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Abstract: In this paper, a modified block backstepping controller was formulated for double lane changing control 

of a two-degree-of-freedom (2DOF) autonomous vehicle. For a systematic procedure, a 5th-degree polynomial 

double lane change trajectory was created. Next, the state model dynamics of this underactuated 2DOF autonomous 

vehicle is presented, which was transformed into the block-strict feedback form. Thereafter, the block backstepping 

technique was implemented to achieve the control input (steering angle). For enhancing the steady state performance 

during the trajectory tracking, an integral action was included in the proposed controller. The stability of this 

controller was established through the Lyapunov theory. To investigate the effectiveness of this proposed controller, 

we compared it with a human driver's transfer function controller and LQR controller, in addition to the sliding mode 

controller. Simulation results were achieved using CarSim-Simulink. Later, this controller was implemented to track 

the same lane change path with a different road coefficient of friction. The supposed controller characteristic was 

further investigated by inspecting the motion of the vehicle when exposed to an idealized lateral step force 

disturbance. The simulation results indicated the power of modified block backstepping control and it has higher 

following accuracy, better yaw rate tracking, and stable front steering angle, at high speed and at high and low 

friction roads. 

Keywords: Block backstepping, Autonomous vehicle, Lane changing, Lyapunov theory, Lateral control, 
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1. Introduction 

In recent years, significant research has been 

conducted in the field of improving vehicle stability 

and control. The ultimate targets in automating the 

driving process are minimizing accidents caused by 

driver error and improving safety. Simultaneously, 

the advanced technologies can reduce road 

congestion and diminish air pollution by reducing 

fuel consumption and emissions [1]. More than 40% 

of all traffic accidents between 80 and 100 km/h, 

according to Audi research, are related to spin out 

[2]. Attention should be paid by drivers to the 

surrounding circumstances and other vehicles all the 

time, and then a corresponding decision should be 

made immediately, based on the driver’s experience 

and their attention. Drivers’ reaction delays lead to 

road fatalities [3]. Generally, autonomous vehicles 

can greatly enhance the efficiency of the driving 

through traffic congestion avoidance, speed 

maneuvers, and optimal path planning. Based on the 

deviation between the current position and the 

desired path, the control system constantly adjusts 

the steering, wheel angle, and speed until the 

destination can be reached [3]. 

Obstacle avoidance, especially lane changing, 

lane following, or overtaking other vehicles are 

common driving behaviors in autonomous vehicles. 

The purpose of a lane change is to pass the front 

vehicle to reduce driving time, which usually occurs 

in a situation where the vehicle in front travels 

slower than the vehicle behind it, and the driving 

conditions in the adjacent lane are outstanding [3]. 

Lateral and yaw stability control of the vehicle 

are considered primary tasks in vehicle dynamics. 

Lateral dynamic control of vehicles is generally 

performed by braking and steering subsystems. By 
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using steering and braking systems [4], the 

controller must control the yaw rate and sideslip 

angle to follow the designed path quickly and 

responsively. Steering control plays an important 

role in safe driving of the vehicle along the assumed 

trajectory, and the current paper attempts to shed 

light on this issue. 

By adopting a linear vehicle model of two 

degrees of freedom (2DOF), the control law can be 

simplified. The Lyapunov method is a practical 

technique for feedback controller design. Various 

methods have been proposed on lane changing for 

automatic driving technology. The concepts of 

sliding mode control, based on Lyapunov stability, 

have been presented in the literature [5]. However, 

to improve the results of the classical sliding mode 

controller, many researchers integrated it with 

different methods, for instance, fuzzy sliding 

systems [6], adaptive fuzzy systems [7], the 

proportional integral (PI) controller [8], and fuzzy 

neural networks (FNNs) [9].  

A hierarchical control architecture was proposed 

by [10] consisting of an upper controller and lower 

controller. Meanwhile, a Kalman filter-based 

vehicle sideslip angle observer with a strong 

tracking theory modification (ST-SRCKF), was 

established to estimate the sideslip angle. However, 

in this approach, the implemented adaptive-weight 

method depends on fuzzy logic control (FLC). 

Moreover, DYC is needed to outfit the additional 

yaw moment to guarantee perfect dynamic 

performance.  

The authors in [11] presented a model predictive 

controller (MPC) for lateral stability control of 

electric vehicles, while [12] used FLC and the MPC. 

Based on active front steering (AFS), the authors of 

[13] consolidated the MPC with RBFNN-PID for 

parameters tuning. However, this type of the 

tracking controller suffers from high computations 

and lack of proof of the stability of the system.  

An optimal LQR and PID controller was 

designed for improving stability, maneuverability, 

and path tracking for a vehicle model [14]. The deep 

Q-network (DQN) algorithm [15] has also been 

proposed. However, these types of algorithms are 

not suitable to cope with large and/or continuous 

action spaces [16]. The improved artificial potential 

field method (APF) [17] suffers from three flaws 

unless it is combined with machine learning to solve 

the drawbacks [18].  

