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Abstract: This paper introduced a novel metaheuristic that is developed based on the tournament mechanism, namely 

quad tournament optimizer (QTO). As its name suggests, QTO proposes a new approach of metaheuristic in which 

there are four searches conducted by each agent in every iteration. These searches are: (1) searching toward the global 

best solution, (2) searching toward the middle between the global best solution and a randomly selected solution, (3) 

searching relative to a randomly selected solution, and (4) neighbourhood search around the corresponding solution 

and the global best solution. A solution candidate is generated by each search. Then, a tournament is carried out to 

find the best candidate. This strategy is novel because most of metaheuristic deploys only single search or multiple 

searches where each search is conducted sequentially. QTO is challenged to find the optimal solution of 23 classic 

functions. In this challenge, QTO is benchmarked against five shortcoming metaheuristics: marine predator algorithm 

(MPA), slime mould algorithm (SMA), golden search optimizer (GSO), hybrid pelican Komodo algorithm (HPKA), 

and guided pelican algorithm (GPA). The result indicates that QTO outperforms all these benchmark metaheuristics. 

QTO is better than MPA, SMA, GSO, HPKA, and GPA in solving 22, 19, 21, 20, and 13 functions consecutively. The 

result also indicates that QTO has successfully found the global optimal solution for nine functions: Sphere, Schwefel 

2.22, Schwefel 1.2, Schwefel 2.21, Rastrigin, Griewank, Six Hump Camel, Branin, and Goldstein-Price. 

Keywords: Optimization, Swarm intelligence, Metaheuristic, Tournament. 

 

 

1. Introduction 

Metaheuristics have become a popular method for 

solving various optimization problems in recent 

decades, particularly in the engineering field. In the 

power system, metaheuristic has been used to 

optimize the solar cell and photovoltaic system [1], 

multiple energy storage system [2], capacitor bank [3], 

optimal power flow [4], and so on. In the biomedical 

works, metaheuristic has been used to optimize the 

detection of COVID-19 severity [5], lung cancer [6], 

brain tumor [7], anterior cruciate ligament deficiency 

[8], melanoma [9], and so on. In the manufacturing 

and logistics, metaheuristic has been used to optimize 

the parallel machine scheduling [10], vehicle 

distribution logistics [11], pickup and delivery 

problem [12], inventory management and assortment 

planning [13], logistic distribution center [14], and so 

on. In transportation sector, metaheuristic has been 

used to optimize the maintenance scheduling of 

highway networks [15], forecast the traffic flow [16], 

and so on. 

There are a lot of new metaheuristics proposed in 

the recent years. This massive development of new 

metaheuristics also becomes the reason of the 

popularity of metaheuristic used to solve various 

optimization problems. Most of these shortcoming 

metaheuristics used metaphors for its name. Some 

metaheuristics adopt animal as metaphors, such as 

cheetah optimizer (CO) [17], marine predator 

algorithm (MPA) [18], butterfly optimization 

algorithm (BOA) [19], racoon optimization algorithm 

(ROA) [20], northern goshawk optimizer (NGO) [21], 

pelican optimization algorithm (POA) [22], Komodo 

mlipir algorithm (KMA) [23], guided pelican 

Komodo algorithm (HPKA) [24], guided pelican 

algorithm (GPA) [25], tunicate swarm algorithm 

(TSA) [26], and so on. Some metaheuristics used 



Received:  December 8, 2022.     Revised: January 12, 2023.                                                                                           269 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.22 

 

plant as metaphor, such as slime mold algorithm 

(SMA) [27], flower pollination algorithm (FPA) [28], 

and so on. Several metaheuristics use term leader that 

refers the reference used in their guided search, such 

as multi leader optimizer (MLO) [29], mixed leader-

based optimizer (MLBO) [30], hybrid leader-based 

optimizer (HLBO) [31], and so on. Several 

metaheuristics do not use metaphor; they use their 

core mechanics for their names, such as average 

subtraction-based optimizer (ASBO) [32], golden 

search optimizer (GSO) [33], total interaction 

algorithm (TIA) [34], and so on.  

