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Abstract: This paper presents a new development of a predictive voltage neural controller to control the stack terminal 

output voltage of a nonlinear proton exchange membrane fuel cell (PEMFC) system based on a neural network 

technique and a back-propagation learning algorithm. The main objective of this paper is to precisely and quickly 

identify the best control action of the hydrogen partial pressure to enhance the nonlinear performance of the fuel cell 

output voltage under a variable load current. This optimal control action prevents damage to the fuel cell membrane, 

thereby prolonging the fuel cell’s lifetime. The proposed predictive voltage controller consists of three sub-controllers. 

The first one is the numerical feed-forward controller (NFFC), which is used to decide the steady-state hydrogen partial 

pressure (PH2) control action depending on the desired voltage. The second sub-controller is a feedback neural 

controller that uses a multi-layer perceptron (MLP) and a back-propagation learning algorithm to generate the 

hydrogen partial pressure feedback control action to track the desired output voltage of the fuel cell during transient 

conditions. The third sub-controller is the predictive control law equation, which is based on the modified Elman 

recurrent neural network (MERNN) as an identifier for the PEMFC model and the multi-objective performance index. 

From the simulation results, the proposed controller, which is composed of the three sub-controllers, has the capability 

to generate a precisely and quickly timed response to the hydrogen partial pressure control action in order to minimize 

the tracking voltage error and eliminate oscillation in the output voltage of the fuel cell. Finally, the suggested 

predictive voltage control strategy's numerical simulation results are then verified by comparison with those of other 

types of controllers in terms of the minimum number of steps ahead prediction (reducing from 10 to 1 step ahead 

prediction) and enhancement of the tracking voltage error by 81.8% when comparing with a predictive neural controller 

and improvement of the tracking voltage error by 87.5% when comparing with an inverse neural controller. Moreover, 

the oscillation effect in the output voltage is completely eliminated, resulting in a response without any overshoot. 

Keywords: Back-propagation algorithm, Modified elman recurrent neural network, Identifier, Predictive controller, 

PEM fuel cell. 

 

 

1. Introduction 

A significant problem in contemporary life is the 

worldwide energy shortage. As a consequence of the 

growing disparity between global energy demands 

and global energy resources, more focus has been 

placed on the development of renewable energy 

sources like solar energy, wind power, and bioenergy, 

to name a few. In this context, hydrogen fuel cells are 

attracting global interest that is only going to grow 

because of their high energy density, low construction 

costs, and low air pollution [1, 2]. Although this 

technology was discovered in the 18th century, NASA 

began utilizing fuel cells in spacecraft carried into 

orbit in the 1960s and began to market them. The fuel 

cell's basic operating principle is the production of 

straightforward electrical energy as a result of a 

chemical process. To this end, there are many ways to 

categorize fuel cells, but the electrolyte is the most 

important one. The most common types are alkaline 

fuel cells (AFC), phosphoric acid fuel cells (PAFC), 

molten carbonate fuel cells (MCFC), solid oxide fuel 

cells (SOFC), and proton exchange membrane fuel 

cells (PEMFC) [3]. In particular, the PEMFC systems 

are the most popular hydrogen energy source because 

they offer the essential qualities of high efficiency, 
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high reliability, low operating noise, and flexible 

modular design together with excellent performance, 

quick power response, high power density, low 

operating temperature, and low maintenance 

requirements [4, 5]. As a result, they are widely 

utilized in military environments, cars, unmanned 

aerial vehicles, and mobile devices [2]. The PEMFC 

seems to be an appropriate clean energy generation 

technology for various applications. To enhance the 

system’s general performance, a few bolts, 

particularly those connected to its control, still need 

to be removed. Specifically, improvement in global 

efficiency, optimum hydrogen and air utilization, and 

consistent and accurate power response continue to be 

challenging management objectives [5]. Since fuel 

cell output voltage and power significantly impact 

fuel cell performance, researchers have proposed 

various control strategies to monitor the fuel cell 

stack's output voltage and power. For instance, the 

authors in [6] proposed a model reference method 

utilizing a proportional integral differential (PID) 

controller. This suggested method maintained a 

constant voltage despite numerous noises and 

disturbances. Moreover, to control the PEMFC output 

voltage, the researchers in [7] swarm optimization 

based on particle swarm optimization (PSO) is 

proposed to tune the PID controller parameters in 

order to improve the dynamic behaviour of the system. 

Although each of these algorithms has a 

straightforward structure and is relatively simple to 

put into practice, due to their weak adaptive capacity, 

they face extreme difficulty in being adjusted to the 

nonlinear properties of the PEMFC model. 

Additionally, these algorithms take a long time to 

regulate and stabilize, making it practically 

impossible to attain ideal control performance. 

Furthermore, the researchers in [8] proposed an NN-

based model predictive control (MPC) system. In this 

system, the rate of hydrogen was controlled by the 

proposed controller, which was learned by the 

presented NN to achieve the desired efficiency. For 

controlling the PEMFC's voltage, [9] presented a 

model predictive control system, studied the cell’s 

transient behavior, and checked how important it is 

that input variables affect the voltage of the cell. 

Likewise, a PEMFC temperature and voltage 

dynamic management controller using MPC was 

proposed in [10]. In particular, the mass flow rate of 

cooling water and hydrogen gas regulate the 

operating temperature and the output voltage, 

respectively. Analysis was done on the PEMFC's 

performance with various controllers, including MPC 

and conventional PID controllers in terms of response 

time, output voltage, and temperature overshoots that 

have markedly decreased. Although such predictive 

control algorithms can deal with disturbances in 

complex systems, like the PEMFC, and handle 

parameter uncertainty within such systems, their 

substantial reliance on modeling and complicated 

design makes applying them to practical use quite 

challenging. In [11], the researchers developed a 

robust artificial neural feedback controller that can 

achieve the control on the fuel cell’s output voltage 

through a feed-forward neural network controller 

with robust optimization method, which is the 

harmony search method that has a fast response. A 

max power point tracking (MPPT)- based neural 

network (NN) and fuzzy logic control (FLC) were 

utilized in [12] to follow the maximum pick of the 

output power at various operating temperatures. The 

outcomes revealed that the suggested neural network 

MPPT followed the maximum power point more 

quickly than the FLC. In another work, the duty cycle 

was used in [13] to regulate the output voltage of FC 

and track the max power point. In addition, the 

suggested technique, known as GA-ANFIS, was used 

to calculate the ideal reference voltages to 

appropriately regulate the FC output voltage. In [14], 

the authors proposed an ideal output voltage 

controller based on distributed deep reinforcement 

learning and ensemble intelligence exploration multi-

delay deep deterministic policy gradient (EIM-

DDPG) algorithm, which regulated the PEMFC's fuel 

input to manage the output voltage. Furthermore, the 

researcher in [15] proposed a voltage-tracking 

controller to improve the dynamic behaviour of the 

output voltage of the PEMFC systems using an 

inverse neural controller and an HFF-CPSO (hybrid 

firefly chaotic particulate swarm optimization) 

algorithm to produce a smooth control action of 

hydrogen partial pressure and reduced output voltage 

oscillation. However, the output voltage oscillation 

was not completely eliminated, and there remains a 

small error value in the output voltage. A 

proportional-integral (PI) controller and a sliding 

mode controller (SMC) were suggested in [16] as a 

method to keep the fuel cell running at its most 

productive power level. Although the PI is 

distinguished by its simplicity, external disturbances 

and disruptions can negatively affect its performance. 

The comparison results with the PID controller have 

shown that the sliding mode controller is 

distinguished by its stability, particularly against 

changes in outside influences and disturbances. 

