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Abstract: In highway management, intelligent vehicle detection and counting are becoming increasingly important 

as an accurate estimation of traffic density on road congestion reduction. Traffic density estimation is affected by the 

difficulties of perspective distortion, size change, significant occlusion, and background interference in traffic 

images. To address the previous issues, this article develops a novel model that enhances the quality of estimating 

traffic density. The efficientNet fine-tuning architecture is used then, followed by the development of seven dilated 

convolutional layers to extract the deeper features in the images that maintain the output’s resolution to generate a 

high-quality density map. Finally, the vehicle count will be calculated from the high-quality density map. The 

experimental results indicate that the suggested approach significantly enhances the accuracy of traffic density 

estimation compared to the existing ones. It achieves 5.23 as a mean absolute error (MAE) on the TRANCOS dataset. 
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1. Introduction 

It is noticeable that the rate of traffic congestion 

within cities is increasing, and it is expected to 

increase in the future. We must work on a large scale 

to solve these congestions through smart 

transportation applications and traffic management 

on the roads, making cities fitter live in. Images are 

one of the most important sensors to know the 

extent of the flow of vehicles in large areas. 

Through networks that contain a large group of 

cameras placed on roads within cities, it is possible 

to know the real number of vehicles on the roads 

using the recent computer vision techniques [1]. 

Vehicle detection and counting can be used to 

determine traffic situation, occupancy of on-road 

lanes, and congestion levels on highways. This data 

is a major aspect of intelligent transportation 

systems (ITS). ITS combines a number of 

technologies into a management system, including 

automated recognition of license plates, control 

systems for traffic signals, speed estimation, and 

incident analysis [2]. Most ITS vehicle counting and 

detection methods are founded on software or 

hardware systems. Systems based on hardware have 

limitations in acquiring precise information on the 

traffic flow behavior; additionally, they are obtrusive 

and costly to install and maintain. By contrast, 

systems based on software have begun to stand out 

as a low-cost, non-intrusive technique that has been 

established to be effective, particularly video-based 

technologies which perform (computer vision) 

[3].Different strategies are used to accomplish the 

vehicle counting for detection, but they face 

difficulties due to the overlap of objects, the 

instance's size, and the scene's perspective. Given 

these considerations, this work's major objective is 

to propose a vehicle counting method to mitigate 

these difficulties. Appearance-based methods detect 

employing features with low-level such as color 

symmetry, texture, edges, and shape, among other 

characteristics. The scale invariant feature transform 

(SIFT) is commonly utilized to extract these features 

[4]. Convolutional neural network methods provide 

a more advanced detection level by utilizing deep 

architectures capable of learning complicated 

information from images [5]. This study introduces 

a model for counting the vehicles in congested 
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scenes and the traffic density prediction. This 

prediction has been made by extracting the 

deeper features in the image representing the 

different objects at multiple scales and 

maintaining the output’s resolution to generate a 

high-quality density map. The novelty of this 

work lies in the ability of receptive field 

expansion without losing resolution. So, the 

proposed model can deal with huge differences in 

scale, perspective, and appearance of vehicles. 

The structure of the paper is coming as section 2 

presents the related works for vehicle counting, 

section 3 presents the TRANCOS dataset, the 

proposed model is introduced in section 4, the 

experimental work and results are explained in 

section 5, a discussion is introduced in section 6 and 

the paper is concluded in section 7. 

2. Related work 

The following sections introduce four types of 

counting methods: Detection-based methods, 

regression-based methods, density estimation-based 

methods, and CNN-based methods.  

2.1 Detection-based methods 

Detection counting is a supervised strategy in 

which a previously trained sliding window detector 

(i.e., a mask that is moved across the whole image) 

is used for recognizing the objects in the scene. This 

data is then utilized to calculate the object's number. 

The mask is trained in monolithic detection to 

identify the entire object we wish to detect [6]. 

Finally, the classifier is concerned with object forms 

in shape-matching detection, such as ellipses [7]. 