There are several notes regarding the massive 

development of metaheuristic. First, many 

metaheuristics used metaphors, mainly terms from 

nature, as a pseudo novelty. In these metaphor-

inspired metaheuristics, the mechanics of metaphors 

are usually presented as the novelty. In the beginning, 

the authors presented the mechanism of metaphor 

used in their proposed metaheuristic and the necessity 

of the related mechanics should be adopted in the 

metaheuristic. Ironically, the connection between the 

mechanism in the metaphor used in the corresponding 

metaheuristic and the formalization through algorithm 

and mathematical model is unclear. But through 

investigation, some metaheuristics make slight 

modifications to previous metaheuristics. Second, the 

opportunity of proposing new metaheuristic is still 

open regarding the no-free-lunch theory. There is no 

metaheuristic that performs well in solving all 

optimization problems as a stochastic method. 

Besides, the optimization problems are also growing 

and becoming more complex. 

Based on the number of strategies implemented in 

the algorithm, the swarm-based metaheuristics can be 

classified as follows. In some metaheuristics, each 

agent uses single common strategy only. In some 

other metaheuristics, each agent implements multiple 

strategies carried out sequentially in every iteration. In 

some other metaheuristics, there are multiple 

strategies in the entire population. But each agent 

implements only one strategy. Meanwhile, a 

metaheuristic where each agent implements multiple 

strategies and selects the best one for the chosen 

strategy is rare to find. 

This paper is aimed at proposing a new 

metaheuristic where each agent carries out several 

searches in every iteration. Rather than carried out 

sequentially as in many existing metaheuristics, these 

searches are then competed against one another to find 

the best candidate. Then, this candidate will be 

proposed as replacement for the current solution. 

Based on the previous explanation, this paper 

contributes to several aspects, as follows. 

1) This paper proposes a novel mechanic in 

metaheuristic studies where several candidates 

generated by several searches are competed in 

the tournament mechanism to find the best 

candidate for replacement. 

2) This paper proposes a metaheuristic that is free 

from the use of metaphor. 

3) This paper proposes a metaheuristic where 

sorting is not carried out at the beginning of 

every iteration to minimize the computational 

process. 

4) The proposed metaheuristic consists only 

population size and maximum iteration as the 

adjusted parameters to avoid making the wrong 

adjustment that may lead to poor performance. 

5) This paper carries out the sensitivity analysis 

regarding the adjusted parameters and the 

performance of the proposed metaheuristic. 

The structure of the rest of this paper is as follows. 

Section 2 reviews the concept and strategy of some 

shortcoming metaheuristics to make clearer 

perspective and the contribution of this work. Section 

3 presents a detailed description of the proposed 

metaheuristic, which includes the concept, algorithm, 

and mathematical presentation. Section 4 presents the 

evaluation of the proposed metaheuristic. There are 

two evaluations in this work. The first evaluation is 

the performance test and comparison of QTO with 

other metaheuristics in solving 23 classic functions. 

The second evaluation is test regarding the hyper 

parameters. Section 5 discusses the in-depth analysis 

regarding the test result, algorithm complexity, and 

the limitation of this work. Section 6 summarizes the 

concluding remark and the future work potential 

based on the advantages of QTO and its limitations in 

the current work. 

2. Related works 

Any swarm-based metaheuristic will perform two 

types of searches. The first search is the guided search. 

The guided search can be defined as searching process 

of the corresponding solution relative the reference. 

This reference can be the global best solution, some 

best solutions, a randomly selected solution, and so on. 

This search is mandatory in all swarm -based 

metaheuristics. The second search is the random 

search. In general, random search within the search 

space is carried out by all agents during the 

initialization step. Meanwhile, random search is 

implemented in some metaheuristics and is not 

implemented in some other ones. This random search 

can be random search within the entire search space 

or random search within the local search space. The 

second type is also named as neighborhood search.  
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Table 1. Comparison among metaheuristics regarding number of searches and phases 

No Metaheuristic Reference of Guided Search 

Random 

or Local 

Search 

Number 

of 

Phases 

Number 

of 

Strategies 

Each 

Agent 

Carries 

Out All 

Strategies 

Sorting in 

the 

Beginning 

of Every 

Iteration 

1 ASBO [32] 

the average between the best 

and worst solutions; the gap 

between the best and worst 

solutions; the gap between 

corresponding and the best 

solutions.  

