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Abstract: Multiview video processing for recognition is a hard problem if the subject is in continuous motion. 

Especially the problem becomes even tougher when the subject in question is a human being and the actions to be 

recognized from the video data are sign language. Although many deep learning models have been successfully 

applied for sign language recognition (SLR), very few have considered multiple views in their training set. In this 

work, we propose to apply meta metric learning for video-based sign language recognition. Contrasting to traditional 

metric learning where the triplet loss is constructed on the sample-based distances, the meta metric learns on the set-

based distances. Consequently, we construct meta cells on the entire multiview dataset and perform a task-based 

learning approach with respect to support cells and query sets. Additionally, we propose a maximum view pooled 

distance on sub-tasks for binding intraclass views. The results of experiments conducted on the multiview sign 

language dataset and four action datasets show that the proposed multiview meta metric learning model 

(MVDMML) achieves 11% higher performance than the baselines.  

Keywords: Deep meta metric learning, Multiview sign language and action recognition, Triplet loss. 

 

 

1. Introduction 

Sign language recognition (SLR) has been 

explored in multiple signalling environments such as 

1/2/3D over the past three decades. Despite its 

recent successes with deep neural networks (DNNs) 

such as convolutional neural networks (CNNs) [1-3] 

and long shot term memory networks (LSTMs) [4, 

5], the development of a deployable SLR is far from 

reality. This is due to problems relating to subjects 

hand and body movements that will augment the 

single-view data into a multi view data recovery 

problem. This kind of multi view problems is 

commonly found in action recognition. However, 

multi view problems can also occur in sign language 

due to subjects movements or the camera 

positioning during capture. These problems were 

addressed by applying global optimization models 

as shown in Fig. 1(a) for multi view learning. The 

resulting outputs from global optimization methods 

on entire training sets has shown to overfit on the 

common features between views. During testing, the 

within class query view samples were found to 

linearize towards the common features in other 

classes providing ambiguous outputs from the 

SoftMax layer. Unlike the above methods that are 

applied on the entire dataset, metric learning focuses 

on pairs of samples from the training set to 

maximize the distance between the samples of the 

training set. 

The goal of this work is to develop a view 

sensitive sign language recognition system using  
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(a)                                        (b) 

 
(c) 

Figure. 1 A comparison between global optimization 

methods: (a), triplet loss metric learning model, (b) and 

our proposed meta metric learning, and (c) for multi view 

video data recognition with sign language 

 

model of deep metric learning [6]. Generally, deep 

metric learning has been a successful algorithm in 

the fields of speaker identification [7], face 

recognition [8], action recognition [9], satellite 

image classification [10] and person re-

identification [11] problems. However, this is the 

first instance where deep metric learning is being 

investigated for multi view recognition problems. In 

DML the model is trained to learn the similarities 

between the intra class variables and discriminate 

their inter class dissimilarities. The learning process 

is instigated using a loss function defined by 

contrastive or triplet loss. The triplet loss embedding 

is a distance metric that tries to maximize the gap 

between intra and inter class features against an 

anchor image, whereas the contrastive loss does the 

same thing without the anchor. 

However, the implementation of the multi view 

metric learning architecture is challenging and 

computationally expensive due to multiple 

combinations of anchor positive and anchor negative 

pairs as shown in Fig. 1(b). For example, in a 𝑐 class, 

𝑚 view dataset with 𝑓 frames per view, we can have 

a total of 𝑚 × 𝑓 frames per class. The total number 

of frames across all classes in 𝑚 × 𝑓 × 𝑐 . Let a 

frame in a particular view be selected as anchor, 

then the number of anchor positive pairs from within 

a class will be (𝑚𝑓)𝐶2. Consequently, the number 

of anchor negative pairs across classes is (𝑐 −
1)𝑚𝑓𝐶2 , which have thrown memory exceptions 

during training process. In our Multiview sign 

language dataset, we have 5 views by 5 different 

subjects in 200 classes. Each video sign has 120 

frames, which makes the total dataset into a 600K 

frame repository. As a result, the DML algorithm 

with triplet loss comes under massive workloads to  
 

 
Figure. 2 The multi view sign language dataset, 

KL_MV2DSL. It has 4 views from different directions 

and one view from frontal direction with a total of 5 

views per class 

 

 

transform the inputs into pairs. Accordingly, the 

above constraint on DML on multi view data 

increases exponentially with the increase in number 

of views per label. Hence, to develop a 

computationally efficient environment for multi 

view metric learning using DML, we transform the 

above problem into a deep meta metric learning [12] 

problem as depicted in Fig. 1(c). Contrasting to the 

metric learning with triplet loss embeddings, the 

training process is sampled into sub – tasks to learn 

transferable information across multiple views. 

This work proposed to apply deep meta metric 

learning [12] to multi view problem in sign language 

(action) recognition tasks. Experiments are 

conducted to justify the capabilities of the proposed 

model for multi view problems against different 

metric learning classifiers. In particular, we show 

the performance of the proposed meta metric model 

on our multi view sign language video dataset 

KL_MV2DSL, and other action benchmarks such as 

NTU RGB D[13], MuHAVi[14], WEIZMANN[15] 

and NUMA[16]. The fig.2 offers a glimpse of the 

video frames from our KL_MV2DSL, the multi 

view sign language dataset.  

Action datasets are selected because of the 

unavailability of rich multi view sign language 

dataset. The rest of the paper is organized as follows. 

The section 2 describes the pros and cons of sign 

language recognition systems based on deep 

learning with an emphasis on multi view action 

recognition models. The proposed methods are 

being presented in section 3. Subsequent sub 

sections in 4 demonstrate the capabilities of multi 

view meta metric learning in recognizing multi view 

SL data and other human action multi view 

benchmark datasets. Finally, conclusions are drawn 

on the proposed method in section 5. 
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2. Background 

Since the work is a mixture of many 

interconnected areas, we review these areas 

discretely instead of a single entity. We present the 

review of sign language, action recognition, deep 

metric learning and meta learning in the following 

subsections. 

2.1 Sign language recognition 

Sign language recognition has been practiced in 

various forms based on data, features and 

classification algorithms [1]. The data usually comes 

from 3 sources, hand gloves (1D) [17], video 

cameras (2D) [18] and Kinect or leap motion (3D) 

[19]. The 4th and unique high-priced source is 

motion capture technology that has produced high 

precision synthetic sign language skeletal data [20]. 

Despite costly, the 3D motion captured signs exhibit 

naturalistic resemblance to real time human actions 

with far better representations than the other sources. 

However, the most commonly used source is 2D 

RGB video data [21]. A wide variety of algorithms 

were proposed in the last few decades for video pre-

processing, feature extraction and recognition [22, 

23]. Most of these algorithms actually solved some 

type of spatial, temporal or paired representation of 

video object data effectively as features. These 

features are further classified using all the traditional 

machine learning algorithms. The most popular 

classifiers were hidden markova models (HMM) 

[24] and artificial neural networks (ANN) [25]. With 

the advent of deep learning frameworks, the 2D 

video based SLR has become powerful with the 

option of feature learning rather than feature 

extraction. A large contingent of them are available 

for perusal [26]. The accuracies reported by these 

methods are not reproducible or they simply fail to 

generalize on the video quality or the signer. This 

has motivated researchers towards higher 

dimensional data such as RGB D or 3D skeletal 

representations. Multi modal video sequences that 

are fed into multiple streams of a CNN are 

predominantly researched which have shown 

evidence of exceptional performances in real time 

for sign (action) recognition applications [27]. The 

recognition accuracies were better than the single 

modal datasets. However, the training requires 

higher computing powers, and the datasets are 

captured with special devices making it an 

unfeasible solution for real time implementation. 