However, the drawback of this method is that the 

results were obtained using an offline method without 

taking into account changes in temperature or 

changes in the output voltage with the variable current 

load. In [17], it was suggested to use quasi-continuous 

high-order sliding mode (QC-HOSM) for PEMFC to 
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control the output power using a variable current to 

produce a smooth voltage response, and increase 

overall system efficiency by reducing oscillation 

phenomena by achievement the robustness of the 

conventional SMC. According to the simulation 

results for the suggested controller in [17], the 

oscillation influence was reduced, but it was not 

eliminated.  

In this work, the problem definition is that the fuel 

cell’s output voltage varies with step changing the 

load current and is regarded as a critical problem in 

the nonlinear fuel cell behavior. As a consequence, a 

controller that generates the proper value of PH2 is 

required in order to supply the necessary voltage 

during variations in the load current. 

Specifically, the goal of this study is to determine 

the optimal control action value of the hydrogen 

partial pressure (PH2) in order to improve the 

dynamic performance of the nonlinear fuel cell output 

voltage under variable load current conditions to 

increase fuel cell longevity and drastically reduce 

hydrogen consumption by implementing the 

proposed online predictive neural controller.  

This paper's primary contribution is to: 

 

• Research and evaluation how the output voltage 

of the nonlinear model of the PEMFC responds to 

variations in the input value of the hydrogen 

partial pressure, the output current of the fuel cell, 

and temperature. 

• Construct a neural network identifier for the 

nonlinear PEMFC model using the recurrent 

neural networks (modified Elman recurrent 

neural network) to overcome the difficulty of the 

mathematical model of the fuel cell in terms of 

finding the Jacobian function and attaining quick 

learning without oscillation in the output 

identifier model. 

• Develop a numerical inverse feed-forward 

controller to rapidly and precisely determine the 

optimal PH2 control action that is required to 

regulate the voltage of the stack terminal in the 

PEMFC model at steady state. 

• Develop a neural feedback controller with a one-

step-ahead prediction algorithm to track and 

stabilize the fuel cell system's desired output 

voltage during the transient state and obtain the 

best control effort value for the hydrogen partial 

by employing a multi-objective performance 

index. 

 

The rest of this paper is structured as follows: In 

section 2, the PEMFC nonlinear model is presented. 

Section 3 explains the proposed predictive neural  

 

 
Figure. 1 Proton exchange membrane fuel cell structure 

 

controller design. Section 4 details the simulation 

results, and section 5 describes the conclusions of this 

work. 

2. PEMFC nonlinear model 

PEMFCs use chemical reactions to generate 

electrical energy without emitting any unwanted 

byproducts [18]. Fig. 1 shows the structure of the 

PEMFC model. This particular type of cell relies on a 

unique, specific polymer membrane covered in 

extensively dispersed catalyst particles. From the 

anode side, hydrogen is fed into the membrane, where 

the catalyst causes the hydrogen atoms to release their 

electrons and transform into protons 𝐻+ (ions) [4, 15].  

The chemical reaction occurring at the anode is as 

given in Eq. (1) [4, 15]: 

 

2𝐻2 → 4𝐻+ + 4𝑒−                      (1) 

 

Only 𝐻+  ions move through the proton exchange 

membrane (PEM), and before they reach the cathode 

side, the electrons travel to an external circuit to 

provide the electrical output. The oxygen from the air 

is mixed with the electrons and hydrogen ions to 

create water. The chemical reaction occurring at the 

cathode is illustrated in Eq. (2) [4, 15]: 

 

4𝑒− + 4𝐻+ + 𝑂2 → 2𝐻2𝑂              (2) 

 

The overall reaction becomes as described in Eq. (3) 

[4, 19]: 

 

2𝐻2 + 𝑂2 → 2𝐻2𝑂 + electrical energy        (3) 
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Table 1. The physical parameters of the fuel cell [15, 19-

21]. 

Parameters Values Units 

Ncell 32 -- 

T 298 K 

A 64 𝑐𝑚2 

L 178 ∗ 10−6 𝑐𝑚 

PH2 1-5 Bar 

PO2 0.2 Bar 

Rc 0.0003 Ω 

Β 0.0169 Volt 

𝛼1 0.948 Volt 

𝛼2 0.00312 Volt/k 

𝛼3 7.6 ∗ 10−5 Volt.K-1. Mol-1/cm3 

𝛼4 -1.93 ∗ 10−4 Volt.K-1/A 

J 0.0073 𝑚𝐴/𝑐𝑚2 

Jmax 0.469 𝑚𝐴/𝑐𝑚2 

Ф 23 -- 

 

To avoid flooding and rendering the cell 

inoperable, the created water must be expelled [20]. 
In this context, a single cell generates between 0.5 and 

0.9 under standard operating circumstances. Since a 

higher power is required, several cells are connected 

serially as needed to form what is known as a "stack," 

and a stack arrangement can be as powerful as 

hundreds of kilowatts under typical operating settings. 

PEMFCs provide a number of notable advantages, 

including zero waste material properties and high 

performance [18, 19]. PEMFCs operate at 

temperatures ranging from 50 to 100 °C, which 

permits a quick start-up operation with high 

efficiency depending on external environmental 

factors [18]. The polarization curve, which displays 

highly nonlinear relationships between voltages and 

current, is typically employed to express the 

performance of the entire cell [19, 20]. One way to 

define a single cell's output voltage is as follows [4, 

20]: 

 

𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑠𝑡𝑒𝑎𝑑𝑦 − 𝑉𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡                (4) 

 

𝑉𝑠𝑡𝑒𝑎𝑑𝑦 = 𝐸𝑁 − 𝑉𝑜ℎ𝑚                   (5) 

 

𝑉𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 = 𝑉𝑎𝑐𝑡 + 𝑉𝑐𝑜𝑛                 (6) 

 

Where 𝑉𝑐𝑒𝑙𝑙 is the output voltage of a fuel cell,  𝐸𝑁  is 

the reversible voltage of the fuel cell, 𝑉𝑜ℎ𝑚  is the 

ohmic voltage reductions brought on by the resistance 

to protons' and electrons' passage through the solid 

electrolyte,  𝑉𝑎𝑐𝑡  is the voltage drop brought on by 

anode and cathode activation, and 𝑉𝑐𝑜𝑛 is the voltage 

drop caused by a decrease in the concentration of the 

reactants' gases or the passage of mass of oxygen and 

hydrogen.  

It is possible to calculate each term in Eqs. (4-6) 

using the physical fuel cell characteristics mentioned 

in Table 1 [15, 19-21]. The ideal output voltage is 

represented by 𝐸𝑁, which is the cell's electrochemical 

thermodynamic potential and may be calculated as 

follows [15, 19]: 

 

𝐸𝑁 = 1.229 + 4.3085 × 10−5 × 𝑇 × (ln  𝑃𝐻2 +
0.5 ln 𝑃𝑂2) − 0.85 × 10−3 × (𝑇 − 298)             (7) 

 

Where  𝑃𝐻2  and 𝑃𝑂2  are the partial pressure of 

hydrogen and the partial pressure of oxygen, 

respectively and T is the fuel cell temperature 

expressed in Kelvin (K). 

The voltage drop caused by the activation of the 

anode and cathode is known as the "activation drop 

voltage," and it can be represented as follows [4, 20]:  

 

𝑉𝑎𝑐𝑡 = α1 + α1 × 𝑇 + α3 × 𝑇 × ln𝐶𝑂2 + α4 

×  𝑇 × ln 𝐼       (8) 

 

Where α𝑖 are parametric coefficients and 𝐶𝑂2 is the 

amount of dissolving oxygen in mol/cm3 of the 

cathode catalytic surface.  

Using Henry's law, 𝐶𝑂2  can be calculated from 

the oxygen partial pressure and the cell temperature, 

as given in Eq. (9) [15, 20]: 

 

𝐶𝑂2 =
𝑃𝑂2

5.08×106.𝑒𝑥𝑝[
−498

𝑇
]
                       (9) 

 

The ohmic loss voltage can be calculated using Eq. 