no 3 3 yes yes 

2 GSO [33] 
the mixture of the global best 

solution and local best solution 
no 1 1 yes yes 

3 TIA [34] 
movement relative to all other 

solutions  
no 1 1 yes no 

4 MLO [29] 
a randomly selected solution 

among several best solutions 
yes 2 2 yes yes 

5 MLBO [30] 

the mixture between the best 

solution and a randomly 

selected solution 

no 1 1 yes no 

6 HLBO [31] 

the mixture among the best 

solution, a randomly selected 

solution, and corresponding 

solution 

yes 2 2 yes no 

7 SMA [27] 
the global best solution, two 

randomly selected solutions 
yes 1 3 no no 

8 POA [22] search space yes 2 2 yes no 

9 KMA [23] 
high quality solutions; the 

highest quality solution 
yes 1 4 no no 

10 GPA [24] global best solution yes 2 2 yes yes 

11 HPKA [25] 
global best solution; a 

randomly selected solution 
yes 1 5 no no 

12 TSA [26] best solution no 1 1 yes no 

13 CO [17] 

global best solution; mixture 

between global best solution 

and neighborhood solution 

yes 2 4 no no 

14 NGO [21] a randomly selected solution yes 2 2 yes no 

15 MPA [18] 
local best solution and two 

randomly selected solutions 
yes 2 5 yes no 

16 this work 
global best solution; a 

randomly selected solution 
yes 1 4 yes no 

 

 

Some swarm intelligence-based metaheuristics 

implement single strategy while the others implement 

multiple strategies. In the single strategy 

metaheuristic, there is only one guided search 

implemented for each agent and there is not any 

random search. In the multiple strategy metaheuristics, 

these strategies can be carried out in single phase or 

multiple phases. When these multiple strategies are 

carried out in one phase, these strategies are 

distributed among agents, whether the distribution is 

deterministic or stochastic. This mechanism can be 

called as segregation of roles. On the other hand, in 

the multiple-phase multiple-strategy metaheuristics, 

these strategies are carried out by each agent during 

the iteration. These strategies are carried out 

sequentially. The number of phases usually represents 

the number of strategies. The detail mapping 

regarding this strategy in some shortcoming 

metaheuristics is presented in Table 1. The 

mechanism of the proposed metaheuristic in this work 

is written in the last row to make clear perspective 

regarding the novelty and position of the proposed 

metaheuristic.   

Table 1 indicates that metaheuristic that 

implements multiple strategies in single phase and 

each agent implements all strategies during the 

iteration is hard to find. Meanwhile, the multiple 

strategy approach is very important to improve the 
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performance of metaheuristic. Every strategy always 

has advantages and disadvantages. It means that 

multiple strategy approach can cover the disadvantage 

of one strategy with the others. Moreover, it is also 

important that all agents in the population carry out all 

installed strategies. Based on this situation, there is 

still room for developing a new metaheuristic that 

implements multiple strategies in a single phase and 

has each agent carry out all strategies. 

3. Model 

The core concept of QTO is creating the 

tournament-based competition between four common 

strategies in many existing metaheuristics. Three of 

the strategies are guided searches while one strategy 

is random search. The first strategy is moving toward 

or surpass the global best solution. The second 

strategy is moving toward the middle solution 

between the global best solution and a randomly 

selected solution. The third strategy is the movement 

relative to a randomly selected solution. The fourth 

strategy is combining a solution around the 

corresponding solution and a solution around the 

global best solution. The reasoning between these four 

strategies is presented in the next paragraphs. 

The movement toward or surpassing the global 

best has two objectives. The first objective is tracing 

the better solution along the way between the 

corresponding solution and the global best solution. 

The second objective is tracing the better solution in 

some areas after the global best solution. If the 

corresponding solution is not the global best solution, 

then it becomes more probable to move toward the 

global best solution to improve the current 

corresponding solution rather than searching a 

solution somewhere else. Meanwhile, the second 

objective is constructed based on the assumption that 

the global best solution needs to improve. It is more 

probable to improve the global best solution by 

avoiding the solution worse than the global best 

solution. 

The movement toward the middle between the 

global best solution and a randomly selected solution 

is designed to diversify the guided search. This 

movement will trace the possibility of the global 

optimal solution between the global best solution and 

a randomly selected solution. 

The movement relative to a randomly selected 

solution has two objectives. The first objective is to 

improve the current solution somewhere besides the 

global best solution if this selected area is better than 

the corresponding solution. The second objective is to 

avoid the corresponding solution moves to the worse 

solution. In this context, a randomly selected solution 

is chosen. Then, the corresponding solution moves 

toward this randomly selected solution if this 

reference is better than the corresponding solution. 

Otherwise, the corresponding solution moves away 

from this reference. 

The random search in the fourth strategy is a 

compromised neighborhood search between the 

corresponding solution and the global best solution. 

This random search has several characteristics. First, 

it is a combination between neighborhood searches 

around the corresponding solution and neighborhood 

searches around the global best solution. Second, the 

local search space declines due to the increase of the 

iteration. Third, in the early iteration, the 

corresponding solution has dominant proportion. 