2.2 Multi-view action recognition 

Eventually, to develop a real time SLR or HAR 

system, it is intuitive to initiate multi view learning. 

Therefore, in the last couple of years, multi view 

learning has taken centre stage [28]. Multi view 

HAR has evolved through research using dictionary 

learning [29], neural networks with adaptable views 

[30], convolutional neural networks [31] and deep 

attention models [32], to name a few. However, the 

most widely researched and acknowledged models 

are from deep learning networks. Moreover, visual 

attention models with deep CNNs have established 

themselves as a formidable solution to multi view 

learning [33]. Despite their success, attention 

models are specific to a particular view and the view 

specific features are to be fused accordingly for 

classification by the dense layers. The fusion 

mechanisms ensemble the view specific features 

into a multi view feature vector that has failed to 

capture the variations in multi view data [25].  

2.3 Deep metric learning 

This motivated us to look for a more robust 

learning model that can learn to collaborate between 

views during training. Consequently, deep metric 

learning (DML) has shown the ability to cluster 

highly similar within class samples by learning the 

loss dynamics across different classes [34]. The loss 

dynamics in calculated using the contrastive and 

triplet functions [35] which are used to train the 

deep networks. In the past few years, DML is 

applied to multiple vision-based applications such as 

person identification [36], face recognition in the 

wild [37], speaker identification [38], image 

classification [39] and remote sensing data [40]. 

Moreover, there are multiple procedures in which 

the loss can be included into the objective function 

apart from triplet and contrastive techniques. Some 

of them are, hierarchical triplet loss [41], hard triplet 

loss [42], multi similarity loss [43] and n – pair 

multiclass loss [44]. All the losses have distinctive 

advantages, especially in maximizing within class 

and minimizing across class similarities for 

maximum performance. Lastly these losses are 

difficult to implement due to multiple 

regularizations that are specific to a problem at hand.  

In this work, we follow the model proposed in 

[12], which closely relates to methods of matching 

networks. The matching networks are trained to 

learn a set of task specific classifiers to solve the 

problem of few shot learning by weighing these 

nearest neighbour classifiers. Contrastingly, the 

weighing nearest neighbourhood classification in 
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few shot learning is replaced by metric learning for 

visual recognition problems [12]. The work in [12] 

uses meta formulation of the visual classification 

problem with hard sample mining that has been 

found to be computationally efficient with good 

recognition accuracies. However, applying it to 

multiview video data recognition problems has 

increased the complexity of the hard sample mining, 

where the algorithm found it difficult to distinguish 

between the query and meta samples. Hence, we 

propose a more simplified maximum pooling 

distance metric for the multiview meta metric 

learning model. The proposed work is simpler than 

other multiview models in three aspects: 1. It uses a 

meta metric learning model for solving multiview 

sign language recognition. 2. Our meta metric 

learning model uses simplified task specific 

convolutional neural networks for feature extraction 

with 6 layers. 3. The metric used is computationally 

efficient and highly discriminative across datasets.    

3. Methodology 

This section details the process of deep meta 

metric learning for multi view video-based sign 

language (action) recognition. We develop the 

theory and implementation procedures for an end – 

to – end trainable system. 

3.1 Deep meta metric learning 

Here, we developed the theoretical background 

of deep meta metric learning from the works in [12]. 

Meta learning is to reuse the learned experience 

from across tasks in a systematic approach. In other 

words, it trains a deep learning model with the 

experience gained in other trained models across 

similar tasks. The entire meta learning process 

constitutes of two parts. In the first part, we form 

meta-data from previously learned tasks and models. 

These include, data configurations, hyperparameter 

settings, dataflow pipelines and model evaluations 

such as trained weights, biases and accuracies. In the 

second part, the prior meta data guides the 

formulated models to learn new tasks by extracting 

features and transferring knowledge. Contrastingly, 

traditional deep learning happens to miss on the 

prior knowledge form other tasks. However, in 

metric learning, the learning is approached by 

calculating distance metrics across similar and 

dissimilar pairs of data. Combining the metric with 

meta learning has in the past improved the 

performance of person re-identification problems 

[12]. Therefore, this work formulates a multi view 

sign language (action) recognition solution through 

deep meta metric problem.  

Traditional deep learning algorithms learn the 

trainable parameters 𝜃  by optimizing a cost 

function𝐿on the overall training sample observations 

as 

 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃
𝐿(𝜃; 𝑥, 𝑦)                     (1) 

 

Where, 𝐿  defines the global loss across all the 

training samples and (𝑥, 𝑦)  are the training pairs, 

with 𝑥 as training data and 𝑦as the labels. In metric 

learning, triplet loss has shown to improve the 

deviation between the inter and intra class 

embeddings over the contrastive loss, which is 

computed on triplets (𝑥𝑎 , 𝑥𝑖, 𝑥𝑗) as against doublets 

in the later [6]. The 𝑥𝑎  is the anchor of the triplet 

that has the same label as the 𝑥𝑖, called the positive 

sample and a different label with 𝑥𝑗 , the negative 

sample. This will stimulate the CNNs to construct 

an embedding space in which the positive sample 𝑥𝑖 
is pushed close to anchor 𝑥𝑎  and simultaneously 

push the negative sample 𝑥𝑗 away from 𝑥𝑎. The cost 

function 𝐿𝑡𝑟𝑖𝑝 is defined as 

 

𝐿𝑡𝑟𝑖𝑝(𝑥𝑎 , 𝑥𝑖, 𝑥𝑗, 𝑦𝑖𝑗) =  

∑ 𝑚𝑎𝑥 ((𝑑(𝑥𝑎 , 𝑥𝑖) − 𝑑(𝑥𝑎 , 𝑥𝑗) + 𝛿)
2
, 0)𝑎,𝑖,𝑗    (2) 

 

Where 𝛿 is the minimum margin that separates 

the positive and negative samples. Triplet 

embedding uses one pair of positive and negative 

sample per iteration. Besides all the pairs are treated 

equally and loss is calculated on all possible pairs, 

which make it sometimes trivial to find hardest pairs. 

Also, if we have to apply this for a multi view 

problem with greater than two views, the pair 

formation becomes complex and computationally 

expensive.  