Even though these strategies are straightforward to 

grasp, they struggle in scenarios containing 

occlusions. Furthermore, detection algorithms 

encounter numerous problems, particularly in the 

task of vehicle countings, for example, changes in 

occlusions, perspectives, illumination effects, and 

many others [8]. The author in [9] used image keys 

and interest points to create the scale-invariant 

feature transform (SIFT) and the speeded-up robust 

features (SURF). These extracted features are useful 

for vehicle detection. The author in [10] used 

silhouette contours to extract histogram of oriented 

gradients (HOG) features.The detector (HOG-1) is 

applied [39] for each training image at multiple 

scales to collect the detections that will be manually 

filtered to identify those that contain the correct 

positive examples,  then the (HOG-2) detector is 

trained using these positive examples so,  this way 

make the detector will be able to train in TRANCOS 

dataset. The author in [11] produced a collection of 

Haar-like features, these features, when paired with 

SVM or AdaBoost, have the potential to 

dramatically improve the detection model's 

performance. However, the aforementioned 

techniques are insufficient and easily influenced by 

the big rotation in the image. As a result, adjusting 

the camera angle has a considerable influence on 

their detection accuracy [12]. Several object 

detectors based on CNN have recently been 

proposed, resulting in improved object detection 

performance. In this context, we highlight two-stage 

detectors like RCNN [13], Faster-RCNN [14], and 

Mask-RCNN [15], as well as one-stage detectors 

like YOLO [16] and SDD [17]. The author in [60] 

has developed an adaptation technique used to 

produce a singular patch-based counting regressor 

capable of counting various object types ,including 

people, vehicles, cell nuclei and wildlife. The main 

drawback of this method is that it struggles in 

scenarios containing occlusions, encounter 

numerous problems, particularly in the task of 

vehicle counting, and is affected by the image 

rotation.  

2.2 Regression-based methods 

Regression counting is a supervised strategy that 

attempts to construct a direct (linear or non-linear) 

mapping from visual features to the number of 

objects present in the image. It is more resistant to 

occlusions and distortions of perspective as it is not 

dependent on a specific model that has previously 

been developed [6]. By utilizing global image 

features, regression-based algorithms attempt to 

detect and count the vehicles (e.g., pixel density and 

color histogram). To avoid the limitations of the 

detection-based system, researchers intend to define 

the problem of vehicle counting as a regression task. 

They will directly map the image patch's appearance 

to their related item density maps [18]. These 

techniques are primarily comprised of two stages: 

feature extraction and regression modeling. As an 

input for the counting procedure, the author in [19] 

provided a set of random regression trees with dense 

features. The author in [20] presented a cascade 

regression method for measuring and classifying 

vehicles based on each segment's low-level data in 

the foreground. The author in [21] provided a 

hierarchical classification-based regression (HCR) 

model that extracts a batch of low-level 

characteristics from compressed video codec 

metadata. The author in [22] combined a locally 

temporal regression method with a spatial regression 

method. The author in [23] proposed a model for 

detecting and tracking moving vehicles in traffic 
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scenes using image segmentation and pattern 

analysis techniques. To encode the object 

information, a range of local features, such as SIFT 

[24], HOG [25], LBP [26], and global features, such 

as texture [27] and gradient [28], were utilized. 

Gaussian process regression [29], linear regression 

[30], and ridge regression [31] were used to map the 

low-level characteristics to a vehicle count. The 

main drawback of this method is that it is regressed 

from global features to object count and ignores 

spatial information. 