Then, its dominance decreases as the iteration goes. 

On the other side, the proportion of the global best 

solution increases as the iteration goes. At the end of 

the iteration, the global best solution has a dominant 

proportion. 

These four strategies are then compared based on 

their quality. The strategy whose quality is the best 

becomes the selected candidate. This selected 

candidate is then compared with the corresponding 

solution. The corresponding solution updates its 

solution by replacing its current solution with the 

selected candidate only if this candidate is better than 

the corresponding solution. Then, the global best 

solution is updated too. 

The formalization of this concept is presented in 

algorithm 1 and Eq. (1) to Eq. (11). Algorithm 1 

represents the sequence of process in the proposed 

algorithm while Eq. (1) to Eq. (11) becomes 

represents the detail mechanics in every process. 

Below are the annotations used in this work. 

 

bl lower boundary 

bu upper boundary 

c1 first candidate 

c2 second candidate 

c3 third candidate 

c4 fourth candidate 

C set of candidates 

cs selected candidate 

f fitness function 

r1 real random number between -1 and 1 

r2 real random number between 0 and 1 

r3 integer random number between 1 and 2 

t iteration 

tm maximum iteration 

x solution 

xs selected solution 

xb global best solution 

X set of solutions 
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algorithm 1: quad tournament optimizer 

1 Begin 

2   for all x in X do 

3     set initial x using Eq. (1) 

4     update xb using Eq. (2) 

5   end for 

6   for t=1 to tmax do 

7     for all x in X do 

8       find xs using Eq. (3) 

9       generate c1 using Eq. (4) 

10       generate c2 using Eq. (5) 

11       generate c3 using Eq. (6) 

12       generate c4 using Eq. (7) to Eq. (9) 

13       find cs using Eq. (10) 

14       update x using Eq. (11) 

15       update xb using Eq. (2) 

16   end for 

17 End 

18 return xb 

 

𝑥 = 𝑈(𝑏𝑙 , 𝑏𝑢)    (1) 

 

𝑥𝑏′ = {
𝑥, 𝑓(𝑥) < 𝑓(𝑥𝑏)

𝑥𝑏 , 𝑒𝑙𝑠𝑒
    (2) 

 

𝑥𝑠 = 𝑈(𝑋)      (3) 

 

𝑐1 = 𝑥 + 𝑟2(𝑥𝑏 − 𝑟3𝑥)     (4) 

 

𝑐2 = 𝑥 + 𝑟2 (
𝑥𝑏+𝑥𝑠

2
− 𝑟3𝑥)    (5) 

 

𝑐3 = {
𝑥 + 𝑟2(𝑥𝑠 − 𝑟3𝑥), 𝑓(𝑥𝑠) < 𝑓(𝑥)

𝑥 + 𝑟2(𝑥 − 𝑟3𝑥𝑠), 𝑒𝑙𝑠𝑒
   (6) 

 

𝑤1 = (1 −
𝑡

𝑡𝑚
)
2
𝑟1(𝑏𝑢 − 𝑏𝑙)    (7) 

 

𝑤2 = (
𝑡

𝑡𝑚
) (1 −

𝑡

𝑡𝑚
) 𝑟1(𝑏𝑢 − 𝑏𝑙)   (8) 

 

𝑐4 = 𝑤1𝑥 + 𝑤2𝑥𝑏     (9) 

 

𝑐𝑠 = 𝑐 ∈ 𝐶,𝑚𝑖𝑛(𝑓(𝑐))                (10) 

 

𝑥′ = {
𝑐𝑠, 𝑓(𝑐𝑠) < 𝑓(𝑥)

𝑥, 𝑒𝑙𝑠𝑒
                (11) 

 

Below is the explanation of Eq. (1) to Eq. (11). Eq. 

(1) represents the random search within the solution 

space to generate the initial solution. Eq. (2) states that 

the corresponding solution replaces the current global 

best solution if this corresponding solution is better 

than the current global best solution. Eq. (3) states that 

a reference is randomly selected among the 

population. Eq. (4) is used to determine the first 

candidate. Eq. (4) states that the first guided search is 

the movement toward or surpassing the global best 

solution. Eq. (5) is used to determine the second 

candidate. Eq. (5) states that the second guided search 

is the movement toward a solution in the middle 

between the randomly selected solution and the global 

best solution. Eq. (6) is used to determine the third 

candidate. Eq. (6) states the third guided search as a 

movement relative to the randomly selected solution. 