In the proposed deep meta metric learning, we 

propose to apply metric learning in a meta way for 

multi view recognition problems. First, we divide 

the single cost function on the entire training 

observations into sub tasks. Secondly, we train a 

deep model to learn the meta metric on all these 

divided sub tasks. Accordingly, task distribution 

𝛥(𝑇) divides the training samples into test and all 

other sub tasks. Incidentally, the objective function 

of deep meta metric learning is formulated as  

 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃
𝑃𝑇𝑠∼𝛥(𝑇)[𝐿𝑠(𝜃; 𝑥𝑠, 𝑦𝑠)]               (3) 

 

Where 𝐿𝑠(𝜃; 𝑥𝑠, 𝑦𝑠)is the objective function on 

the sampled subtasks 𝑇𝑠and 𝑃is expectation on all 

evaluations on distributed tasks across the training 
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samples. The evaluations used is accuracy. In 

particular, for a 𝐶 class training set, we randomly 

sample 𝐶𝑁𝑒𝑤(𝐶𝑁𝑒𝑤 < 𝐶)classes from the 𝐶as a new 

task. Subsequently, we sample randomly select 

support set 𝑆 = {𝑠𝑖
𝑐𝑛𝑒𝑤|𝑖 = 1, . . . , 𝑐𝑘

𝑐𝑛𝑒𝑤}  and query 

set 𝑄 = {𝑞𝑖
𝑐𝑛𝑒𝑤|𝑖 = 1, . . . , 𝑐𝑞

𝑐𝑛𝑒𝑤} for each of the sub 

task 𝑇𝑠. Here, 𝑐𝑛𝑒𝑤 = 1, . . . , 𝐶𝑁𝑒𝑤 forms a set of new 

classes. The number of support and query samples 

in each class are considered as equal 𝑐𝑘
𝑁𝑒𝑤 = 𝑐𝑘 and 

𝑐𝑞
𝑁𝑒𝑤 = 𝑐𝑞. In each iteration, the metric learning is 

applied by computing the distance metric between 

the query and support samples. The overall meta 

metric learning cost function can be formulated as  

 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃
𝑃𝑇𝑠∼𝛥(𝑇) [𝑃𝑆,𝑄∼𝑇𝑠[𝐿𝑠(𝜃; 𝑆, 𝑄)]]       (4) 

3.2 Multi view meta metric learning per episode 

Considering all views in a class as support data 

points that lie on a view manifold, we define a multi 

view meta cell which learns through meta metric in 

each episode as, 

 

𝛭𝑉
𝑐𝑛𝑒𝑤 =  

{∑ 𝛼𝑖
𝑐𝑛𝑒𝑤𝑓(𝑠𝑖

𝑐𝑛𝑒𝑤)
𝑐𝑞
𝑛𝑒𝑤

𝑖=1
| ∑ 𝛼𝑖

𝑐𝑛𝑒𝑤𝑐𝑞
𝑛𝑒𝑤

𝑖=1
= 1, 𝛼𝑖

𝑐𝑛𝑒𝑤 =

[0,1]}                      (5) 

 

Where 𝑓(. )  is the embedding function on the 

support data set that is implemented using the deep 

neural network with parameters 𝜃. The coefficient 

𝛼𝑐𝑛𝑒𝑤 ∈ [0,1] maintains the convexity of the multi 

view meta cell. In conventional multi view learning, 

the model is trained to identify a particular query 

class over the entire dataset. Interestingly, multi 

view metric learning uses distances between view 

sample pairs to determine an output class label. 

Contrastingly, multi view meta metric learning 

optimizes the metrics between sets of multi view 

support meta cells and the query video frames. This 

model optimizes the with in class metrics from 

multiple views to learn a discriminative distance 

metric for classification. The set distance metric 

between the multi view meta cells and the query 

sample is computed as  

 

𝐷 (𝑞𝑗
𝑐𝑛𝑒𝑤
′

, 𝑀𝑉
𝑐𝑛𝑒𝑤) = 𝑑𝑗

𝑐𝑛𝑒𝑤 =  

∑ 𝛼𝑖
𝑐𝑛𝑒𝑤 (𝑓 (𝑞𝑗

𝑐𝑛𝑒𝑤
′

) , 𝑓(𝑠𝑖
𝑐𝑛𝑒𝑤))

𝑐𝑞
𝑛𝑒𝑤

𝑖=1
   (6) 

 

Where, 𝑞𝑗
𝑐𝑛𝑒𝑤
′

 is the query sign video in the 𝑗𝑡ℎ 

sample view in the 𝑐𝑛𝑒𝑤
′  class, 𝑀𝑉

𝑐𝑛𝑒𝑤  is the multi 

view meta cell in the class 𝑐𝑛𝑒𝑤. The 𝑑𝑐𝑛𝑒𝑤 denotes 

the distance metric between the query video and 

multi view meta cell or the support sample data 

points.  

Given a query view of a certain class from the 

formulated query view set 𝑄𝑉, the model learns to 

minimize the distance metric between 𝑄𝑉 and meta 

view cell of the same class and maximize the 

distance with other meta cell classes. Subsequently, 

the triplet metric learning loss function is initiated 

on the sampled meta triplets with 

𝑀𝑉{𝑀𝑉
1, . . . . , 𝑀𝑉

𝑀} and one 𝑄𝑉 sample on single 

positive meta cell per class 𝑀𝑉
𝑐𝑛𝑒𝑤{𝑐𝑛𝑒𝑤 = 𝑐𝑛𝑒𝑤

′ }and 

all other class views as negative meta cells as 

 

𝐿𝑀𝑒𝑡𝑎𝑡𝑟𝑖(𝑞𝑗) =  

∑ 𝑚𝑎𝑥 (0, 𝑑𝑗
𝑐𝑛𝑒𝑤
′

− 𝑑𝑗
𝑐𝑛𝑒𝑤 + 𝜏)𝑐𝑛𝑒𝑤≠𝑐𝑛𝑒𝑤

′         (7) 

 

Where 𝜏  is the hyperparameter allowable gap 

between the positive and negative meta cell pairs. 

The 𝑐𝑛𝑒𝑤 ≠ 𝑐𝑛𝑒𝑤
′  forms the negative meta cell pair 

and vice versa for positive meta cell pair. In practice, 

the final classification layer the predictions are 

computed using logistic loss function and we apply 

this in place of max(0, d) to limit the range of loss 

function in Eq. (7). The logarithmic loss embedding 

on the meta metric learning is formulated as 

 

𝐿
𝑀𝑉_𝑡𝑟𝑖𝑝

𝑙𝑜𝑔(𝑞𝑗) 𝑙𝑜𝑔(1+∑ 𝑒𝑥𝑝(𝑑𝑗
𝑐𝑛𝑒𝑤
′

−𝑑𝑗
𝑐𝑛𝑒𝑤+𝜏)

𝑐𝑛𝑒𝑤≠𝑐𝑛𝑒𝑤
′ )

       (8) 

 

The value of 𝜏  is selected in such way that 

𝑑𝑗
𝑐𝑛𝑒𝑤 ≪ 𝑑𝑗

𝑐𝑛𝑒𝑤
′

. The proposed multi view meta 

learning model is visualized in Fig. 3, where the 

distance between the query and positive meta cell is 

considerably smaller than that of query and the 

negative meta cell pairs. The query sample is 

metrically close in distance with the samples in 

positive meta cell with a set margin when compared 

to all other negative meta cell views in different 

classes.  

Eq. (8) has similarities with the regular SoftMax 

loss that outputs a probability estimate of closeness 

between the query sample 𝑞𝑗 and meta cell 𝑀𝑉 . 

Incepted from [12], the SoftMax loss is computed 

within the meta space by adding margins on the 

negative loss to the negative meta views to increase 

the separation between the positive and negative 

meta views. 