(10):  

 

𝑉𝑜ℎ𝑚 = 𝐼 × (𝑅𝑐 + 𝑅𝑚)                   (10) 

 

Where 𝑅𝑚 is the equivalent resistance of the electron 

flow and 𝑅𝑐  is the proton resistance constant value. 

 

𝑅𝑚 = 
ρ𝑚 𝐿

𝐴
                        (11) 

 

Where 𝐿  represents the polymer membrane's 

thickness (cm), A is the live cell area (cm2), and ρ𝑚 is 

the membrane's specific resistance, which can be 

calculated using Eq. (12) [21]: 

 

𝜌𝑚 = 
181.6[1+0.03(

1

𝐴
)+0.062(

𝑇

303
)
2
(
1

𝐴
)
2.5

]

Ф−0.634−3(
1

𝐴
)𝑒𝑥𝑝[4.18(

𝑇−303

𝑇
)]

      (12) 

 

Where Ф is a variable that controls the humidity. 
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Figure. 2 The proposed predictive voltage control strategy structure 

 

Using Eq. (13) [21], the concentration loss has 

been determined. 

 

𝑉𝑐𝑜𝑛 = −𝛽 ln (1 −
𝐽

𝐽𝑚𝑎𝑥
)              (13) 

 

Where 𝛽 is a parameter that depends on the cell type, 

𝐽  represents the amount of current that flows through 

the cell (
𝐴

𝑐𝑚2) , and  𝐽𝑚𝑎𝑥   refers to the cell's 

maximum allowable current density (
𝐴

𝑐𝑚2) . The 

formula for      𝐽𝑚𝑎𝑥  is [15, 20]: 

 

𝐽𝑚𝑎𝑥 =
𝐼𝑚𝑎𝑥

𝐴
                           (14)  

 

The total output voltage of the stack can be 

determined by Eq. (15) [19]: 

 

𝑉𝐹𝐶 = 𝑁𝑐𝑒𝑙𝑙 × 𝑉𝑐𝑒𝑙𝑙                        (15) 

 

Where 𝑁𝑐𝑒𝑙𝑙 is the number of cells in the stack.  

 

The fuel cell's overall quantity of power delivered to 

the load can be calculated as given in Eq. (16) [19]: 

 

𝑃𝑜𝑤𝑒𝑟𝐹𝐶 = 𝐼  𝑉𝐹𝐶                        (16) 

3. Design of predictive voltage controller 

The proposed predictive voltage controller for the 

general form of the PEMFC is depicted in Fig. 2. This 

controller task is to solve the problem of the fuel cell's 

output voltage variation while the load current varies 

and to generate the best value of PH2, which is fed to 

the fuel cell to obtain the necessary voltage during 

variations in the load current.   

The first step in the proposed predictive voltage 

control strategy is the neural network identifier to 

overcome the difficulty of the mathematical model of 

the fuel cell in terms of finding the Jacobian function 

and attaining quick learning without oscillation in the 

output identifier model. The second step is the 

feedback neural controller with the numerical feed-

forward controller to rapidly and precisely generate 

the best PH2 control action required to regulate the 

voltage of the stack terminal in the PEMFC model at 

the steady state. The third step is the predictive 

control law equation with a one-step-ahead prediction 

algorithm that leads to obtaining the optimal or near 

optimal value for the hydrogen partial pressure 

control effort for tracking and stabilizing the fuel cell 

system's desired output voltage in the transient state. 

3.1 Neural network identifier  

Modeling and system identification are the 

primary aims of the proposed controller's structure, 

which is utilized to provide the preconditions for 

analysis and controller design. The result of system 

identification is to find a mathematical model whose 

output corresponds to the output of a dynamic system 

for a given input [22, 23]. The recurrent neural 

network structure is used to construct the neural 

network identification model of the fuel cell type 

(PEMFC) system based on the Modified Elman 

recurrent neural network (MERNN) in order to 

develop the neural PEMFC model. The MERNN is a 

partial neural network structure proposed in [24, 25]. 

Among the different forms of neuronal cells that 

make up neural networks (NNs), Elman neural 

networks (ENNs) are a subtype that are built in 

accordance with specified principles.  
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Figure. 3 Modeling and identification procedures for 

PEMFC systems 

 

In reality, neural networks are the mathematical 

model that can process data concurrently and has 

strong fault tolerance, adaptively, and associative 

memory capabilities [26, 27]. MERNN was chosen 

over conventional neural networks for the suggested 

identification because it offers particular benefits. 
The context units have many orders of the self-

connection in the working, which raises the order of 

the hidden units, these advantages give the proposed 

identity structure a number of useful properties, such 

as strong robustness performance, no output 

oscillation, favorable dynamic properties, and 

increasing degree of the control performance. The 

five fundamental steps shown in Fig. 3 are used to 

overcome the difficulty in identifying and modeling 

the PEMFC system and to employ artificial neurons 

as the fundamental building block for the construction 

of multi-layered and higher-order neural networks to 

explain the dynamic model of the PEMFC. 

According to the operational description of the 

nonlinear proton exchange membrane fuel cell 

PEMFC model. The major physical variable outputs 

of the fuel cell type (PEMFC) model are divided into 

three types: the first major output is the fuel cell’s 

stack output voltage (𝑉𝐹𝐶 ); the second one is the 

variable operational temperature output (T) of the fuel 

cell model; and the third major is the variability of the 

output current (I) of the fuel cell. In addition, the 

PEMFC system's two inputs—the first of which is the 

controlled effort of the hydrogen partial pressure 

(𝑃𝐻2) and the second input is the constant value of 

the oxygen partial pressure (𝑃𝑂2), that represented in 

this work.  

The block diagram of the suggested neural network  

 

 

Figure. 4 The structure of the proposed MERNN 

identifier model 

 

identification for the PEMFC system is shown in Fig. 

4. The MERNN's structure consists of four layers, as 

follows [26, 27]: The input layer: It serves as a buffer 

by passing the data on without any modification just 

scaling the values. The second main layer is the 

hidden layer: It is a functionally active layer that it is 

based on the non-linear activation function. The third 

layer is memory layer or the context layer and did not 

have any activation functions and it is used as storage 

memory for increasing the speed of the learning 

networks. The context node's computed value is 

identical to that of the hidden output node, with the 

exception that recurrent connections cause it to be one 

unit later. Both the hidden layer and the context layer 

have the same number of nodes. The output layer: A 

linear activation function defines each node of the 

output layer. The suggested dynamic model of the 

PEMFC system's Modified Elman recurrent neural 

network (MERNN) identification is represented in Eq. 

(17). 
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𝑉𝑚(𝑘 + 1) = 𝐹𝑚[𝑉𝐹𝐶(𝑘), 𝑉𝐹𝐶(𝑘 − 1), 𝑉𝐹𝐶(𝑘 − 2),
𝐼(𝑘), 𝐼(𝑘 − 1), 𝑃𝐻2(𝑘), 𝑃𝐻2(𝑘 − 1), 𝑃𝐻2(𝑘 − 2)]  

 (17) 

 

Where 𝑉𝑚 is the neural model of the fuel cell’s output 

voltage and 𝐹𝑚[−] refers to the relationship function 

between the fuel cell system's previous input and 

output values, representing the (MERNN) model.  

The weight definitions of the modified Elman 

recurrent neural network layers, which are depicted in 

Fig. 4, are as follows: VH: The hidden layer's weight 

matrix. VC: The context layer's weight matrix. Vb: 

The hidden layer's weight one demission vector. W: 

The output layer's weight matrix. Wb: The output 

layer's weight one demission vector. O: Stands for a 

linear node. H: Stands for a nonlinear node with a 

sigmoid function.  
 