The corresponding solution moves toward this 

reference if this reference is better than the 

corresponding solution. Otherwise, the corresponding 

solution moves away from the reference. Eq. (7) to Eq. 

(9) are used to determine the fourth candidate. Eq. (7) 

and Eq. (8) are used to determine the weight of the 

random search where Eq. (7) is used for the 

corresponding solution while Eq. (8) is used for the 

global best solution. Eq. (9) states that the fourth 

candidate is the combination between the 

neighborhood search of the corresponding solution 

and the neighborhood search of the global best 

solution. Eq. (10) states that the selected candidate is 

the candidate whose quality is the highest. Eq. (11) 

states that the selected candidate replaces the current 

solution if this candidate is better than the current 

solution. 

4. Simulation and result 

This section presents the ability of QTO in solving 

the optimization problem. The set of 23 classic 

functions is chosen as the problem. These functions 

are popular and widely used in many studies 

proposing new metaheuristics. One important reason 

is these functions cover various types of optimization 

problems. These functions are clustered into three 

groups. There are seven high dimensional unimodal 

functions in the first group (Sphere, Schwefel 2.22, 

Schwefel 1.2, Schwefel 2.21, Rosenbrock, Step, and 

Quartic). There are six high dimensional multimodal 

functions in the second group (Schwefel, Rastrigin, 

Ackley, Griewank, Penalized, and Penalized 2). There 

are ten fixed dimension multimodal functions in the 

third group (Shekel Foxholes, Kowalik, Six Hump 

Camel, Branin, Goldstein-Price, Hartman 3, Hartman 

6, Shekel 5, Shekel 7, and Shekel 10).  These 

functions also cover problems with narrow, moderate, 

and large problem spaces. 

There are three tests carried out in this work. The first 

test is related to the performance evaluation of QTO 

and the comparison with other metaheuristics. This 

first test is performed to evaluate the performance of 

the proposed QTO and compare its performance with 

other existing metaheuristics. The  
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Table 2. Simulation result 

Function 
Average Fitness Score 

MPA [18] SMA [27] GSO [33] HPKA [24] GPA [25] QTO 

1 1.766x102 4.017x103 3.937x104 5.138x104 2.293x102 0.000 

2 4.362x10-66 0.000 3.968x1057 3.317x1046 4.202x1030 0.000 

3 2.774x103 4.115x104 1.099x105 1.365x105 7.534x103 0.000 

4 6.916 3.186x101 4.885x101 7.989x101 2.459x101 0.000 

5 1.092x104 8.482x107 9.016x107 1.502x108 1.076x104 3.889x101 

6 1.213x102 5.455x103 3.643x104 4.743x104 2.414x102 7.265 

7 1.109x10-1 2.773x102 5.789x101 1.120x102 3.778x10-1 1.956x10-3 

8 -2.894x103 -6.588x103 -4.080x103 -4.758x103 -8.410x103 -3.995x103 

9 4.524x101 3.941x101 3.960x102 4.562x102 1.833x102 0.000 

10 2.984 8.004 1.982x101 1.975x101 5.225 4.441x10-16 

11 2.795 4.452x101 4.057x102 6.234x102 3.159 0.000 

12 3.024 2.773x106 1.185x108 2.212x108 2.184x101 8.346x10-1 

13 8.665x102 1.639x107 3.152x108 6.879x108 1.527x102 2.949 

14 1.174x101 4.922 9.546 1.331x101 1.494 6.662 

15 2.066x10-2 1.252x10-1 3.028x10-2 1.033x10-2 3.714x10-3 2.106x10-3 

16 -9.417x10-1 -3.940x10-2 -9.621x10-1 -9.650x10-1 -1.031 -1.031 

17 4.066 6.541x10-1 4.019x10-1 2.033 3.981x10-1 4.242x10-1 

18 2.143x101 6.357x101 1.757x101 2.873x101 3.000 3.021 

19 -3.253 -4.954x10-2 -2.890x10-2 -4.802x10-2 -4.954x10-2 -4.954x10-2 

20 -1.431 5.314x10-1 -2.566 -2.712 -3.281 -2.588 

21 -8.404x10-1 -3.898 -3.207 -2.333 -5.594 -4.497 

22 -8.848x10-1 -3.609 -3.510 -4.207 -7.541 -3.827 

23 -9.701x10-1 -2.955 -3.633 -3.525 -9.388 -4.929 

 

second and third tests are tests related to 

hyperparameter analysis. The second test is conducted 

based on several values of maximum iteration. This 

test is performed to evaluate the speed of the proposed 

QTO in reaching the convergence or the acceptable 

solution. The third test is conducted based on several 

values of population size. This test is performed to 

evaluate the improvement of the proposed QTO 

during the increase of population size. 