The negative SoftMax loss for multi view meta 

learning model is 
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Figure. 3 Visual illustration of the proposed meta cell 

allowable separation used in the proposed method 

 

 

𝐿
𝑀𝑉_𝑡𝑟𝑖𝑝

𝑙𝑜𝑔(𝑞𝑗) 𝑙𝑜𝑔
𝑒𝑥𝑝(−𝑑

𝑗
𝑐𝑛𝑒𝑤
′

)

𝑒𝑥𝑝(−𝑑
𝑗
𝑐𝑛𝑒𝑤
′

)+∑ 𝑒𝑥𝑝(−𝑑
𝑗
𝑐𝑛𝑒𝑤+𝜏)

𝑐𝑛𝑒𝑤≠𝑐𝑛𝑒𝑤
′

      (9) 

 

Finally, the above classification loss in each 

episode is optimized under the influence of task 

distribution and data splitting into random query and 

support views. The formulated model under multi 

view meta learning model is  

 

𝜃 =  

𝑎𝑟𝑔𝑚𝑖𝑛
𝜃
𝑃𝑇𝑠∼𝛥(𝑇) [𝑃𝑆,𝑄∼𝑇𝑠 ∑ 𝐿

𝑀𝑉_𝑡𝑟𝑖𝑝

𝑙𝑜𝑔(𝑞𝑗
𝑐𝑛𝑒𝑤
′

)∑

𝑞
𝑗

𝑐𝑛𝑒𝑤
′

∈𝑄
[]] 

(10) 

3.3 Maximum pooled meta view mining 

In the proposed multi view deep meta metric 

learning (MVDMML) model, we replaced view-

based distances with set-based distances as shown in 

Eq. (6). However, as pointed in [12], it was difficult 

to realize the generalized definition by optimizing 

the distance formulation. Alternatively, two 

solutions were proposed in [12]: the centre support 

distance and the other hard mining distance.  

The centre support distance is computed 

between the averaged multi view meta cell features 

and the query sample which computes a point – to – 

point variations. The averaged multi view meta cell 

features represent the entire class of a meta cell. The 

multi view centre support distance 

 

𝐷 (𝑞𝑗
𝑐𝑛𝑒𝑤
′

, 𝑀𝑉
𝑐𝑛𝑒𝑤) = 

𝑑 (𝑓 (𝑞𝑗
𝑐𝑛𝑒𝑤
′

) ,
1

𝑐𝑞
𝑛𝑒𝑤∑ 𝑓(𝑠𝑖

𝑐𝑛𝑒𝑤)
𝑐𝑞
𝑛𝑒𝑤

𝑖=1
)                   (11) 

 

 
Figure. 4 Centre support distance and hard mining 

distance as used in [12]. (a) Centre support distance 

before the after execution, (b) Hard mining distance, and 

(c) Our proposed maximum pooled distance across 

multiple views, where the distance is computed between 

the query sample and maximum pooled features in a meta 

cell across multiple views 

 

The term 
1

𝑐𝑞
𝑛𝑒𝑤∑ 𝑓(𝑠𝑖

𝑐𝑛𝑒𝑤)
𝑐𝑞
𝑛𝑒𝑤

𝑖=1
 gives the average 

pooling on multiple views with in the meta cell. This 

mode of distance computation is challenging as the 

query sample finds it difficult to identify hard and 

easy samples within the meta cells. Hence, hard 

sample mining is proposed in [12] which calculates 

the distance between hard samples and easy samples  

in the meta cells. The objective of hard sample 

mining is the maximize the distance between the 

query and the hard samples in inter class meta cells 

by simultaneously minimizing inter class distances 

for selection of easy samples. The hard sample 

mining is formulated as 

 

𝐷ℎ (𝑞𝑗
𝑐𝑛𝑒𝑤
′

, 𝑀𝑉
𝑐𝑛𝑒𝑤) =  

{
 
 

 
 𝑎𝑟𝑔𝑚𝑎𝑥

𝑖
(𝑑 (𝑓 (𝑞𝑗

𝑐𝑛𝑒𝑤
′

) , 𝑓(𝑠𝑖
𝑐𝑛𝑒𝑤)))∀𝑐𝑛𝑒𝑤

′ = 𝑐𝑛𝑒𝑤

𝑎𝑟𝑔𝑚𝑖𝑛
𝑖
(𝑑 (𝑓 (𝑞𝑗

𝑐𝑛𝑒𝑤
′

) , 𝑓(𝑠𝑖
𝑐𝑛𝑒𝑤)))∀𝑐𝑛𝑒𝑤

′ = 𝑐𝑛𝑒𝑤

     

          (12) 

 

Instead of finding negative hard samples 

gradually by calculating true negatives, the solution 

in [12] proposes to take the hard mining process into 

the set-based distance to reduce intra class variations. 

The hard mining process has indeed increased the 

intra class variances by highlighting the outliers and 

penalizing them for being a part of the meta cells. 

The above two mining process are visualized in Figs. 

4 (a) and (b). Figs. 4 (a) and (b) shows that the 

centre support distance pushes all the samples in the 

negative meta cells, and the hard mining process 

does this in a selective manner by maximizing 

distances with only hard samples. Specifically, the 

hard mining process on meta view learning has 

resulted in computational complexity during 

implementation phase. For instance, the query view 
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needs to check against all views in the meta cell to 

identify the negative samples and all the samples 

within a meta cell has a set of unique variant 

features. To take advantage of these view variant 

features that are spatially distributed, we propose an 

upgraded model with view variant feature pooling 

mechanism. Instead of average pooling, we propose 

maximum pooling on meta cell views to extract the 

view specific features. Fig. 4 (c) shows the model 

for maximizing the distance between query and 

maximum pooled view variant features. The 

maximum pooled meta distance is formulated as  

3.4 Training and testing 

We used TensorFlow wrapped keras for 

implementation of the proposed meta metric multi 

view model. Euclidean distance metric was applied 

to Eq. (6) for separating the query features from the 

meta features. To generalize the training and testing 

pipelines across datasets and models, we set the 

standard train, validate and test ratios at 70:10:20 

percent of the entire dataset. Subsequently, all the 

hyper parameters of the model were fixed across all 

experiments to attain uniformity during comparison. 

The number of sub classes per episode was set to 

𝑀 = 16  with 𝑐𝑛𝑒𝑤 = 4  support samples per meta 

cell. This number of support samples may change 

based on the availability of views in the dataset. The 

meta cell allowable separation is selected to be 𝜏 =
0.22 in our objective function (8). We used Adam 

optimizer with a learning rate of 0.0001 with a 

decay of 10% whenever it became constant for more 

than 10 epochs. The following section gives details 

of the experiments and provide an insight into the 

capabilities of the proposed approach. 

4. Experiments, results and insights 

The proposed MVDMML is trained and tested 

for recognizing signs from multi view video data. 

This section starts by describing our multi view sign 

language dataset, KL_MV2DSL and four other 

benchmark multi view action datasets NTU RGB D, 

MuHAVi, WEIZMANN and NUMA. Experiments 

were conducted on the above datasets to evaluate the 

performance of the proposed network on the above 

datasets. Consequently, results obtained through 

testing of multiple views has been analysed with 

respect to the proposed meta metric loss function 

against different metric losses to gauge the 

advantage of the proposed network. Further, 

different mining models from sec 3.3 were applied 

to test the efficacy of the meta metric learning for 

multi view sign language recognition. Finally, 

MVDMML is evaluated against other multi view 

models for robustness, ease of implementation and 

computational flexibilities.  