The initial calculation within the neuron is the 

weighted sum 𝑛𝑒𝑡𝑗 of the inputs, as represented in Eq. 

(18) [26, 27]: 

 

𝑛𝑒𝑡𝑗 = ∑ 𝑉𝐻𝑗𝑖 × 𝐺𝑖
𝐼
𝑖=1 + ∑ 𝑉𝐶𝑗𝑐

𝐶
𝑐=1 × ℎ𝑐

𝑜 +  

𝑏𝑖𝑎𝑠 × 𝑉𝑏𝑗     (18) 

 

Where 𝐺𝑖  stands for the inputs of the neural 

network, ℎ𝑐
𝑜 is the memory layer's output, and I, C, 

and j are denote to how many nodes are in the input 

layer, the memory layer, and the active hidden layer, 

respectively. 

In the modified Elman network, the output of the 

𝑐𝑡ℎ context unit is provided by Eq. (19) [26, 27]: 

 

ℎ𝑐
𝑜(𝑘) =  𝛼ℎ𝑐

𝑜(𝑘 − 1) + 𝛽ℎ𝑗(𝑘 − 1)       (19) 

 

Where ℎ𝑗(𝑘)  is the output of the active hidden unit, 

𝛼 is a gain in the context or memory units as a self 

connections, and 𝛽 is the connection weight from the 

hidden units jth to the context units cth at the context 

layer. The training process does not change the value 

of 𝛼 and 𝛽; they are randomly chosen between 0 and 

1. 

Then, as indicated in Eq. (20), a continuous 

bipolar activation function named sigmoid is applied 

at the hidden layer nodes, allowing the output of 

neuron ℎ𝑗 in the hidden layer to be expressed as given 

in Eq. (21) [22, 23]. 

 

𝐻(𝑛𝑒𝑡𝑗) =  
2

1+𝑒
−𝑛𝑒𝑡𝑗

− 1                (20) 

 

ℎ𝑗 = 𝐻(𝑛𝑒𝑡𝑗)                       (21) 

 

Additionally, the output layer receives the hidden 

layer's results after they have been computed. The 

output layer computes the weighted sum (𝑛𝑒𝑡𝑜) of its 

inputs using one linear neuron, as detailed in Eq. (22) 

[22, 23]: 

 

𝑛𝑒𝑡𝑜𝑘 = ∑ 𝑊𝑘𝑗 × ℎ𝑗 + 𝑏𝑖𝑎𝑠 × 𝑊𝑏𝐽
𝑗=1     (22) 

 

Where 𝑊𝑘𝑗  is the output layer's weight matrix and 

𝑊𝑏⃗⃗⃗⃗ ⃗⃗  is the output neuron's weight vector. 

The output neuron response comes from the 

output layer is utilized to determine the output 

response of the proposed model (identifier model) 

based on neural networks that represents the voltage 

of the fuel cell. The result (𝑛𝑒𝑡𝑜𝑘) is then passed by 

the linear neuron through a linear function (L), as 

depicted in Eq.(23), which models the output voltage 

of a FC: 

 

𝑂𝑘 = 𝐿(𝑛𝑒𝑡𝑜𝑘) = 𝑉𝑚                 (23) 

 

Where  𝑉𝑚  denotes the fuel cell output modeling 

voltage and a linear function is L(x) = x with a slope 

of one in this case. 

To learn the weights of the identifier model 

(modified Elman recurrent neural networks) and to 

update the weights of the networks, the back-

propagation algorithm is used with the cost function 

(mean square error), which represents the average 

sum of the squares of the differences between the 

desired outputs (𝑉𝑑𝑒𝑠) and network outputs(𝑉𝐹𝐶𝑀), is 

used to evaluate the model's performance: 

 

𝐸 =
1

𝐾
∑ (𝑒𝑚(𝑘 + 1))

2𝐾
𝑖=1                (24) 

 

𝐸 =  
1

𝐾
∑ (𝑉𝐹𝐶(𝑘 + 1) − 𝑉𝑚(𝑘 + 1))2𝐾

𝑖=1    (25) 

 

Where K is the number of patterns in the training set 

overall and E is the objective cost function. 

After utilizing the neural network's training 

procedure, as depicted in Fig. 4, then applying the 

back-propagation learning algorithm for reducing the 

error of the output voltage model (neural network 

model) 𝑉𝑚, and the real output voltage 𝑉𝐹𝐶 which is 

almost equal to zero, the identifier model based on 

MERNN will produce the same actual output voltage 

response. Therefore, it will be possible to use a testing 

set to verify that the model's output voltage matches 

the desired fuel cell voltage that describes the 

variation between the reference voltage and the fuel 

cell identity model output voltage, as well as to verify 

that the network is perfectly learned. The series- 
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Figure. 5 The proposed MLP neural controller structure 

 

parallel identification model is created using the 

modified Elman neural network, for which it is 

evident that at each instant of time, the Fuel-Cell 

system's previous inputs and outputs are fed into the 

network, and the output of the network returns the 

prediction error. However, the inputs to the neural 

network (identifier) model in the structure are the 

outputs of the real fuel cell PEMFC model, this 

technique can only be used in combination with the 

series-parallel system. 

3.2 The feedback neural control design 

In general, when the output voltage of the fuel 

cell type (PEM) system deviates from the required 

input voltage during the transient state, the feedback 

controller is crucial to preserving the tracking voltage 

error of the fuel cell system. In addition, this 

controller finds the optimal hydrogen partial pressure 

feedback control action (𝑃𝐻2 𝑓𝑏)  that makes the 

feedback voltage error as small as possible. 

Specifically, this controller is based on a multilayer 

perceptron neural network. Fig. 5 demonstrates the 

proposed neural network controller structure. 

Particularly, the structure of the MLP neural network 

consists of three layers [22, 23]. The input or buffer 

layer consists of seven linear input neurons; these 

inputs are the present and previous inputs of the 

desired fuel cell voltage, current, and hydrogen partial 

pressure, as depicted in Fig. 5. 

The hidden layer is composed of 14 neurons with 

a nonlinear activation function. The output layer 

consists of a single linear neuron that represents the 

hydrogen feedback control action. The neural 

network was trained using the back-propagation 

learning algorithm. The performance index to be 

minimized is given below: 

𝐽 =  
1

2
∑ (𝑃𝐻2 𝑟𝑒𝑓(𝑘) − 𝑃𝐻2 𝑓𝑏(𝑘))

2𝐾
𝑘=1      (26) 

 

Where 𝑃𝐻2 𝑟𝑒𝑓(𝑘) is the hydrogen partial pressure's 

reference control action, 𝑃𝐻2 𝑓𝑏(𝑘) is the hydrogen 

partial pressure feedback control action, and 𝐾 

denotes the number of patterns. 

The numerical feedforward controller (NFFC) 

can be used to determine the 𝑃𝐻2 𝑟𝑒𝑓 , and it is 

expected that the NFFC will determine the inverse 

dynamics of the PEMFC system, hence the name 

"Inverse feedforward controller" (IFC). The 

appropriate input hydrogen partial pressure for the 

feedback controller is likewise created using the 

NFFNC. In this regard, several equations need to be 

numerically determined in order to achieve this 

controller, as follows: 

 

𝑉𝑑𝑒𝑠 = 𝑁𝑐𝑒𝑙𝑙(𝐸𝑁 − 𝑉𝑜ℎ𝑚 − 𝑉𝑎𝑐𝑡 − 𝑉𝑐𝑜𝑛)     (27) 

 

𝐸𝑁 = 1.229 − 0.85 × 10−3(𝑇 − 298) + 

     4.3085 × 10−5 × ln𝑃𝐻2 𝑓𝑓 + 0.5 ln𝑃𝑂2    (28) 

 

Then, combining Eq. (27) with Eq. (28) leads to 

providing 𝑃𝐻2𝑟𝑒𝑓 as in Eq. (29). 