2.3 Density estimation-based methods 

Density estimation for vehicle counting is a 

supervised strategy that extends the counting by 

regression approach in various ways. While 

previous systems dealt satisfactorily with the 

congestion and occlusion scenes, most of them were 

regressed from the global features to the number of 

the objects and neglected any relevant spatial 

information. In contrast, the author in [32] used a 

linear mapping between the features of a local patch 

and the density maps; they first included spatial 

information in the learning process. As a result, they 

circumvented the time-consuming process of 

learning to detect and localize the instances of an 

individual object by proposing a novel method to 

estimate the image density that’s integral over each 

image region, showing the number of the objects 

included inside that region. In [33], a non-linear 

mapping is presented between density maps and 

local patch features using a random forest regressor 

to overcome the problem of linear mapping. They 

obtained acceptable results by prioritizing 

crowdedness to account for the major difference in 

shape and appearance between crowded and un-

crowded image patches. The main drawback of this 

method is that it suffers from the problem of linear 

mapping. 

2.4 CNN-based methods 

The task of crowd counting is mostly solved 

using pixel-based algorithms for counting objects. 

Hand-crafted feature combinations were employed 

in [34]. But hand-crafted features are not resistant to 

occlusion, fluctuation in perspective, vehicle 

appearance, and scale encountered in actual traffic 

scenes. Deep neural networks were used to regress 

the crowd count [35]. Cross-scene crowd counting is 

accomplished by retrieving scenes with the same 

perspective as an input test image and patches with 

the same crowd density as the test image. They next 

fine-tune a deep network using these extracted 

patches before testing the input image on the fine-

tuned network [36]; however, when the individual 

CNN columns are not pre-trained, the performance 

of this design decreases. Because vehicles vary 

greatly in appearance, the crowd counting deep 

networks is hard to scale for vehicle counting. 

Indeed, even inside a single vehicle class, such as 

cars, there is a great variation, with sedans, 

hatchbacks, and SUVs falling into the same class. 

There are a few works that use pixel-based methods 

to count vehicles. The author in [37] used a 

perspective-corrected input, a three-stage cascade 

regression network that deals with different types of 

vehicles based on their size. Recent work by [38] 

handles the count of the vehicles in the congested 

scenes. A multi-scale CNN architecture has been 

employed to deal with the wide range of viewpoint 

fluctuations in traffic situations [7]; they trained 

different custom CNNs for each scale. Using fully 

connected layers, they combined the feature maps 

from each trained CNN at a certain scale. As 

demonstrated by performance across datasets, the 

performance of counting in [7] is extremely 

dependent on the levels number in the scale 

pyramid, revealing a limited ability to generalize. 

The traffic scene image captured by surveillance 

cameras shows vehicles with a wide range of visual 

characteristics such as color, shape, and size. 

Surveillance cameras have a low resolution and a 

wide viewing field. While vehicles close to the 

camera are captured in pretty great detail, vehicles 

further away are captured in very little detail. 

Convolutional neural networks (CNN) like 

VGG-16 [40], although that the original VGG-16 

was trained for image classification, it has been 

effectively extended to tasks such as semantic pixel-

level segmentation. This is due to the extensive sets 

of filters learned for classification, such as 

conjunctions in color, edges, and corners. The 

monolithic CNN employs this variant to compute 

vehicle counts. As a result, its capacity to depict a 

complex scene (such as a traffic scene) with 

tremendous scale and perspective variations is 

restricted. Additionally, monolithic CNN's employ 

maximum pooling to merge data following 

convolution and downsample the spatial resolution 

[41]. In [42], the image is divided into regions, and a 

deep neural network is trained with a regressor for 

each one. In [43], the author introduced a 

revolutionary counting methodology dubbed gated 

U-net (GU-Net). To be more precise, incorporate the 

concept of learnable short-cut links into the U-net 

design. In deep neural networks, standard short-cut 

connections between layers are connections that 

bypass at least one intermediate layer. The author in 

[44] proposed a model to detect, track, count and 
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classify the vehicles using blob tracking 

technologies.The author in [45] proposed a model to 

count the vehicles in the congested scene using 

multiple fully convolutional sub-networks to predict 

the density map for a given static image. In [46], the 

author introduced an online-update mechanism 

during training; an online updating technique is 

employed to update the pseudo ground truth, while a 

locally constrained regression loss is used to place 

further constraints on the projected box sizes in a 

local area by relocating high-level shallow layers 

features and emphasizing their low-level features. 