4.1 KL_MV2DSL and multi view benchmark 

action datasets 

The multi view sign language video dataset, 

KL_MV2DSL is captured with 5 cameras 

predominantly placed in the front view of the signer. 

The DSLR 16MP camera system has one camera 

focused on the signer in the front. Each of the two 

remaining cameras are oriented towards left and 

right of this centre camera with a horizontal angular 

displacement of 10 degrees between views. The sign 

language dataset is recorded with 5 test subjects in 5 

different views. A total of 200 signs were selected 

from Indian sign language dictionary for creating 

multi view 2D video-based sign language, 

KL_MV2DSL. The entire MVSL dataset has 

200×5×5=5000 sign videos. Each sign is recorded 

for 4 seconds at 30 fps. Currently, additional views 

and subjects are being appended to make our 

KL_MV2DSL a multi view sign language 

benchmark dataset. 

Due to unavailability of multi view sign 

language datasets from other sources to evaluate the 

compatibility of the MVDMML, we worked with 

multi view human action datasets from NTU RGB D 

[13], MuHAVi [14], WEIZMANN [15] and NUMA 

[16]. The NTU RGB D is the largest dataset with 60 

action classes in 80 views recorded with 40 subjects 

with a total sample size of 56880 videos of skeleton, 

depth and RGB. However, each action has been 

captured with 3 viewpoints at a time. We selected 60 

action classes with 6 views from 40 subjects for 

training and testing the proposed loss function. The 

NTU RGB D dataset used in our work has 12000 

video samples with 4 multi view representations of 

40 subjects in 60 action classes.  

The multicamera human action video data 

(MuHAVi) is recorded with 8 camera views placed 

rectangularly with 17 action classes performed by 

14 subjects. We applied all eight views for training 

and testing MVDMML. The entire dataset was used 

for evaluation. However, WEIZMANN action 

dataset was most challenging one as it has only 90 

videos of low resolution 180×144 with 9 subjects 

and 10 actions. The video sequences are recorded 

with 10 different viewpoints ranging from 00 to 810 

in steps of 90 on only one side of the camera plane. 

During training we paired 0 to 36 degrees as left and 

45 to 81 degrees as right views. The network size 

has been increased to 10 streams for operation on 

this dataset. Finally, northwestern-UCLA multiview 

action (NUMA) is a multi-view daily action dataset 
 



Received:  December 16, 2022.     Revised: February 1, 2023.                                                                                         382 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.30 

 

Table 1. Comparison between state – of – the – art methods used on our sign language dataset KL_MV2DSL 
Methods mRA mf1 m-P m-f1 M-P M-f1 r-1 r-5 

VGG-16 0.6391 0.8994 0.8258 0.8151 0.7785 0.7475 0.8258 0.9311 

GoogleNet 0.6441 0.8998 0.8758 0.8358 0.7859 0.7658 0.8825 0.9401 

Resnet50 0.6056 0.8458 0.7785 0.7498 0.6975 0.6758 0.7985 0.8791 

Inception V3 0.6323 0.8685 0.8235 0.7563 0.6875 0.6425 0.8491 0.9191 

MVDMML 0.6512 0.8995 0.8875 0.8896 0.8286 0.7997 0.8798 0.9675 

 
Table 2. Comparison between state – of – the – art methods used on NTU RGB D action dataset 

Methods mRA mf1 m-P m-f1 M-P M-f1 r-1 r-5 

VGG-16 0.6189 0.8752 0.8025 0.8036 0.7675 0.7127 0.8021 0.9042 

GoogleNet 0.6245 0.8832 0.8456 0.8125 0.7741 0.7536 0.8495 0.9245 

Resnet50 0.6085 0.8356 0.7458 0.7236 0.6803 0.6458 0.7571 0.8852 

Inception V3 0.6259 0.8602 0.8125 0.7478 0.6889 0.6236 0.8125 0.9294 

MVDMML 0.6358 0.8802 0.8584 0.8473 0.7869 0.7253 0.8579 0.9585 

 

𝐷ℎ (𝑞𝑗
𝑐𝑛𝑒𝑤
′

, 𝑀𝑉
𝑐𝑛𝑒𝑤) =

{
 
 

 
 𝑎𝑟𝑔𝑚𝑎𝑥

𝑖
(𝑑 (𝑓 (𝑞𝑗

𝑐𝑛𝑒𝑤
′

) ,𝑚𝑎𝑥
∀𝑀𝑉

(𝑓(𝑠𝑖
𝑐𝑛𝑒𝑤))))∀𝑐𝑛𝑒𝑤

′ = 𝑐𝑛𝑒𝑤

𝑎𝑟𝑔𝑚𝑖𝑛
𝑖
(𝑑 (𝑓 (𝑞𝑗
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) ,𝑚𝑎𝑥
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𝑐𝑛𝑒𝑤))))∀𝑐𝑛𝑒𝑤

′ = 𝑐𝑛𝑒𝑤

             (13) 

 

with 10 classes and 10 subjects. Inappropriately, 

there are only three views available for training and 

testing. Hence, the MVDMML now takes 3 views 

for training the architecture which is tested on 

different subjects in same views. Only RGB videos 

from benchmark action datasets were used for 

training and testing.  

4.2 Evaluating the MVDMML framework 

We evaluated the proposed MVDMML on our 

multi view sign language dataset with 4 training as 

well as test views. Eventually, all the task specific 

networks were kept constant across datasets with six 

CNN layers with leaky Relu activation with three 

maximum pooling layers after each two 

convolutional layers. Additionally, we have two 

batch normalization layers after 2nd and 4th 

convolution layers. We applied L2 weight 

regularization during training. The video frame size 

is 256×256×3. Consequently, all the network 

embeddings were computed by training with the 

proposed metric learning function in Eq. (13). The 

objective of this experiment is to test the proposed 

meta metric learning adaptability across state-of-the-

art networks such as VGG-16, Resnet-50, 

GoogleNet and Inception V3 on all the datasets. All 

the networks were incepted from GitHub repository 

and are trained from scratch with hyperparameter 

tuning across datasets. The testing is performed with 

only one video view per class. We calculated the 

eight parameters on the multiple test views and the 

results are averaged over the tested views. Tables 1 

to 5 shows the results on our multi view sign 

language dataset and the benchmark action datasets, 

respectively. 

Singularly, our MVDMML model has shown to 

perform better on sign language dataset 

KL_MV2DSL and other benchmark action datasets. 