In this work, QTO is benchmarked with five other 

shortcoming metaheuristics: MPA [18], SMA [27], 

GSO [33], HPKA [24], and GPA [25]. The reason of 

choosing these five metaheuristics is as follow. All 

these metaheuristics are swarm intelligence-based 

metaheuristics. MPA and SMA are older than GSO, 

HPKA, and GPA, but more popular and widely used. 

On the other hand, GSO, HPKA, and GPA are newer 

metaheuristics introduced in 2022. Not all 

shortcoming metaheuristics in Table 1 are used as 

compared technique in this simulation because it is 

impossible to compare a new metaheuristic with too 

many compared techniques. Meanwhile, these five 

metaheuristics are chosen because of their distinct 

strategy. MPA is chosen because of its approach in 

changing strategy for the guided search as the iteration 

increases [18]. SMA is chosen because it represents 

metaheuristic that implements segregation of roles 

[27]. HPKA is chosen because it represents a new 

metaheuristic that hybridizes two existing 

metaheuristics [24]. GSO is chosen because it 

represents a new version of metaheuristic that 

combines the global best solution and local best 

solution for its reference in the guided search [33], 

which is firstly introduced in PSO. GPA represents a 

metaheuristic that uses global best solution as the sole 

reference during the guided search and generates 

multiple candidates in every guided search [25]. 

This test is carried out based on certain 

circumstances. The population size is 5 that 

represents low population. The maximum iteration is 

50 that also represents low iteration. On the other 

hand, the dimension of the high dimension functions 

(F1 to F13) is 40 that represents problems with high 

dimension. In MPA, the fishing aggregate devices is 

0.1. In HPKA, the threshold is set at 0.2, 0.4, and 0.6. 

In GPA, the number of candidates is 5. The result is 

shown in Table 2. The best result is presented in bold 

font. Moreover, the information representing the 

number of functions where QTO is better than the 

corresponding benchmark metaheuristic in every 

group is presented in Table 3. 

Table 2 indicates that QTO performs well based 

on two perspectives. The first perspective is that in 

general, QTO can find the acceptable solution for the 

23 functions. Second, QTO can find the best result in 

solving 14 functions (Sphere, Schwefel 2.22, 

Schwefel 1.2, Schwefel 2.21, Rosenbrock, Step,  
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Table 3. Cluster based comparison 

Cluster 

Number of Functions where QTO is 

Better 

MPA 

[18] 

SMA 

[27] 

GSO 

[33] 

HPKA 

[24] 

GPA 

[25] 

1 7 6 7 7 7 

2 6 5 5 5 5 

3 9 8 9 8 1 

Total 22 19 21 20 13 

 
Table 4. Relation between maximum iteration and QTO’s 

performance 

F 
Average Fitness Score 

tmax = 100 tmax = 150 tmax = 200 

1 0.000 0.000 0.000 

2 0.000 0.000 0.000 

3 0.000 0.000 0.000 

4 0.000 0.000 0.000 

5 3.888x101 3.883x101 3.887x101 

6 7.256 7.304 7.176 

7 7.849x10-4 1.680x10-4 3.618x10-4 

8 -4.092x103 -4.427x103 -4.719x103 

9 0.000 0.000 0.000 

10 4.441x10-16 4.441x10-16 4.441x10-16 

11 0.000 0.000 0.000 

12 8.312x10-1 7.653x10-1 8.249x10-1 

13 2.884 2.873 2.857 

14 7.720 5.963 5.265 

15 6.972x10-4 8.350x10-4 6.239x10-4 

16 -1.031 -1.031 -1.031 

17 4.269x10-1 4.417x10-1 4.268x10-1 

18 3.003 3.000 3.002 

19 -4.954x10-2 -4.954x10-2 -4.954x10-2 

20 -2.545 -2.699 -2.689 

21 -4.669 -4.296 -4.240 

22 -4.664 -4.924 -4.278 

23 -4.011 -4.182 -5.183 

 

Quartic, Rastrigin, Ackley, Griewank, Penalized, 

Penalized 2, Kowalik, and Six Hump Camel). The 

second perspective is QTO can find the global 

optimal solution in solving six functions (Sphere, 

Schwefel 2.22, Schwefel 1.2, Schwefel 2.21, 

Rastrigin, and Ackley) and the near global optimal 

solution in solving two functions (Six Hump Camel, 

Branin, and Goldstein-Price). It should be noted that 

SMA is also successful in finding the global optimal 

solution of Schwefel 2.22 while GPA is also 

successful in finding the same quality result as QTO 

of Six Hump Camel. 