The author in [47] proposed a hierarchical network 

that improves the low-level features and highlights 

the high-level features in the image. The author in 

[48] designed a model that allows any resolution and 

size for the input image to be mapped into its 

density map by utilizing filters with varying 

receptive fields.  

A scale pyramid network (SPN) is introduced in 

[49] that utilizes a common single deep column 

structure and extracts multi-scale information in the 

upper levels using the scale pyramid module, while 

many columns are used to extract multi-scale 

information from images; the multi-scale 

information acquired by the multi-column 

convolutional neural network is aggregated in [50] 

to increase performance. The author in [51] 

developed a model based on the idea that a dense 

region can always be subdivided until the counts of 

the sub-regions fall within the previously observed 

closed set. The author in [52] proposed a model 

capable of counting the direction of movement by 

integrating time-dependent data. The author in [53] 

proposed an online vehicle counting model to detect 

vehicles at crowded intersections using a deep-sort 

algorithm to perform multi-object tracking. The 

main drawback of this method is that it is limited 

ability to generalize. The drawbacks of the four 

mentioned methods are the motivation of our work. 

This study introduces a model able to deal with the 

huge differences in scale, perspectives, and 

appearance of the vehicles by concentrating on the 

deeper features in the scene. 

However, training multiple deep neural networks 

requires a huge amount of labeled data. Efficientnet 

[54] is used as the limitation in vehicles annotation 

to use its efficiency to predict and generate a high-

quality density map to give an accurate vehicle 

count.  

3. Dataset 

The TRANCOS dataset [39], which has 1244 

images in total, is used for evaluating the proposed  
 

 
Figure. 1 Model architecture diagram 

 

model for vehicle counting performance. It is the 

first dataset to count vehicles in images of traffic 

jams captured with real-world traffic monitoring 

cameras. Also, it is frequently used to assess the 

generalizability of vehicle counting techniques. It 

was obtained from a selection of public traffic 

surveillance cameras provided by the Spanish 

government’s directorate general of traffic (DGT). 

The cameras picked monitor various motorways in 

the Madrid area, which are notorious for their 

intense traffic congestion. Each image has been 

annotated with a precise number of vehicles and 

their locations for each image, where 46796 vehicles 

have been annotated in total. Note that each of the 

collected images has traffic congestion, spanning a 

number of diverse scenarios and angles, with 

varying lighting conditions, varying degrees of 

crowdedness ,and overlap, even in the same image. 

The dataset has been divided into a train and test 

split. The train split consists of 1031 images, while 

the test split consists of 213 images. The train set is 

used to train the FCN, while the test set is used to 

test it and calculate the mean absolute error (MAE) 

values for the specified test set. Then the deep 

neural network is initialized with Efficientnet [54] 

Training 
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model weights. 

4. Proposed model 

4.1 Model architecture 

Vehicles are frequently photographed from 

various viewpoints, resulting in an array of 

viewpoints and size changes. Vehicles close to the 

camera are frequently captured in amazing detail. 

However, when vehicles are not in view of the 

camera or images are obtained from an aerial 

perspective. Effective vehicle detection in both of 

these cases requires the model to work at a highly 

semantic level concurrently. The proposed design's 

core idea is to use a deeper CNN depending on 

EfficientNet CNN models to produce a high-quality 

density map by capturing the high-level features in 

images with larger receptive fields. The detailed 

model that is shown in Fig. 1, is explained in the 

following subsections. 

4.1.1. Pre-processing phase 

The primary goal of data pre-processing was to 

turn the TRANCOS [39] dataset's ground truth into 

density maps. TRANCOS contains vehicle 

annotations in the form of a single dot within the 

vehicle border. The ground truth was generated by 

creating a vehicle density map that will be used to 

train the model. The density map is created by 

applying a Gaussian kernel to blur each vehicle 

annotation. Normalization is used to ensure that the 

Gaussian kernel sums to one. The final density map 

generated for each traffic scene contains the same 

number of vehicles as the static traffic scene's 

vehicle count. The scene from the TRANCOS 

dataset  and its derived ground truth is shown in Fig. 