The meta metric loss embedding also produced 

exceptionally good performance on all the state – of 

– the – art models. Except the ResNet50, all have 

responded well to meta metric loss functional during 

the training process. The loss failed to impact on 

ResNet50 due to the gradient vanishing in deep 

layers. However, GoogleNet and InceptionV3 have 

shown to embrace the depth as the layers also move 

laterally in both these architectures. Despite their 

good performance, we found that GoogleNet and 

InceptionV3 consumed exponential training times 

when compared to our proposed MVDMML and 

VGG-16. Next, we compare the advantage offered 

by multi view meta learning loss functional against 

various loss functions.  
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Table 3. Comparison between state – of – the – art methods used on benchmark multi view action dataset MuHAVi 
Methods mRA mf1 m-P m-f1 M-P M-f1 r-1 r-5 

VGG-16 0.6086 0.7436 0.7832 0.7397 0.7603 0.7295 0.8002 0.9223 

GoogleNet 0.6421 0.7853 0.8285 0.7682 0.7923 0.7836 0.8499 0.9398 

Resnet50 0.6192 0.7258 0.8197 0.7482 0.7708 0.7672 0.8183 0.9225 

Inception V3 0.6473 0.7557 0.8289 0.7599 0.7806 0.7769 0.8397 0.9422 

MVDMML 0.6524 0.7645 0.8352 0.7708 0.7994 0.7909 0.8576 0.9449 

 
Table 4. Comparison between state – of – the – art methods used on action dataset WEIZMANN 

Methods mRA mf1 m-P m-f1 M-P M-f1 r-1 r-5 

VGG-16 0.6162 0.7589 0.7956 0.7592 0.7896 0.7411 0.8115 0.9305 

GoogleNet 0.6596 0.7996 0.8398 0.7905 0.8194 0.7796 0.8452 0.9444 

Resnet50 0.6099 0.7549 0.7845 0.7499 0.7755 0.7498 0.7998 0.9142 

Inception V3 0.6458 0.7758 0.8194 0.7805 0.8094 0.7698 0.8305 0.9342 

MVDMML 0.6599 0.7799 0.8473 0.7997 0.8201 0.7705 0.8497 0.9597 

 
Table 5. Comparison between state – of – the – art methods used NUMA dataset 

Methods mRA mf1 m-P m-f1 M-P M-f1 r-1 r-5 

VGG-16 0.6023 0.7345 0.7653 0.7269 0.7312 0.7043 0.7865 0.9086 

GoogleNet 0.6386 0.7569 0.7856 0.7489 0.7492 0.7195 0.7936 0.9158 

Resnet50 0.6004 0.7236 0.7523 0.7103 0.7092 0.7023 0.7812 0.9011 

Inception V3 0.6236 0.7498 0.7754 0.7308 0.7211 0.7099 0.7899 0.9058 

MVDMML 0.6365 0.7536 0.7803 0.7498 0.7392 0.7125 0.7826 0.9099 

 

4.3 Comparison between metric loss functions 

This section evaluates the performance of meta 

metric learning for multi view data based on the 

mean error obtained during testing with multiple 

view combinations. Accordingly, we conducted 

multiple experiments from single to available 

multiple views for testing the trained MVDMML on 

the considered sign (action) datasets. The results of 

the experimentation are presented as a plot between 

fraction of views applied for testing versus the 

normalized mean error. This experiment is 

performed on different kind of existing training loss 

functions to test the usefulness of meta metric loss 

proposed in this work. The following Fig. 5 shows 

the plots for our MVDMML model on our sign 

language dataset KL_MV2DSL and other 

benchmark action datasets. The mean error was 

computed as the difference between the predicted 

views and actual views. Earlier, the trained 

MVDMML is tested with different views on 

different loss functions. Some of the loss functions 

compared include multiple hard triplet loss [45], 

hard triplet loss [46], lifted triplet loss [47], soft 

triplet loss [48], triplet loss [49], contrastive loss 

[50] and categorical cross entropy [51]. 

The noticeable difference from the plots in Fig. 

5 is that the metric loss performs better than 

categorical cross entropy due to the applications of 

paired samples in the former. Secondly, the triplet 

loss is better than contrastive loss which happens 

due to the selected margin between the positive and 

negative pairs. 

4.4 Performance comparison with deep sign 

language methods 

This section is dedicated to formal comparison of 

various sign language recognition models using 

video-based inputs. However, most of the methods 

in literature have focused on single view and we are 

assembling them along a few multi view sign 

language models. Table 6 shows the performance of 

sign language methods against our proposed method. 

The first 3 rows in Table 6 are multi view sign 

language methods which have similarity with the 
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Figure. 5 Cumulative multi view error distribution plots from MVDMML on: (a) KL_MV2DSL, (b) NTU RGB D, (c) 

MuHAVi, (d) WEIZMANN, and (e) NUMA datasets 
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Table 6. Comparison with deep sign language recognition methods 

Reference Methods Datasets 
Number of 

Views 
% Accuracy 

[25] 
Elliptical Fourier descriptors and 

ANN 

101 class Indian Sign 

words 
4 82.27 

[18] Deep CNN with 8 layers 
100 class Indian Sign 

Language words 
1 90.56 

[19] Multi stream Deep CNN 
200 Words from 

Indian Sign language 
1 91.34 

[21] 

Multiple Deep Baseline Methods 

such as Recurrent CNNs, 3D CNNs, 

Graph CNNs. 

2000 words of 

American Sign 

Language 

1 
84.63, 87.36, 

92.56 

[22] BLSTM-3D residual networks 
500 Daily 

Vocabulary words 
1 86.9 

[26] CNN - BiLSTM 

RWTH-PHOENIX-

Weather multi-signer 

2014 dataset 

1 78.53 

[27] 

Iterative training using CNN (spatial) 

+ CNN (Optical Flow) with feature 

summing. 

RWTH-PHOENIX-

Weather multi-signer 

2014 dataset and 

SIGNUM signer-

dependent se 

1 85.63 

MVDMML(Proposed

) 

Meta Metric Learning with Triplet 

Loss Embeddings 

KL_MV2DSL 

dataset with 200 

classes 

5 96.75 

 

proposed MVDMML. Otherwise, the rest are 

deep sign language models. The results show that 

the proposed meta metric embedding has 

outperformed the previously proposed methods. The 

high accuracy obtained for MVDMML is attributed 

to the models ability to discriminate overlapping 

features across views in different sign classes. 

Incidentally, we tested our model MVDMML on 

two sign language datasets in [21, 22]. Instead of 

using multiple views to form a meta cell, we used 

multiple subjects in these datasets to construct the 

meta cells. We used 500 classes from both the 

datasets for training and testing our proposed 

MVDMML. The average accuracy on dataset of 

[21] is 94.66% and that of [22] is 95.65% for a 

margin 𝜏 = 0.3 . This shows that the proposed 

MVDMML is better than the proposed networks in 

[21, 22] respectively.  

It is observed that the increase in the number of 

support samples, the performance of the MVDMML 

has increased correspondingly. All the experiments 

were executed on NVDIA 8GB GTX1070. The 

results obtained show the effectiveness of using the 

proposed meta metric learning model MVDMML 

for multi view sign language recognition tasks.  

5. Conclusions 

In this work, we applied a meta metric learning 

model with set-based distances for multi view sign 

language recognition. In this model, we considered 

multiple views in randomly selected classes as meta 

cell and trained the deep model using samples from 

support and query sets in each episode. 

Consequently, the meta metric model learns by 

verifying the query sample with a margin-based cost 

function and maximum viewed pooled distance 

mining. The proposed MVDMML has been 

evaluated on our sign language (KL_MV2DSL) and 

other baseline action datasets. The meta metric 

model has shown improvement in multi view sign 

(action) language recognition tasks over state-of-

the-art models. 

Conflicts of interest 

The author(s) declare that they have no Conflict 

of Interests for this research in any form. 

Author Contributions 

Substantial contributions to the conception or 

design of the work, ideas and theory formulation 

Venkata Vijay Kishore Polurie. Anil Kumar Dande 

contributed to the interpretation of the results. 