 

𝑃𝐻2𝑟𝑒𝑓 = 

𝑙𝑛−1  
 (

𝑉𝑑𝑒𝑠
𝑁𝑐𝑒𝑙𝑙

)+𝑉𝑎𝑐𝑡+𝑉𝑜ℎ𝑚+𝑉𝑐𝑜𝑛−1.229 +(0.85×10−3)(𝑇−298)

(4.3085×10−5)
  

−0.5 × 𝑙𝑛(𝑃𝑂2)       (29) 

 

Where 𝑉𝑑𝑒𝑠  is the required input voltage for the 

feedback controller. 

The initial stage in calculating the hydrogen 

feedback 𝑃𝐻2 𝑓𝑏 control action is calculating the 

input's weighted sum 𝑛𝑒𝑡𝑗 as in Eq. (30): 

 

𝑛𝑒𝑡𝑗 = ∑ 𝑉𝐻𝑗𝑖 × 𝐷𝑖
𝐼
𝑖=1 + 𝑏𝑖𝑎𝑠 × 𝑉𝑏𝑗      (30) 

 

Where 𝑉𝐻𝑗𝑖  indicates the hidden layer's weight 

matrix, 𝐷𝑖 denotes the controller's input vector, and I 

and J reflect that how many nodes in the input layer 

and the hidden layer, respectively. 

Furthermore, the sigmoid activation function 

shown in Eq. (31) is applied to the hidden nodes. As 

a result, Eq. (32) can be used to express the output of 

neuron ℎ𝑗 in the hidden layer. 

 

𝐻(𝑛𝑒𝑡𝑗) =  
2

1+𝑒
−𝑛𝑒𝑡𝑗

− 1                (31) 

 

ℎ𝑗 = 𝐻(𝑛𝑒𝑡𝑗)                       (32) 
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The results of the hidden layer are subsequently 

computed and fed to the output layer, which utilizes 

one linear neuron for summing the weighted of the 

output layer (𝑛𝑒𝑡𝑜𝑘) depend on its inputs values, as 

shown in Eq. (33): 

 

𝑛𝑒𝑡𝑜𝑘 = ∑ 𝑊𝑘𝑗 × ℎ𝑗 + 𝑏𝑖𝑎𝑠 × 𝑊𝑏𝐽
𝑗=1     (33) 

 

Where 𝑊𝑘𝑗  represents the output layer’s weight 

matrix and 𝑊𝑏  is the one dimension vector of the 

output neuron’s weight. 

The suggested neural network controller's output 

(𝑛𝑒𝑡𝑜𝑘) is determined by a single linear function (𝐿) 

neuron in the output layer, which then represents the 

hydrogen control action of the fuel cell, as illustrated 

in Eq. (34): 

 

𝑂𝑘 = 𝐿(𝑛𝑒𝑡𝑜𝑘) = 𝑃𝐻2𝑓𝑏                (34) 

 

For modifying the weights of the MLP neural 

network, the back-propagation algorithm is used for 

the proposed feedback MLP controller. In particular, 
the weights of the connection matrix between the 

hidden layer and the output layer (𝑊𝑘𝑗) are updated 

as follows: 

 

𝑊𝑘𝑗(𝑘 + 1) = 𝑊𝑘𝑗(𝑘) + ∆𝑊𝑘𝑗(𝑘)           (35) 

 

∆𝑊𝑘𝑗(𝑘) = 𝜂 ℎ𝑗 𝑒𝑘                      (36) 

 

𝑒𝑘 = 𝑃𝐻2 𝑟𝑒𝑓(𝑘) − 𝑃𝐻2 𝑓𝑏(𝑘)              (37) 

 

Where 𝜂  is the learning rate and 𝑒𝑘  represents the 

difference between the reference value the actual 

neural output for hydrogen partial pressure. 

The following expression is the weight update for 

the connection matrix between the hidden layer and 

the input layer (𝑉𝐻𝑗𝑖): 

 

𝑉𝐻𝑗𝑖(𝑘 + 1) = 𝑉𝐻𝑗𝑖(𝑘) + ∆ 𝑉𝐻𝑗𝑖(𝑘)      (38) 

 

∆ 𝑉𝐻𝑗𝑖(𝑘) =  𝜂𝑓(𝑛𝑒𝑡𝑗)
′ 𝐷𝑖  ∑ 𝑒𝑘

𝐾
𝑘=1 𝑊𝑘𝑗     (39) 

 

The suggested controller will be able to produce 

feedback hydrogen control actions for PEMFC 

systems after being trained. A testing (input-output) 

set will be utilized to describe the convergence 

between the (PH2ref) reference value, which can be 

determined from the proposed numerical feedforward 

neural controller (NFFNC), and the neural output for 

PEMFC, in order to verify and confirm that the neural 

network is correctly learned and trained. This will 

ensure that all of the proposed controller's output 

values follow the desired values accurately. 

3.3 Predictive control law equation  

A predictive control law equation is used to 

predict the hydrogen partial pressure control signal 

for N steps ahead ( 𝑃𝐻2 𝑝𝑟𝑒𝑑 ). Here, the on-line 

identifier neural network is used to retrieve the 

predicted output voltage values for many steps ahead 

predictive. Rather than carrying out the actual 

PEMFC model for many steps predictive that lead to 

determining the predicted values for the hydrogen 

partial pressure control action by minimizing the 

multi-objective cost function given in Eq. (40). 

 

𝐸𝑝𝑟𝑒𝑑 =
1

2 
 ∑ [𝑄(𝑉𝑑𝑒𝑠(𝑘 + 1) − 𝑉𝑚 (𝑘 +𝑁

𝑘=1

1) )2 + 𝑅(𝑃𝐻2 𝑟𝑒𝑓(𝑘) − 𝑃𝐻2 (𝑘) )
2
]  

(40) 

 

Where𝑃𝐻2 (𝑘)is the overall hydrogen partial pressure 

control signal, 𝑉𝑑𝑒𝑠(𝑘 + 1)  refers to the reference 

voltage of the fuel cell as output desired, Q and R 

indicate the coefficients of the control law equation, 

and N denotes prediction steps ahead.  
 
Consequently: 

 

𝑃𝐻2 𝑟𝑒𝑓 (𝑘) = 𝑃𝐻2 𝑖𝑛𝑣(𝑘)              (41) 

 

𝑃𝐻2(𝑘) =  𝑃𝐻2 𝑖𝑛𝑣(𝑘) + 𝑃𝐻2 𝑓𝑏(𝑘) + 𝑃𝐻2  𝑝𝑟𝑒𝑑(k)  

(42) 

 

When Eq. (41) and (42) are inserted in Eq. (40), 𝐸𝑚 

will be provided as in Eq. (43): 

 

𝐸𝑝𝑟𝑒𝑑 =
1

2 
 ∑ [𝑄(𝑉𝑑𝑒𝑠(𝑘 + 1) − 𝑉𝑚 (𝑘 +𝑁

𝑘=1

1) )2 + 𝑅 (𝑃𝐻2 𝑟𝑒𝑓(𝑘) − (𝑃𝐻2 𝑖𝑛𝑣 (𝑘) +

𝑃𝐻2 𝑓𝑏 (𝑘) + 𝑃𝐻2 𝑝𝑟𝑒𝑑 (𝑘)) )
2
]  

(43) 

 

𝐸𝑝𝑟𝑒𝑑 =
1

2 
 ∑ [𝑄(𝑉𝑑𝑒𝑠(𝑘 + 1) − 𝑉𝑚 (𝑘 +𝑁

𝑘=1

 1) )2 + 𝑅(𝑃𝐻2 𝑓𝑏 (𝑘) + 𝑃𝐻2 𝑝𝑟𝑒𝑑 (𝑘) )
2
]   

(44) 