2. The derived ground truth is shown graphically as 

a heat map, with a red area having the vehicle's 

number higher than the blue areas. A density map of 

this type simplifies the problem of vehicle counting 

by providing a coarse signal to the location of the 

vehicles that play an important role in an accurate 

prediction. 

4.1.2. Learning phase 

The learning phase consists of a series of 

operations as shown in Fig. 3, starting with the 

EfficientNet fine-tuning, then followed by batch 

normalization that enables each layer of the network 

to operate independently of the others. Then the 

feature extraction using CNN is used, which 

contains seven dilated convolutional layers to 

extract the deeper information in images and  
 

 
Figure. 2 Shows the traffic scenes from TRANCOS 

Dataset [39] and its corresponding ground-truth after 

applying the Gaussian kernel 

 

maintain the resolution of the output to produce a 

high-quality density map. 

4.1.2.1. Efficient-net 

The author in [54] investigated the relationship 

between the depth and width of CNN models and 

devised an effective method for designing CNN 

models with fewer parameters but higher 

classification accuracy. They named these 

EfficientNet CNN models and proposed seven of 

them in their original paper, named EfficientNetB0 

through EfficientNetB7. They demonstrated that 

when applying EfficientNet to the ImageNet dataset, 

the EfficientNet CNN models outperform all 

previous models regarding parameter count and  
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Figure. 3 The model framework. The parameter of the convolutional layers is denoted as “Conv-(kernel size)-(number of 

filters)-(dilation rate)” 

 
 

Top-1 accuracy. The EfficientNet family of 

algorithms is based on a novel technique for scaling 

CNN models. It makes use of a simple, extremely 

powerful compound coefficient. Unlike existing 

approaches that scale network parameters such as 

depth, width, and resolution, EfficientNet scales 

each dimension uniformly using a predefined set of 

scaling factors. Scaling individual dimensions 

enhances model performance, but balancing all 

network dimensions to available resources 

significantly improves the model's overall 

performance. The efficient technique based on the 

EfficientNet-B5 CNN model is provided in this 

study. This variant of the EfficientNet-B5 has been 

chosen specifically due to its excellent trade-off 

between processing resources and accuracy [55-56]. 

Using the EfficientNet network's representational 

power, the proposed model fine-tunes its filters to 

solve the problem of vehicle counts more 

effectively.  

4.1.2.2. Batch normalization 

Batch normalization is a layer that enables each 

layer of the network to operate independently of the 

others. It is placed after the convolution layers to 

normalize the output of the previous layers, learning 

becomes more efficient, and it may also be utilized 

as a regularization technique to avoid model 

overfitting. Also, it is used to standardize the 

model's inputs and outputs. It is utilized at several 

points within the model's layers.  

4.1.2.3. Feature extraction using CNN 

After the EfficientNet fine-tuning, a seven 

dilated convolutional layers, according to the works 

[57-59], will be mentioned in the following 

subsection as the back-end to extract the deeper 

information in images and maintain the resolution of 

the output to produce a high-quality density map as 

shown in Fig. 2. 

4.1.2.4. Dilated convolution 

The dilated convolutional layer is a fundamental 

component of the proposed model architecture. A 

dilated convolution in two dimensions can be 

formulated as: 

 

𝑦(𝑚, 𝑛) = ∑  𝑀
𝑖=1 ∑  𝑁

𝑗=1 𝑥(𝑚 + 𝑟 × 𝑖,  

𝑛 + 𝑟 × 𝑗)𝑤(𝑖, 𝑗)     (1) 

 

𝑦(𝑚, 𝑛) is the dilation convolution output from 

the input 𝑥(𝑚, 𝑛) and a filter 𝑤(𝑖, 𝑗) with length M 

and width 𝑁, and the dilation rate is 𝑟. If 𝑟 = 1, A 

dilated convolution becomes a normal convolution. 