Table 3 indicates that in general, QTO 

outperforms the five benchmark metaheuristics. QTO 

is better than MPA, SMA, GSO, HPKA, and GPA in 

solving 22, 19, 21, 20, and 13 functions consecutively. 

MPA becomes the easiest metaheuristic to defeat. 

Meanwhile, GPA emerges as the most difficult 

metaheuristic to outperform.  

The second test is conducted to evaluate the 

relationship between the increase of maximum 

iteration and the performance of QTO. In this test, the 

maximum iteration is set at 100, 150, and 200. The 

result is presented in Table 4. 

Table 4 indicates there are two behaviours 

regarding the increase of maximum iteration. The 

first behaviour is that the increase of maximum 

iteration makes the average fitness score decrease. 

This behaviour can be seen in Schwefel and Shekel 

Foxholes. Meanwhile, this improvement is not 

significant. The second behaviour is that the increase 

of maximum iteration does not affect the average 

fitness score. There are two reasons regarding this 

behaviour. The first reason is that the global optimal 

solution or near global optimal solution has been 

found. This reason can be seen in Sphere, Schwefel 

2.22, Schwefel 1.2, Schwefel 2.21, Rastrigin, Six 

Hump Camel, and Goldstein-Price. The second 

reason is that the final solution is not near the global 

optimal solution but fails to improve. This reason can 

be seen in Rosenbrock, Step, Quartic, Ackley, 

Penalized, Penalized 2, Kowalik, Branin, Hartman 3, 

Hartman 6, Shekel 5, Shekel 7, and Shekel 10. 

The third test is carried out to evaluate the relation 

between population size and the average fitness score. 

In this test, the population size is set at 10, 20, and 30. 

The result is presented in Table 5. 

Table 5 indicates there are two responses 

regarding the increase of population size. The first 

response is the average fitness score decreases due to 

the increase of population size. This response can be 

seen in Step, Quartic, Schwefel, Penalized, Penalized 

2, Shekel Foxholes, Kowalik, Hartman 6, Shekel 5, 

Shekel 7, and Shekel 10. The second response is that 

the average fitness core is not affected by the increase 

of population size. In some functions, this response is 

caused by the finding of the global optimal solution 

as in Sphere, Schwefel 2.22, Schwefel 1.2, Schwefel 

2.21, Rastrigin, Griewank, Six Hump Camel, Branin, 

and Goldstein-Price. On the other hand, this response 

happens although the global optimal solution has not 

yet been found, such as in Rosenbrock, Ackley, and 

Hartman 3. 

5. Discussion 

The test result indicates the outstanding 

performance of QTO. QTO is successful in finding 

the global optimal solution of six functions in the low 

population size and low maximum iteration 

circumstance. Four functions are high dimensional 

unimodal functions while the two others are high 

dimensional multimodal functions. Moreover, there  
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Table 5. Relation between population size and QTO’s 

performance 

F Average Fitness Score 

n(X) = 10 n(X) = 20 n(X) = 30 

1 0.000 0.000 0.000 

2 0.000 0.000 0.000 

3 0.000 0.000 0.000 

4 0.000 0.000 0.000 

5 3.886x101 3.880x101 3.876x101 

6 6.435 5.831 5.327 

7 8.978x10-4 1.920x10-4 1.358x10-4 

8 -4.418x103 -4.734x103 -4.748x103 

9 0.000 0.000 0.000 

10 4.441x10-16 4.441x10-16 4.441x10-16 

11 0.000 0.000 0.000 

12 6.288x10-1 4.833x10-1 4.590x10-1 

13 2.879 2.614 2.532 

14 4.108 2.926 1.716 

15 6.511x10-4 4.866x10-4 4.294x10-4 

16 -1.032 -1.032 -1.032 

17 4.057x10-1 3.981x10-1 3.981x10-1 

18 3.001 3.000 3.000 

19 -4.954x10-2 -4.954x10-2 -4.954x10-2 

20 -2.968 -3.084 -3.185 

21 -4.969 -6.070 -7.045 

22 -5.289 -7.653 -8.027 

23 -4.855 -7.768 -6.575 

 

are more than three functions whose global optimal 

solution can be found in the high population size and 

low maximum iteration. These three additional 

functions are fixed dimension multimodal functions. 