 

This multi-objective performance index will force the 

output voltage to follow the desired input voltage and 

force the hydrogen partial pressure to be controlled in 

the transient period as closely as possible to the 

reference control signal of the hydrogen partial 
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pressure by reducing the cumulative voltage error for 

N steps ahead. The determined control signal of the 

hydrogen partial pressure will be optimal or near 

optimal value with regard to the specified values for 

the control law parameters  variables Q and R because 

of the convergence of the prediction error 𝐸𝑝𝑟𝑒𝑑  is 

based on the two positive parameters Q and R. In this 

context, engineering judgment is used to make the 

selection of Q and R, which is frequently done 

iteratively by comparing the system response to 

certain design criteria like overshoot and rising time 

[28]. Additionally, to get the identifier’s output 

voltage 𝑉𝑚 (𝑘), as near as the fuel cell PEMFC output 

value 𝑉𝐹𝐶 (𝑘) , online identification is required. In 

order to track any potential changes in the output 

voltage of the PEMFC system, the MERNN is 

utilized as an identifier, and the weights of the 

obtained identifier are modified on-line. The back-

propagation algorithm (BPA) is employed to modify 

the weights of the identifier neural network so that it 

learns the dynamic behaviour of the fuel cell type 

(PEM) system using a straightforward gradient 

descent method. As a result, it can be stated that 

𝑉𝑚 (𝑘) ≈  𝑉𝐹𝐶 (𝑘) and the cost function in Eq. (44) 

can be expressed as in the proposed Eq. (45): 

 

𝐸𝑝𝑟𝑒𝑑 =
1

2 
 ∑ [𝑄 ( 𝑒𝑝𝑟𝑒𝑑 (𝑘 + 1))

2
−𝑁

𝑘=1

𝑅(𝑃𝐻2 𝑓𝑏 (𝑘) + 𝑃𝐻2 𝑝𝑟𝑒𝑑 (𝑘) )
2
]   

(45)  

 

𝑒𝑝𝑟𝑒𝑑 (𝑘 + 1) = 𝑉𝑑𝑒𝑠(𝑘 + 1) − 𝑉𝑚 (𝑘 + 1)  (46) 

 

In this section, the predictive control action based 

on one-step ahead of the hydrogen partial pressure 

𝑃𝐻2𝑝𝑟𝑒𝑑 (𝑘 + 1)  will be driven as follows, where 

N=1: 

 

𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘 + 1) = 𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘) + ∆𝑃𝐻2 𝑝𝑟𝑒𝑑(𝑘)  

 (47) 

 

The proposed predictive control law equation is 

created by minimizing the quadratic cost function for 

Eq. (45) in the manner described as follows: 

 

∆𝑃𝐻2 𝑝𝑟𝑒𝑑(𝑘) =  − 𝜂 
𝜕𝐸𝑝𝑟𝑒𝑑

𝜕𝑃𝐻2 𝑝𝑟𝑒𝑑(𝑘)
            (48) 

 

Eq. (49) is obtained by substituting Eq. (44) into Eq. 

(48), where the weight space is represented by the 

usage of the minus sign using gradient-descent, which 

also shows the search for the weight change's 

direction and lowers the value of 𝐸𝑝𝑟𝑒𝑑. According to 

the chain rule distinction, it has: 

 

−𝜂
𝜕𝐸𝑝𝑟𝑒𝑑

𝜕𝑃𝐻2 𝑝𝑟𝑒𝑑(𝑘)
= −𝜂

𝜕
1

2
𝑄(𝑉𝑑𝑒𝑠(𝑘+1)−𝑉𝑚 (𝑘+1) )2

𝜕𝑃𝐻2 𝑝𝑟𝑒𝑑(𝑘)
−  

𝜂
𝜕

1

2
𝑅((𝑃𝐻2 𝑓𝑏 (𝑘)+𝑃𝐻2 𝑝𝑟𝑒𝑑 (𝑘) ) )

2

𝜕𝑃𝐻2 𝑝𝑟𝑒𝑑(𝑘)
    (49) 

 

∆𝑃𝐻2 𝑝𝑟𝑒𝑑(𝑘) = 𝜂𝑄 𝑒𝑝𝑟𝑒𝑑 (𝑘 + 1) ×
𝜕𝑉𝑚(𝑘+1)

𝜕𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)
  

− 𝜂 𝑅 [𝑃𝐻2𝑓𝑏(𝑘) + 𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)         (50) 

 

From the modified Elman neural network identifier 

depicted in Fig. 4, Eq. (50) is solved as follows: 

 

𝜕𝑉𝑚(𝑘+1)

𝜕𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)
=

𝜕𝑉𝑚(𝑘+1)

𝜕𝑂
×

𝜕𝑂

𝜕𝑛𝑒𝑡𝑜
×

𝜕𝑛𝑒𝑡𝑜

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑗
  

×
𝜕𝑛𝑒𝑡𝑗

𝜕𝑃𝐻2(𝑘)
×

𝜕𝑃𝐻2(𝑘)

𝜕𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)
          (51) 

 

In the case of the output having a linear activation 

function, Eq. (51) becomes as follows: 

 
𝜕𝑉𝑚(𝑘+1)

𝜕𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)
=

𝜕𝑛𝑒𝑡𝑜

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑃𝐻2(𝑘)
×

𝜕𝑃𝐻2(𝑘)

𝜕𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)
  

   (52) 

 
𝜕𝑉𝑚(𝑘+1)

𝜕𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)
=

𝜕𝑛𝑒𝑡𝑜

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑃𝐻2(𝑘)
         (53) 

 

From Fig. 4, the 𝑃𝐻2(𝑘) is linked at node number six 

to the exciting nodes 𝑉𝐻 𝑗6; therefore: 

 

𝜕𝑉𝑚(𝑘+1)

𝜕𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)
= ∑ 𝑤6𝑗 

𝑛ℎ

𝑗=1
𝑓′(𝑛𝑒𝑡𝑗) 𝑉𝐻𝑗6      (54) 

 

∆𝑃𝐻2 𝑝𝑟𝑒𝑑(𝑘 + 1) = 𝜂 𝑄 𝑒𝑝𝑟𝑒𝑑 (𝑘 + 1) × 

[∑ 𝑤6𝑗 𝑓
′(𝑛𝑒𝑡𝑗) 𝑉𝐻𝑗6

𝑛ℎ
𝑗=1 ]  

−𝜂 𝑅 [𝑃𝐻2𝑓𝑏(𝑘) + 𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)]     (55) 

 

Where 𝑛ℎ  represents the number of nodes in the 

hidden layer.  

When Eq. (55) is substituted for Eq. (47), the 

proposed predictive control law equation of the 

nonlinear fuel cell model is provided for the one-step 

ahead prediction, as represented in Eq. (56) in order 

to obtain the optimal or near-optimal value for the 

hydrogen partial pressure control effort. 

 

𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘 + 1) =     𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘) +

 𝜂 𝑄 𝑒𝑝𝑟𝑒𝑑 (𝑘 + 1) ×    [∑ 𝑤6𝑗 𝑓
′(𝑛𝑒𝑡𝑗) 𝑉𝐻𝑗6

𝑛ℎ
𝑗=1 ]  

− 𝜂 𝑅 [𝑃𝐻2𝑓𝑏(𝑘) + 𝑃𝐻2𝑝𝑟𝑒𝑑(𝑘)]            (56) 
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Figure. 6 The stack output voltage and power against 

the current 

 

 
Figure. 7 Fuel cell voltage drop against load current 

 

This control effort will track and stabilize the fuel 

cell’s output voltage model at the desired output 

voltage in the two states, the transient state and the 

steady-state of operation. 

4. Simulation results 

Predictive neural voltage control, as seen in Fig. 