The dilation convolutional layers have been shown 

to significantly improve accuracy in segmentation 

tasks [57-59] and are a viable alternative to pooling 

layers. While pooling layers are frequently used to 

maintain invariance and control overfitting, they 

significantly diminish spatial resolution, hence 

obliterating the spatial information contained in 

feature maps. Dilated convolution is a superior 

alternative, as it alternates the pooling and 

convolutional layers using sparse kernels . 

This property increases the receptive field 

without increasing the computation or number of 

parameters required (for example, adding more 

convolutional layers increases the receptive field but 

introduces additional operations). A small-size 

kernel with 𝑘 𝑥 𝑘 a filter in a dilation convolution is 

widened to 𝑘 +  (𝑘 −  1)(𝑟 −  1)  with dilated 

stride 𝑟. As a result, it enables flexible aggregation 

of multi-scale contextual data while maintaining the 

same resolution. As a result, dilated convolution 

demonstrates different advantages over the scheme 

of convolution, pooling, and deconvolution to 

maintain the resolution of the feature map.  

4.1.2.5. Training details 

The model is trained using an Adadelta 
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optimizer with a base learning rate (𝛼 = 0.05 based 

on trials and error operations). Throughout the 

training, a consistent learning rate was maintained, 

and consistent training was maintained across 

architectures. In addition, the Euclidean distance is 

used to assess the difference between the ground 

truth and the estimated density map, which is similar 

to the method utilized by [48]. Here is the formula 

for the loss function: 

 

𝐿(𝛩) =
1

2𝑁
∑  𝑁

𝑛=1 ∥∥𝑒𝑛(𝛩) − 𝑔𝑡𝑛∥∥2
2
       (2) 

 

Where 𝛩  is the set of learnable parameters in 

the model, 𝑁  is the number of the training image 

and 𝑒𝑛(𝛩) is the estimated object count generated 

by the model, which is parameterized with 𝛩  and 

𝑔𝑡𝑛 is the provided ground truth for image 𝑛. 

4.1.3. Prediction result 

4.1.3.1. Performance measures 

The model is tested after the training process 

using the following measures: 

 

• The mean absolute error (MAE). 

The mean absolute error (MAE) is used as the 

performance metric for the proposed model, which 

is formulated as: 

 

𝑀𝐴𝐸 =
1

𝑁
⋅ ∑  𝑁

𝑛=1 |𝑒𝑛 − 𝑔𝑡𝑛|        (3) 

 

• The grid average mean absolute error 

(GAME). 

To provide a more accurate evaluation, the grid 

average mean absolute error (GAME) measure [39] 

is used, which provides an evaluation metric that 

takes both the object count and the estimated 

location of the objects into account, which is 

formulated as: 

 

𝐺𝐴𝑀𝐸(𝐿) =
1

𝑁
⋅ ∑  𝑁

𝑛=1 (∑  4𝐿

𝑙=1   |𝑒𝑛
𝑙 − 𝑔𝑡𝑛

𝑙 |)    (4) 

 

Where 𝑒𝑛
𝑙  is the count  estimated in a region 𝑙 of 

an image 𝑛, and 𝑔𝑡𝑛
𝑙  is the image's ground truth for 

the same area. The greater the value 𝐿 , the more 

restrictive the GAME metric. Notably, when 𝐿 =
0 the MAE can be obtained as a particularization of 

the GAME. 