This outstanding performance is also 

strengthened by the fact that QTO is superior to other 

benchmark metaheuristics in solving 14 functions. 

These functions are seven high dimension unimodal 

functions, five high dimension multimodal functions, 

and two fixed dimension multimodal functions. It 

indicates that QTO is very superior at solving the 

high dimensional problems. 

Table 3 indicates that GPA becomes the most 

difficult metaheuristic to beat. Meanwhile, the other 

four metaheuristics are easy to beat. The main 

difference between GPA and these four 

metaheuristics is that multiple candidates are 

generated in every phase. On the other hand, there is 

only one candidate generated in every phase of the 

four metaheuristics. This circumstance triggers new 

question whether generating multiple candidates can 

improve the performance of the metaheuristic 

although the consequence is increasing the 

complexity linear to the number of candidates. 

Table 5 indicates that the weakness in solving the 

fixed dimension multimodal functions can be tackled 

by increasing the population size. The high 

population size can improve many functions in the 

third group. Moreover, the global optimal solution of 

three functions in the third group is achieved in the 

high population size circumstance. The reason is that 

high population size improves the diversity of 

solutions. 

The complexity of QTO can be presented as 

O(4n(X).tm). This presentation indicates that the 

computational resource of QTO increases linearly 

due to the increase of one parameter, whether the 

population size or maximum iteration. Besides, 

number 4 represents the four methods included in the 

tournament conducted by every solution in every 

iteration. The complexity of QTO is far less than 

many other metaheuristics that deploy sorting 

processes in every iteration, such as in DTBO, DGO, 

GSO, GWO, and so on. The sorting process needs 

quadratic computational resources regarding the 

population size. 

There are several limitations in this current study. 

First, QTO implements only four methods to be 

placed in the tournament: moving toward the global 

best solution, moving toward the middle point 

between the global best solution and a randomly 

selected solution, moving relative to a randomly 

selected solution, and the weighted neighbourhood 

search between the corresponding solution and the 

global best solution. Meanwhile, QTO can be 

enriched by including more methods into the 

tournament. The use of local best solution can be the 

alternative, whether this local best solution is 

combined with the global best solution such as in 

PSO, BOA, or SSO, or it becomes the exclusive 

reference as in MPA. The elimination of a solution 

also becomes the other alternative. On the other hand, 

adopting sorting mechanism at the beginning of 

iteration is not recommended because it consumes 

additional computation in the quadratic manner based 

on the population size. Second, tests carried out in 

this work are limited to solving the theoretical 

optimization problems and evaluating the 

hyperparameters. QTO has not been tested to solve 

the practical optimization problem although the result 

in Table 2 shows that QTO can tackle optimization 

problems under various circumstances. Third, there 

are hundreds of metaheuristics in the present days. 

Meanwhile, QTO is benchmarked with only five 

metaheuristics.  

6. Conclusion 

This study has demonstrated the outstanding 

performance of the proposed metaheuristic, namely 

quad tournament optimizer (QTO). This outstanding 

performance can be seen in two perspectives. The first 

perspective is that QTO has successfully found the 
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global optimal solution of nine functions: Sphere, 

Schwefel 2.22, Schwefel 1.2, Schwefel 2.21, 

Rastrigin, Griewank, Six Hump Camel, Branin, and 

Goldstein-Price. The global optimal solution of six 

functions has been found in the low population size 

and low maximum iteration circumstances. 

Meanwhile, the global optimal solution of the other 

three functions has been found in the high population 

size and low maximum iteration circumstance. The 

second perspective is that QTO outperforms all five 

benchmark metaheuristics in solving the 23 functions. 

QTO is better than MPA, SMA, GSO, HPKA, and 

GPA in solving 22, 19, 21, 20, and 13 functions 

consecutively. This outstanding performance proves 

that the tournament-based strategy adopted in QTO is 

better than implementing only one or several methods 

for every agent in every iteration. 

This work can be improved in two ways in the 

future based on the limitations in the current study. 

First, QTO can be improved by including more 

methods in the tournament rather than only four 

methods in the current work. Second, QTO can be 

adopted to solve practical optimization problems, 

from the common problems such as welded beam 

design or optimal electric flow to combinatorial 

problems such as scheduling, assignment, and so on.  
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