2, was used to enhance the performance of the output 

voltage of the nonlinear PEMFC system. This can be 

accomplished by regulating the PEMFC output 

voltage in the presence of current variation and by 

forecasting the best hydrogen partial pressure (𝑃𝐻2) 

values to protect the fuel cell membrane from damage 

in such a way that extends the fuel cell lifetime 

without consuming a lot of 𝑃𝐻2 . The MATLAB 

R2020a package and Intel Core i5-1035G4 computer 

hardware with RAM size is eight Gbye and the clock 

speed of CPU is equal to 1.50 GHz that were used to 

validate and construct the proposed controller. 

At the controller design's initial stage, study and 

analysis of the PEMFC system's dynamic properties 

in relation to its physical parameters, as shown in 

Table 1, are required to show the nonlinear dynamic  

 

 
Figure. 8 The maximum power and the output voltage 

against load current with variable hydrogen partial 

pressure 

 

behavior of the fuel cell model. In the first analysis: 

the magnitude of the fuel cell’s output voltage and 

maximum output power response are shown in Fig. 6, 

where the normal operating conditions of the fuel cell 

model are (1) the value of the hydrogen partial 

pressure is equal to 0.1 bar, (2) the value of the 

oxygen partial pressure is equal to 0.2 bar, (3) the 

operating temperature of the fuel cell model is equal 

to 25 °C, under the load current of the fuel cell is 

variable between 0 and 30 A,  

This model's maximum power is obvious at the 

current equivalent to 29 A. Fig. 7 depicts the loss 

voltage response of the fuel cell system when the 

variable load current, which is changeable between 0 

A and 30 A. To demonstrate the impact of the 

hydrogen partial pressure as shown in Fig. 8 as the 

second study that it variations between 0.1 bar and 1.5 

bar and to show the effect on the fuel cell’s output 

voltage as well as the maximum output power can be 

the fuel cell operated during the load current varies 

between 0 A and 30 A. But the operating temperature 

of the fuel cell is constant at 25 °C. 

The fuel cell’s output voltage grows as the 

hydrogen partial pressure increases, as shown in Fig. 

8. As a result of the PEMFC system's increased 

thermodynamic potential (EN) value, as shown in Eq. 

(7), the dynamic performance of the output voltage of 

the fuel cell system has improved.  

The impact of temperature fluctuations of the fuel 

cell system is studied as shown in Fig. 9, where the 

temperature is changing from 25 °C to 85 °C during 

the load current of fuel cell is variable from 0 A to 30 

A, while the partial pressures of hydrogen and oxygen 

are constant at 1.0 bar and 0.2 bar, respectively. The 

output voltage of the (FC) grows as the temperature 

rises. The PEMFC system's EN value has been 

enhanced to increase and decrease the parameter  
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Figure. 9 The stack output voltage and power against load 

current with temperature 

 

impact values on the loss voltage, which has 

improved the performance of the fuel cell system. 

However, when the temperature rises, the fuel cell 

will operate with less of the required humidity for the 

membranes, which will shorten the fuel cell's lifetime.  

The first stage in developing the proposed 

controller design is to determine the neural network 

PEMFC model (system identification), which 

employs the identification algorithm’s five steps, as 

depicted in Fig. 3. To create input-output patterns as 

the first step, as shown in Fig. 10 that will stimulate 

and excite all nonlinear sections of the dynamic 

behaviour of the fuel cell system.  

In step two, the PEMFC system model is 

displayed using the structure of recurrent neural 

network based on Modified Elman recurrent neural 

networks that it described in Fig. 4. Accordingly, the 

suggested number of nodes for each of the four 

layers—the input layer, the context layer, the hidden 

layer, and the output layer—is as follows: [8: 8: 8: 1]. 

The third step involves learning the neural network 

identifier model off-line using the back-propagation 

algorithm and then tuning the model online. The 

fourth step is to represent the proposed the order of 

the dynamic model of the FC type (PEM) system, 

which is based on the equation of the stack output 

voltage of the PEMFC system that it given in Eq. (17), 

which has the third-order dynamic behavior. In order 

to resolve the numerical problems related to actual 

values, the signals entering or leaving neural network 

(NN) has been treated to lie between (-1) to (+1). 

Given that the patterns of the inputs (load currents of 

1 to 25 A and hydrogen partial pressures of 1 to 5 

bars) and the outputs (20 to 28 volts) are both greater 

than 1, scaling functions must be applied at the first 

layer and last layer of neural network terminals 

(input-output), respectively,  as shown in Figs. 10 (a) 

and (b) to convert scaled values to actual values and  

 

 
(a) 

 
(b) 

Figure. 10 The PEMFC model's neural network 

identification learning set: (a) Output voltage and load 

current, and (b) The input of partial pressure of hydrogen 

 

 
Figure. 11 Learning response for the MERNN identifier 

 

vice versa. In the learning mode, the real output 

voltage of the FC system model is shown in Fig. 11, 

with a model error of zero approximation for 100 

patterns, which highlights the good responsiveness of 

the neural network identifier for the PEMFC model.  
The performance of the mean square error 

(objective function) is depicted in Fig. 12 and is based 

on the off-line back-propagation learning algorithm. 

It has the minimum performance index value that  
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Figure. 12 The proposed controller's performance index 

during the learning process 

 

 
Figure. 13 Testing response for the MERNN identifier 

 

 
Figure. 14 The MLP neural network controller's learning 

set (voltage and load current) 

 

reaches 0.0134 during 500 epochs. The fifth step, 

model validation, is accomplished by testing the 

neural network identifier PEMFC model with 100 

new patterns. As shown in Fig. 13, the PEMFC model 

identifier of the neural networks' answers matched the 

real output voltage of the fuel cell, and the 

overlearning issue that arises during the BP method's 

learning cycle was not a problem. 

 
Figure. 15 Learning response of the MLP neural network 

controller 

 

The MLP neural controller receives 100 samples 

as an input (hydrogen partial pressure and load 

current) and an output (voltage), as illustrated in Fig. 

14.  

As indicated in Fig. 5, which demonstrates the 

structure of the feedback MLP neural network 

controller, the suggested number of neurons nodes for 

the input layer, hidden layer, and output layer are as 

follows: [7:14:1]. Fig. 15 illustrates the learning 

response for the MLP neural network controller, 

based on Eq. (34), which was learned using the back-

propagation learning algorithm. 

The second stage involves the design of the neural 

feedback controller, which can be carried out using 

the MLP neural network and mean square error 

(objective function). At this stage, the proposed 

numerical feed-forward neural controller (NFFNC) 

design must be used to calculate the reference (PH2ref) 

control action, which it is based on Eq. (29) in order 

to keep the output voltage of the fuel cell at the 

desired voltage and the tracking voltage error become 

zero value at steady-state. Fig. 16 shows the response 

of the actual output voltage of the PEMFC system 

when we applied the feedback MLP neural controller. 

Although the control action tried to track and follow 

the desired output voltage for the ten different step-

changes, but the output voltage response at steady 

state has error and it is not equal to zero, and there is 

an oscillation in the output. Consequently, the one-

step-ahead predictive controller will be incorporated 

to enhance the fuel cell's performance, which can be 

implemented using the multi-objective cost function 

and the neural network identification PEMFC model 

based on Eq. (56). Fig. 17 demonstrates the one step 

ahead prediction response of the (PH2) control action 

of the proposed predictive neural controller. The ideal 

response of the (PH2) control action includes the best 

value, fast and smooth control action to follow the  
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Figure. 16 The actual output voltage for the feedback 

neural controller 

 

 
Figure. 17 The response for the one-step-ahead prediction 

control action PH2 

 

target output voltage of the PEMFC system, which 

roughly minimizes the transient state and the steady-

state deviation from zero when the Q and R 

parameters are taken to be 0.085 and 0.01, 

respectively.  