5. Experimental work and results 

All experiments are conducted on the 

TRANCOS dataset. The density map has been  
 

Table 1. Show the results on TRANCOS dataset 

No.of 

epochs 
MAE 

=G(0) G(1) 

 

G(2) 

 

G(3) 

50 9.40 11.07 12.13 14.05 

60 8.99 10.56 11.60 13.40 

70 9.70 11.14 12.14 13.83 

80 8.76 10.55 11.64 13.59 

90 8.84 10.73 11.75 13.70 

100 8.70 10.26 11.43 13.43 

110 8.58 10.53 11.43 13.40 

120 9.06 10.94 11.91 13.77 

130 8.88 10.44 11.53 13.63 

140 5.79 5.94 6.05 6.82 

150 8.68 10.36 11.39 13.33 

160 5.25 5.39 5.53 6.36 

170 5.23 5.39 5.52 6.40 

180 8.90 10.62 11.66 13.54 

190 8.92 10.23 11.34 13.15 

200 8.87 10.37 11.37 13.34 

210 8.45 10.18 11.19 13.05 

220 8.97 11.80 13.10 15.27 

230 8.68 10.33 11.35 13.25 

240 8.93 10.27 11.28 13.17 

250 8.54 10.22 11.23 13.17 

260 9.30 10.77 11.75 13.49 

270 8.70 10.46 11.43 13.34 

280 8.66 10.21 11.15 13.01 

290 9.24 10.95 11.54 13.30 

300 8.54 10.22 11.23 13.17 

 

 

utilized as the ground truth. The model is trained 

using an Adadelta optimizer with a base learning 

rate  (𝛼 = 0.05 based on trials and error operations). 
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Throughout the training, a consistent learning rate 

was maintained, and consistent training was 

maintained across architectures.  

The experimental results indicate that the 

proposed model achives a promising results, 

indicating that it can perform well in the extremely 

overlapping traffic congestion scenario. 

As shown in Table 1, the model's results using 

EfficientNetB5 fine-tuning at a learning rate equal to 

0.05 and  Adadelta optimizer for a different number 

of epochs starting with 50 to ending with 300 

epochs show that the best result (i.e., the smallest 

MAE=5.23) at 170 epochs to overcome the 

overfitting problem. 

As shown in Table 2, Reg. Forest [19] has the 

highest mean absolute error of 17.77 and the highest 

GAME values on the TRANCOS. While 

theperformance of the latest deep learning methods, 

such as CCNN [18], Tra-Count [45], AMDCN [50], 

CoarseAdapt [53], and Adv. Dmap [54] is superior 

to that of the Reg. Forest [19]. The proposed model 

achives a promising results with mean absolute error 

(MAE = G(0) = 5.23) and (G(1)= 5.39, G(2)= 5.52 

and G(3)= 6.40) . 

(____) in Table 2 idicates that the reference used 

the mean absolute error metric only to evaluate their 

work and did not use GAME(1), GAME(2) and 

GAME(3) metrics. 
 

In Tables 1 and 2, G(0) = GAME(0), G(1) 

=GAME(1), G(2)=GAME(2) and G(3)=GAME(3). 
 

In addition, in Fig. 4, different snapshots of the 

applied approach refer to the efficiency of detecting 

vehicle density in frames in the proposed model, as 

the third column shows the predicted count of the 

vehicles that are very close to the original count in 

column two. It also confirmed the sufficiency of the 

model’s robustness and accuracy even in the 

presence of severe barrier scenarios.     

6. Disscussion  

The proposed model consists of several stages, 

in the pre-processing stage, the goal is to turn the 

TRANCOS dataset's ground truth into density maps 

that will be used to train the model. TRANCOS 

contains vehicle annotations as a single dot within 

the vehicle border. The ground truth was generated 

by creating a vehicle density map. The density map 

is created by applying a Gaussian kernel to blur each 

vehicle annotation. Normalization is used to ensure 

that the Gaussian kernel sums to one. The final 

density map generated for each traffic scene 

contains the same number of vehicles as the static 

traffic scene's vehicle count that will be used to train 

the model. In the learning phase, a series of  
 

Table 2. Show the comparison results  

G(3) G(2) G(1) G(0) 

 

Year 

 