Suneetha Mopidevi and Prasad M.V.D., wrote the 

manuscript with input from all authors. All authors 

provided critical feedback and helped shape the 

research, analysis and manuscript. 



Received:  October 18, 2020.     Revised: December 20, 2020.                                                                                        386 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.30 

 

References 

[1] O. Koller, S. Zargaran, H. Ney, and R. Bowden, 

“Deep Sign: Enabling Robust Statistical Con-

tinuous Sign Language Recognition via Hybrid 

CNN-HMMs”, International Journal of Com-

puter Vision, Vol. 126, No. 12, pp. 1311–1325, 

2018. 

[2] E. K. Kumar, P. V. V. Kishore, A. S. C. S. 

Sastry, M. T. K. Kumar, and D. A. Kumar, 

“Training CNNs for 3-D Sign Language 

Recognition With Color Texture Coded Joint 

Angular Displacement Maps”, IEEE Signal 

Processing Letters, Vol. 25, No. 5, pp. 645–649, 

2018. 

[3] S. Ravi, S. Maloji, V. V. K. Polurie, and K. K. 

Eepuri, “Sign language recognition with multi 

feature fusion and ANN classifier”, Turkish 

Journal of Electrical Engineering &amp; 

Computer Sciences, Vol. 26, No. 6, pp. 2872–

2886, 2018.  

[4] A. Mittal, P. Kumar, P. P. Roy, R. 

Balasubramanian, and B. B. Chaudhuri, “A 

Modified LSTM Model for Continuous Sign 

Language Recognition Using Leap Motion”, 

IEEE Sensors Journal, Vol. 19, No. 16, pp. 

7056–7063, 2019. 

[5] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, 

“An Attention Enhanced Graph Convolutional 

LSTM Network for Skeleton-Based Action 

Recognition”, In: Proc. of 2019 IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition (CVPR), 2019. 

[6] E. Hoffer and N. Ailon, “Deep Metric Learning 

Using Triplet Network”, In: Proc. of 

International Workshop on Similarity-Based 

Pattern Recognition, pp. 84–92, 2015. 

[7] J. Wang, K. C. Wang, M. T. Law, F. Rudzicz, 

and M. Brudno, “Centroid-based Deep Metric 

Learning for Speaker Recognition”, In: Proc. of 

ICASSP 2019 - 2019 IEEE International 

Conference on Acoustics, Speech and Signal 

Processing (ICASSP), pp. 3652-3656, 2019. 

[8] J. Yu, C. H. Hu, X. Y. Jing, and Y. J. Feng, 

“Deep metric learning with dynamic margin 

hard sampling loss for face verification”, Signal, 

Image and Video Processing, Vol. 14, No. 4, pp. 

791–798, 2019. 

[9] H. Coskun, D. J. Tan, S. Conjeti, N. Navab, and 

F. Tombari, “Human Motion Analysis with 

Deep Metric Learning”, Lecture Notes in 

Computer Science, pp. 693–710, 2018. 

[10] J. He, Y. Wang, and H. Liu, “Ship 

Classification in Medium-Resolution SAR 

Images via Densely Connected Triplet CNNs 

Integrating Fisher Discrimination Regularized 

Metric Learning”, IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 59, No. 4, 

pp. 3022–3039, 2021.  

[11] N. Wojke and A. Bewley, “Deep Cosine Metric 

Learning for Person Re-identification”, In: 

Proc. of 2018 IEEE Winter Conference on 

Applications of Computer Vision (WACV), pp. 

748-756, 2018. 

[12] G. Chen, T. Zhang, J. Lu, and J. Zhou, “Deep 

Meta Metric Learning”, In: Proc. of 2019 

IEEE/CVF International Conference on 

Computer Vision (ICCV), pp. 9547-9556, 2019. 

[13] A. Shahroudy, J. Liu, T. T. Ng, and G. Wang, 

“NTU RGB+D: A Large Scale Dataset for 3D 

Human Activity Analysis”, In: Proc. of 2016 

IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), pp. 1010-1019, 

2016. 

[14] S. Singh, S. A. Velastin, and H. Ragheb, 

“MuHAVi: A Multicamera Human Action 

Video Dataset for the Evaluation of Action 

Recognition Methods”, In: Proc. of 2010 7th 

IEEE International Conference on Advanced 

Video and Signal Based Surveillance, pp. 48-55, 

2010. 

[15] L. Gorelick, M. Blank, E. Shechtman, M. Irani, 

and R. Basri, “Actions as Space-Time Shapes”, 

IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol. 29, No. 12, pp. 

2247–2253, 2007. 

[16] D. Wang, W. Ouyang, W. Li, and D. Xu, 

“Dividing and Aggregating Network for Multi-

view Action Recognition”, In: Proc of the 

European Conference on Computer Vision 

(ECCV), pp. 457–473, 2018. 

[17] F. Pezzuoli, D. Corona, and M. L. Corradini, 

“Improvements in a Wearable Device for Sign 

Language Translation”, Advances in Intelligent 

Systems and Computing, pp. 70–81, 2019. 

[18] G. A. Rao, K. Syamala, P. V. V. Kishore, and 

A. S. C. S. Sastry, “Deep convolutional neural 

networks for sign language recognition”, In: 

Proc. of 2018 Conference on Signal Processing 

And Communication Engineering Systems 

(SPACES), pp. 194-197, 2018. 

[19] S. Ravi, M. Suman, P. V. V. Kishore, K. E. 

Kumar, T. K. M. Kumar, and A. D. Kumar, 

“Multi modal spatio temporal co-trained CNNs 

with single modal testing on RGB–D based 

sign language gesture recognition”, Journal of 

Computer Languages, Vol. 52, pp. 88–102, 

2019. 

[20] P. V. V. Kishore, D. A. Kumar, A. S. C. S. 

Sastry, and E. K. Kumar, “Motionlets Matching 



Received:  October 18, 2020.     Revised: December 20, 2020.                                                                                        387 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.30 

 

With Adaptive Kernels for 3-D Indian Sign 

Language Recognition”, IEEE Sensors Journal, 

Vol. 18, No. 8, pp. 3327–3337, 2018. 

[21] D. Li, C. R. Opazo, X. Yu, and H. Li, “Word-

level Deep Sign Language Recognition from 

Video: A New Large-scale Dataset and 

Methods Comparison”, In: Proc. of 2020 IEEE 

Winter Conference on Applications of 

Computer Vision (WACV), pp. 1459-1469, 

2020. 

[22] Y. Liao, P. Xiong, W. Min, W. Min, and J. Lu, 

“Dynamic Sign Language Recognition Based 

on Video Sequence With BLSTM-3D Residual 

Networks”, IEEE Access, Vol. 7, pp. 38044–

38054, 2019. 

[23] P. V. V. Kishore, D. A. Kumar, E. N. D. 

Goutham, and M. Manikanta, “Continuous sign 

language recognition from tracking and shape 

features using Fuzzy Inference Engine”, In: 

Proc. of 2016 International Conference on 

Wireless Communications, Signal Processing 

and Networking (WiSPNET), pp. 2165-2170, 

2016. 

[24] P. Kumar, H. Gauba, P. P. Roy, and D. P. 