Fig.18 demonstrates the PEMFC system's actual 

output voltage for the one-step-ahead predictive 

neural controller. From this figure, it is clear that the 

response is fast and smooth to track the desired output 

voltage of the fuel cell model. 

By analyzing and contrasting the PEMFC system 

under random current variations and the minimum 

voltage tracking error, we were able to compare the 

numerical simulation results of the proposed 

controller with those of other types of controllers 

based on improving system performance in terms of 

quickly and precisely tracking the desired voltage and 

consuming less energy. The numerical comparison of 

the proposed controller with various types of 

controllers is displayed in Table 2. The proposed 

controller was first contrasted with the work in [20], 

which suggested a neural predictive controller with 

CPSO to ascertain the hydrogen partial pressure  

 

 
Figure. 18 PEMFC system's actual output voltage for the 

one-step-ahead predictive voltage controller 

 
Table 2. The numerical comparison of the proposed 

controller with various types of controllers 

Type of 

Controller 
Algorithm 

Voltage 

Error 
Oscillation 

Predictive 

neural 

controller 1-

10 step 

ahead [20] 

CPSO 

(Off-line) 
0.08 ±0.05 

NARMA-L2 

inverse 

neural 

controller 

[15] 

FF 0.09 ±0.17 

CPSO 0.083 ±0.12 

FFCPSO 

(On-line) 
0.055 ±0.1 

The 

proposed 

predictive 

control law 

equation 

BPA 

(On-line) 
0.01 No oscillation 

 

action to adhere to the desired output voltage of the 

PEMFC system during changes in the load current. 
Fig. 19 shows the PEMFC system's actual output 

voltage for the input set taken from [20] and applied 

to our proposed controller. The optimal response will 

be attained for one-step ahead. The voltage tracking 

error was decreased from 0.08 to 0.01 volt, and 

enhancement of the tracking voltage error by 87.5%. 

The oscillation was entirely erased, and a smooth 

hydrogen partial pressure control action was 

generated. Although the PEMFC system's actual 

output voltage in [20] could track the desired output 

for one-step-ahead prediction for five different load 

current step-changes with small output oscillation, the 

voltage error was not equal to zero at steady state, it 

caused overshoot response in the start sample, and the 

response of the control action (hydrogen partial 

pressure) was not smooth. However, in order to 

improve the reaction and overcome the limitations of 

the one-step forward response, the authors took 10  
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Figure. 19 PEMFC system's actual output voltage for the 

input set from [20] 

 

steps ahead in [20] to reach the best response, which 

resulted in a slower response with more processing 

time. 

Therefore, the proposed predictive neural 

controller resulted in better control performance 

because it generated the optimal or near-optimal 

control action based on the predictive control law 

equation with the neural network identifier as a guide. 

While in [20], the PH2 control action was generated 

based only on the feedback neural controller. 

Generally, the proposed predictive controller is 

utilized to predict the (PH2 pred) control action 

depending on the MERNN identifier, which has a 

context layer that serves as memory and aids in 

providing good dynamic characteristics, high order 

control performance, and self-connection of the 

memory units that raise the order of the active 

neurons at hidden units. On the other hand, the 

controller in [20] relies on a traditional MLP 

identification model, which consists of [5:7:1] nodes, 

comprising five nodes for the input layer, seven nodes 

for the hidden layer, and one node for the output layer. 

The suggested predictive controller, however, relies 

on the MERNN identifier network, which consists of 

[8:8:8:1] nodes, including eight nodes for input, 

context, and hidden layers, and one node for output 

layer. Furthermore, in the proposed controller, when 

the PEMFC’s output voltage deviates from the 

desired input voltage during a transient condition, the 

feedback controller is utilized to maintain the voltage 

error at steady state at zero value of the fuel cell 

model. In addition, the proposed method determines 

the best hydrogen partial pressure feedback control 

action (𝑃𝐻2 𝑓𝑏 ) to minimize the feedback voltage 

error. The difference between the structure of the 

proposed controller and the structure of the controller 

in [20] is the type of the identification networks and 

their structures. In addition, compared to the  

 

 
Figure. 20 PEMFC system's actual output voltage for the 

input set from [15] 

 

controller in [20], the suggested predictive voltage 

controller offers outstanding learning to provide the 

optimal control action to follow the desired voltage 

and achieve the target voltage point without 

oscillation and with the least amount of tracking 

voltage error. This control accuracy is achieved 

because there are more sub-controllers that control 

the PH2 control action compared to the controller in 

[20]. As a second comparative study, we compared 

the suggested predictive methodology with the results 

in [15], which introduced the neural network 

NARMA-L2 structure model and the hybrid (FF-

CPSO) firefly-chaotic particle swarm optimization 

algorithm that used to build the model and control 

system for the nonlinear PEMFC model. The purpose 

of the research in [15] was to find the PH2 control 

action that regulates the nonlinear PEMFC system's 

output voltage only at steady-state. Regardless of 

whether the fuel cell output voltage follows and tracks 

the desired voltage, there was an oscillation in the 

output. However, if the same input that has been taken 

from [15] is applied to our proposed controller, the 

optimal response will be achieved, where the voltage 

error is reduced from 0.055 volts to 0.01 volts, and 

enhancement of the tracking voltage error by 81.8%. 

The oscillation effect is completely eliminated. Fig. 

20 shows the PEMFC system's actual output voltage 

for the input set that has been taken from [15].  

This superiority was attained because the 

proposed predictive neural controller generates the 

control action based on both the predictive control 

law equation and the feedback neural controller. 

While in [15], the controller generated the control 

action depending only on the inverse neural controller, 

which gives a good response in the steady state but 

generates errors in the transient state. In addition, the 

identifier model used in [15] is based on a 

conventional MLP neural network structure. While 

the identifier model for our proposed controller is 
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based on the MERNN structure. Specifically, the 

MERNN provides more accurate identification 

results because it has an additional context layer that 

serves as memory and aids in good dynamic 

characteristics, high order control performance, and 

self-connection of the memory units that raise the 

order of the hidden unit in the structure of the neural 

model identifier. Finally, the simulation results show 

that the proposed predictive neural network controller 

can produce the optimal hydrogen partial pressure 

control action, enabling the fuel cell to track the 

required voltage with the lowest tracking errors and 

achieve optimal performance without oscillation in 

the output voltage of the fuel cell. 

5. Conclusions 

The development of a predictive neural controller 

to enhance the performance of the nonlinear PEMFC 

model by controlling the output voltage of the FC 

stack terminal during variable load current has been 

proposed in this paper. To solve the problem of the 

output voltage variation from the fuel cell with 

varying the load current, which is regarded as a 

critical problem in the nonlinear fuel cell behavior, 

we proposed the predictive controller that consists of 

an identifier neural network (MERNN) with a back-

propagation algorithm, a feedback neural controller 

based on the MLP, and a predictive control law 

equation.  

This controller has the following capabilities that are 

provided from the simulation results as follows:  

 

• It overcomes the difficulty of the mathematical 

model of the fuel cell in terms of finding the 

Jacobian function and attaining quick learning 

without oscillation in the output neural model 

identifier.  

• It determines the optimal hydrogen partial 

pressure control action (PH2) value in order to 

improve the dynamic performance of the 

nonlinear fuel cell output voltage and stabilize it 

at the desired voltage. 

• It generates the optimal or near-optimal value of 

PH2 required to supply the necessary output 

voltage during variations in the load current and 

reach the desired voltage at the minimum time. 

• A one-step-ahead prediction-control law equation 

led to tracking and stabilizing the fuel cell 

system's desired output voltage during transient 

and steady states.  

• The tracking voltage error of the fuel cell is 

approximately equal to zero and without 

oscillation in the output voltage.  

 

For future research, we recommend that the 

experimental setup of the suggested predictive 

control technique be implemented using the 

LabVIEW package.  
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