Methods 

24.36 20.72 16.72 13.76 2010    MESA [32] 

25.99 23.65 20.14 17.77 2012 Reg. Forest 

[19] 

28.41 23.65 18.05 13.29 2015 HOG-2[39] 

22.41 20.02 16.58 12.49  

 

2016 

CCNN   [18] 

Hydra-2s[18] 

Hydra-3s[18] 

Hydra-4s[18] 

23.67 20.89 16.36 11.41 

19.32 16.69 13.75 10.99 

20.96 18.45 15.54 12.92 

____ ____ ____ 11.05 2016 MCNN[48] 

____ ____ ____  

8.12 

 

2016 

Tra-

Count[45] 

____ ____ ____ 5.47 2017 FCN-ST[42] 

15.87 15.00 13.16 9.77 2018 AMDCN[50] 

____ ____ ____ 10.79 2019 NCNN[52] 

____ ____ ____  

7.38 

 

2020 

Skip-

Network[47] 

 

6.40 

 

5.52 

 

5.39 

 

5.23 

 

2022 

Proposed 

Model 

 

 

operations starting with the EfficientNet fine-tuning, 

then followed by batch normalization that enables 

each layer of the network to operate independently 

of the others. Then the feature extraction using CNN 

is used, which contains seven dilated convolutional 

layers to extract the deeper information in images 

and maintain the resolution of the output to produce 

a high-quality density map. The proposed method is 

evaluated on TRANCOS dataset. The experiments 

included two performance measures. Firstly, the 

mean absolute error (MAE) is used as the 

performance metric. Secondly, the grid average 

mean absolute error (GAME) measure is used, 

which provides an evaluation metric that takes both 

the object count and the estimated location of the 

objects into account. After training 300 epochs, we 

found the lowest MAE using the evaluation images 

at epoch 170 and later epochs seem to be overfitted. 

The proposed model achieve a mean absolute error 

(MAE = GAME(0) = 5.23) and (GAME(1)= 5.39, 

GAME(2)= 5.52 and GAME(3)= 6.40) which is 

significantly achives a promising results.  

7. Conclusion 

This paper introduces a model for counting the 

vehicles in the congested scenes and the traffic  
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Figure. 4 The first column shows images from TRANCOS Dataset [39]. The second column shows the ground truth (GT) 

for each image and the original count of vehicles in the image. The third column shows the generated density map and 

the predicted count of the vehicles in the image by our model 

 

 

density prediction. This prediction has been done by 

extracting the deeper features in the image that 

represents the different objects at multiple scales 

and maintaining the output’s resolution to generate a 

high-quality density map. EfficientNet is used in the 

proposed model to scale each dimension uniformly 

using a predefined set of scaling factors. Scaling 

individual dimensions enhances model performance, 
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but balancing all network dimensions in relation to 

available resources significantly improves the 

model's overall performance. The dilated 

convolutional layers are used in the proposed model 

to aggregate the multi-scale contextual information 

in the congested scenes. It is also used to alternate 

the pooling and convolutional layers using sparse 

kernels. The proposed model performance was 

evaluated in two metrics. The first metric is the 

mean absolute error (MAE). While this metric 

appears reasonable for constructing a comparison, 

the investigations show that it frequently masks 

incorrect estimations. The reason for this is that the 

MAE does not take into account the location of the 

estimations in the images. The second metric is the 

grid average mean absolute error (GAME) which 

provides an evaluation metric that takes both the 

object count and the estimated location of the 

objects into account. The experimental results 

indicate the proposed model achives a promising 

results in the two metrics. The novelty of this work 

lies in the ability of receptive field expansion 

without losing resolution. So, the proposed model 

can deal with huge differences in scale, perspective, 

and appearance of vehicles. The proposed model 

achieved MAE = 5.23 on the challenging 

TRANCOS dataset. Finally, this work demonstrated 

the value of the high-quality density map for vehicle 

counting calculation in high performance. 
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