Dogra, “Coupled HMM-based multi-sensor 

data fusion for sign language recognition”, 

Pattern Recognition Letters, Vol. 86, pp. 1–8, 

2017. 

[25] P. V. V. Kishore, M. V. D. Prasad, C. R. Prasad, 

and R. Rahul, “4-Camera model for sign 

language recognition using elliptical fourier 

descriptors and ANN”, In: Proc. of 2015 

International Conference on Signal Processing 

and Communication Engineering Systems, pp. 

34-38, Jan. 2015. 

[26] R. Cui, H. Liu, and C. Zhang, “Recurrent 

Convolutional Neural Networks for Continuous 

Sign Language Recognition by Staged 

Optimization”, In: Proc. of 2017 IEEE 

Conference on Computer Vision and Pattern 

Recognition (CVPR), pp. 7361-7369, 2017. 

[27] R. Cui, H. Liu, and C. Zhang, “A Deep Neural 

Framework for Continuous Sign Language 

Recognition by Iterative Training”, IEEE 

Transactions on Multimedia, Vol. 21, No. 7, pp. 

1880–1891, 2019. 

[28] M. Kocabas, S. Karagoz, and E. Akbas, “Self-

Supervised Learning of 3D Human Pose Using 

Multi-View Geometry”, In: Proc. of 2019 

IEEE/CVF Conference on Computer Vision and 

Pattern Recognition (CVPR), pp. 1077-1086, 

Jun. 2019. 

[29] Z. Gao, H. Z. Xuan, H. Zhang, S. Wan, and K. 

K. R. Choo, “Adaptive Fusion and Category-

Level Dictionary Learning Model for 

Multiview Human Action Recognition”, IEEE 

Internet of Things Journal, Vol. 6, No. 6, pp. 

9280–9293, 2019. 

[30] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and 

N. Zheng, “View Adaptive Neural Networks 

for High Performance Skeleton-Based Human 

Action Recognition”, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Vol. 

41, No. 8, pp. 1963–1978, 2019. 

[31] J. Zhu, W. Zou, Z. Zhu, L. Xu, and G. Huang, 

“Action Machine: Toward Person-Centric 

Action Recognition in Videos”, IEEE Signal 

Processing Letters, Vol. 26, No. 11, pp. 1633–

1637, 2019. 

[32] Y. Zhu and G. Liu, “Fine-grained action 

recognition using multi-view attentions”, The 

Visual Computer, Vol. 36, No. 9, pp. 1771–

1781, 2019. 

[33] K. Zhu, R. Wang, Q. Zhao, J. Cheng, and D. 

Tao, “A Cuboid CNN Model With an Attention 

Mechanism for Skeleton-Based Action 

Recognition”, IEEE Transactions on 

Multimedia, Vol. 22, No. 11, pp. 2977–2989, 

2020. 

[34] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, 

“Deep Metric Learning with Angular Loss”, In: 

Proc. of 2017 IEEE International Conference 

on Computer Vision (ICCV), pp. 2593-2601, 

2017. 

[35] X. Deng, W. Wu, and F. Wang, “Deep Metric 

Learning for text data based on Triplet 

Network”, IOP Conference Series: Materials 

Science and Engineering, Vol. 806, No. 1, p. 

012038, Apr. 2020. 

[36] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep 

Metric Learning for Person Re-identification”, 

In: Proc. of 2014 22nd International 

Conference on Pattern Recognition, pp. 34-39, 

2014. 

[37] J. Hu, J. Lu, and Y. P. Tan, “Discriminative 

Deep Metric Learning for Face Verification in 

the Wild”, In: Proc. of 2014 IEEE Conference 

on Computer Vision and Pattern Recognition, 

pp. 1875-1882, 2014. 

[38] O. Ghahabi and J. Hernando, “Deep Learning 

Backend for Single and Multisession i-Vector 

Speaker Recognition”, IEEE/ACM 

Transactions on Audio, Speech, and Language 

Processing, Vol. 25, No. 4, pp. 807–817, 2017. 

[39] J. Lu, G. Wang, W. Deng, P. Moulin, and J. 

Zhou, “Multi-manifold deep metric learning for 

image set classification”, In: Proc. of 2015 

IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), pp. 1137-1145, 

2015. 



Received:  October 18, 2020.     Revised: December 20, 2020.                                                                                        388 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.30 

 

[40] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, 

“When Deep Learning Meets Metric Learning: 

Remote Sensing Image Scene Classification via 

Learning Discriminative CNNs”, IEEE 

Transactions on Geoscience and Remote 

Sensing, Vol. 56, No. 5, pp. 2811–2821, 2018. 

[41] W. Ge, W. Huang, D. Dong, and M. R. Scott, 

“Deep Metric Learning with Hierarchical 

Triplet Loss”, Lecture Notes in Computer 

Science, pp. 272–288, 2018. 

[42] W. Zheng, Z. Chen, J. Lu, and J. Zhou, 

“Hardness-Aware Deep Metric Learning”, In: 

Proc. of 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition 

(CVPR), pp. 72-81, 2019. 

[43] X. Wang, X. Han, W. Huang, D. Dong, and M. 

R. Scott, “Multi-Similarity Loss With General 

Pair Weighting for Deep Metric Learning”, In: 

Proc. of 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition 

(CVPR), pp. 5022-5030, 2019. 

[44] K. Sohn, “Improved deep metric learning with 

multi-class n-pair loss objective”, In Advances 

in Neural Information Processing Systems, pp. 

1857-1865, 2016. 

[45] X. He, Y. Zhou, Z. Zhou, S. Bai, and X. Bai, 

“Triplet-Center Loss for Multi-view 3D Object 

Retrieval”, In: Proc. of 2018 IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition, pp. 1945-1954, 2018. 

[46] F. Qu, J. Liu, X. Liu, and L. Jiang, “A Multi-

Fault Detection Method With Improved Triplet 

Loss Based on Hard Sample Mining”, IEEE 

Transactions on Sustainable Energy, Vol. 12, 

No. 1, pp. 127–137, 2021. 

[47] Z. He, C. Jung, Q. Fu, and Z. Zhang, “Deep 

feature embedding learning for person re-

identification based on lifted structured loss”, 

Multimedia Tools and Applications, Vol. 78, 

No. 5, pp. 5863–5880, 2018. 

[48] M. Chen, Y. Ge, X. Feng, C. Xu, and D. Yang, 

“Person Re-Identification by Pose Invariant 

Deep Metric Learning With Improved Triplet 

Loss”, IEEE Access, Vol. 6, pp. 68089–68095, 

2018. 

[49] X. Dong and J. Shen, “Triplet Loss in Siamese 

Network for Object Tracking”, Lecture Notes in 

Computer Science, pp. 472–488, 2018. 

[50] H. Choi, A. Som, and P. Turaga, “AMC-Loss: 

Angular Margin Contrastive Loss for Improved 

Explainability in Image Classification”, In: 

Proc. of 2020 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition 

Workshops (CVPRW), 2020. 

[51] P. Zhong, D. Wang, and C. Miao, “An Affect-

Rich Neural Conversational Model with Biased 

Attention and Weighted Cross-Entropy Loss”, 

In: Proc of the AAAI Conference on Artificial 

Intelligence, Vol. 33, No. 01, pp. 7492–7500, 

2019. 

 

 

 


