganography for enhanced security”, Multimed.

Tools Appl., Vol. 78, No. 23, pp. 32721–32734,

2019, doi: 10.1007/s11042-019-7559-7.

[2] Y. Niu, K. Zhao, X. Zhang, and G. Cui, “Review

on DNA cryptography”, In: Proc. of

International Conference on Bio-Inspired

Computing: Theories and Applications, pp.

134–148, 2019.

[3] O. A. A. Harbi, W. E. Alahmadi, and A. O.

Aljahdali, “Security analysis of DNA based

steganography techniques”, SN Appl. Sci., Vol.

2, No. 2, 2020, doi: 10.1007/s42452-019-1930-

1.

[4] A. Khalifa, “A secure steganographic channel

using DNA sequence data and a bio-inspired

XOR cipher”, Inf., Vol. 12, No. 6, 2021, doi:

10.3390/info12060253.

[5] M. M. Amrulloh and T. Ahmad, “Utilizing fuzzy

logic in developing reversible data hiding

method”, Int. J. Intell. Eng. Syst., Vol. 13, No. 5,

pp. 327–336, 2020, doi:

10.22266/ijies2020.1031.30.

[6] I. J. Kadhim, P. Premaratne, P. J. Vial, and B.

Halloran, “Comprehensive survey of image

steganography: Techniques, Evaluations, and

trends in future research”, Neurocomputing, Vol.

335, pp. 299–326, 2019.

[7] P. Malathi and T. Gireeshkumar, “Relating the

Embedding Efficiency of LSB Steganography

Techniques in Spatial and Transform Domains”,

Procedia Comput. Sci., Vol. 93, No. September,

pp. 878–885, 2016, doi:

10.1016/j.procs.2016.07.270.

[8] H. J. Shiu, K. L. Ng, J. F. Fang, R. C. T. Lee, and

C. H. Huang, “Data hiding methods based upon

DNA sequences”, Inf. Sci. (Ny)., Vol. 180, No.

11, pp. 2196–2208, 2010, doi:

10.1016/j.ins.2010.01.030.

[9] H. K. A. Khafaji and Z. M. Jameel, “A New

Approach to DNA, RNA, and Protein Motifs

Received: December 13, 2022. Revised: February 10, 2023. 476

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.37

Templates Visualization and Analysis via

Compilation Technique”, IOSR J. Comput. Eng.,

Vol. 19, No. 02, pp. 15–25, 2017, doi:

10.9790/0661-1902011525.

[10] R. Jiang, X. Zhang, and M. Q. Zhang, Basics of

Bioinformatics: Lecture Notes of the Graduate

Summer School on Bioinformatics of China, Vol.

9783642389, 2013, doi: 10.1007/978-3-642-

38951-1.

[11] B. Alberts, Molecular Biology of the Cell, WW

Norton & Company, 2017.

[12] E. Keedwell and A. Narayanan, “Intelligent

Bioinformatics: The Application of Artificial

Intelligence Techniques to Bioinformatics

Problems”, Intell. Bioinforma. Appl. Artif. Intell.

Tech. to Bioinforma. Probl., pp. 1–280, 2005,

doi: 10.1002/0470015721.

[13] J. Pevsner, Bioinformatics and Functional

Genomics, 2005, doi: 10.1002/047145916x.

[14] M. Morange, “Based on the article entitled ’Fifty

Years of the Central Dogma”, Publ. J. Bio-

Sciences, Vol. 33, No. March, pp. 171–175,

2009.

[15] G. Edited, I. C. Gray, and M. R. Barnes, FOR

GENETICISTS Edited by, Vol. 4. 2003.

[16] C. Guo, C. C. Chang, and Z. H. Wang, “A new

data hiding scheme based on DNA sequence”,

Int. J. Innov. Comput. Inf. Control, Vol. 8, No. 1,

A, pp. 139–149, 2012.

[17] J. S. Taur, H. Y. Lin, H. L. Lee, and C. W. Tao,

“Data hiding in DNA sequences based on table

lookup substitution”, Int. J. Innov. Comput. Inf.

Control, Vol. 8, No. 10, pp. 6585–6598, 2012.

[18] A. Khalifa and S. Hamad, “Hiding Secret

Information in DNA Sequences Using Silent

Mutations”, Br. J. Math. Comput. Sci., Vol. 11,

No. 5, pp. 1–11, 2015, doi:

10.9734/bjmcs/2015/19561.

[19] P. Malathi, M. Manoaj, R. Manoj, V. Raghavan,

and R. E. Vinodhini, “Highly Improved DNA

Based Steganography”, Procedia Comput. Sci.,

Vol. 115, pp. 651–659, 2017, doi:

10.1016/j.procs.2017.09.151.

[20] P. Saha, L. Y. Pinky, M. A. Islam, and P. Akter,

“Higher Payload Capacity in DNA

Steganography using Balanced Tree Data

Structure”, Int. J. Recent Technol. Eng., Vol. 8,

No. 4, pp. 6551–6556, 2019, doi:

10.35940/ijrte.d8088.118419.

[21] M. H. Mohammed, B. H. Ali, and A. I. T.

Mohamed, “Self-adaptive dna-based

steganography using neural networks”, Inf. Sci.

Lett., Vol. 8, No. 1, pp. 15–23, 2019, doi:

10.18576/isl/080102.

[22] M. H. Mohammed and A. A. Razeq, “Dna-based

steganography using genetic algorithm”, Inf. Sci.

Lett., Vol. 9, No. 3, pp. 205–210, 2020, doi:

10.18576/isl/090307.

[23] S. H. Nabi, P. Sarosh, S. A. Parah, and G. M.

Bhat, “Information Embedding Using DNA

Sequences for Covert Communication”, pp.

111–129, 2021, doi: 10.1007/978-981-15-8711-

5_6.

[24] M. Sabry, T. Nazmy, and M. E. Khalifa,

“Steganography in DNA Sequence on the Level

of Amino acids”, In: Proc. of 2019 IEEE 9th Int.

Conf. Intell. Comput. Inf. Syst. ICICIS 2019, pp.

317–324, 2019, doi:

10.1109/ICICIS46948.2019.9014843.

[25] S. Hassan, A. Muztaba, S. Hossain, and H. S.

Narman, “A Hybrid Encryption Technique

based on DNA Cryptography and

Steganography”, In: Proc. of IEEE 13th Annu.

Inf. Technol. Electron. Mob. Commun. Conf.

(IEMCON), Vancouver, BC, Canada, pp. 501–

508, 2022.

[26] “National Center for Biotechnology

Information”,

https://www.ncbi.nlm.nih.gov/search/all/?term=

protein

[27] “Primitive root”,

https://en.wikipedia.org/wiki/Primitive_root_m

odulo_n.