Lately, various modified backstepping 

techniques have been designed to extend the 

advantageous features of the backstepping technique 

to effectively remedy the control problems of 

different classes of nonlinear systems and their 

stabilization problem [19, 20]. 

Since the nonlinear system is not generally a 

normal form, normal backstepping control methods 

cannot be used directly for tracking control of these 

systems. [21] presented the following observer-

based backstepping control method: First, the lateral 

offset of the current lane as a straight lane for small 

curvature is approximated. Then, the approximated 

lateral offset is utilized to obtain the reduced 

second-order model in the form of strict feedback. 

Consequently, the backstepping control can be 

implemented for the reduced model. Finally, an 

augmented observer is designed to estimate the full 

state and unknown parameters and external 

disturbances. Following the same procedure, a 

backstepping control method with a sliding mode 

observer was presented in [22] for an autonomous 

lane-keeping system. The reduced second-order 

model was proposed for the backstepping control 

design of the lateral dynamics. In [23] the 

combination of sliding mode and adaptive 

backstepping is suggested. Meanwhile, [24] 

designed a cascaded backstepping control structure 

comprising an inner-loop electric power steering 

(EPS) system and an outer-loop lane-keeping system. 

However, the nonlinearity of the vehicle increased 

as the radius of curvature decreased. Furthermore, 

owing to the simplification of the dynamic steering 

model, there was a disturbance when the vehicle 

entered or exited the curved road. 
A backstepping sliding mode trajectory tracking 

controller was designed based on the inverted 

method and sliding mode control by [25]. However, 

only simulations of a road of a long radius of 

curvature were conducted. [26] adopted the 

hierarchical control structure. In the upper controller, 

to follow the path with high accuracy, the path 

following error model was converted into the yaw 

rate tracking problem employing the backstepping 

approach. Later, the MPC was designed to produce 

the steering angle and additional yaw moment. In 

the lower controller, the optimal torque was carried 

out to provide it to each tire. Noticeably, one of the 

limitations of the MPC was the large number of 

short time steps of prediction, leading to 

computational costs [27]; hence it is difficult to 

ensure the real-time requirements of the system [28]. 

The authors in [29] proposed a method 

consisting of two sliding surfaces. Because the error 

dynamics is a not-strict feedback system, a brake 

steer force input was developed to regulate the two 

sliding surfaces using a backstepping procedure 

under the driver torque. Despite the simplicity and 

effectiveness of the DYC, using this differential 

braking technique resulted in wasting the energy 
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provided for one of the wheels in the form of heat 

[30]; furthermore, the control action will cause 

deceleration of the vehicle [31]. 

Among the different feedback control techniques, 

backstepping and sliding mode controllers are 

dependent on the theory of a Lyapunov function, 

which guarantees the stability of the system. Based 

on the integral backstepping controller, coupled 

longitudinal and lateral motions and the variance of 

the tracks' curvature was proposed by [32]. 

However, the trajectory tracking problem of the 

nontriangular normal form underactuated 

mechanical systems is still an open research 

problem [33] because most of the proposed control 

methods are either non-applicable for real time 

applications or it have many simplifications. 

The block backstepping technique has emerged 

as one of the most efficient backstepping-based 

techniques [20]. Based on block backstepping, a 

tracking controller was developed by [34] for a 

wheeled mobile robot. Nonetheless, for tracking 

control problems of more generalized nonlinear 

dynamic systems, the studied methods cannot be 

applied directly [19]. A procedure should be devised 

for the dynamic system to be controlled by modified 

block backstepping: 

 

1- At the first stage of the design, the system 

dynamic equations are transformed into a block-

strict feedback [19]. 

2- At the next stage, the backstepping procedure 

is applied on each dynamic block to obtain the 

equation of control input for the whole nonlinear 

system [19]. 

 

For improving vehicle stability, many 

researchers have studied the influence of the driver 

on the handling controllability, for instance, [35] 

proposed a PID driver model. 

In this research, the lateral dynamics of a vehicle 

for tracking a desired path is controlled by an 

adaptive modified block backstepping controller. 

The 2DOF autonomous vehicle model and lateral 

position with constant longitudinal speed was 

implemented. Controller simulation was handled 

using the connection of CarSim with Simulink. The 

reference tracking path consisted of a double lane 

change maneuver. Simulation results indicated a 

precise tracking contrast to the LQR controller and 

the human driver's transfer function controller, then 

a test for the block backstepping controller under a 

low and high friction driving maneuver. 

The main contribution of this paper is to propose 

a modified block backstepping controller for the 

nontriangular normal form underactuated 

autonomous vehicle. There is no need for either an 

approximation to the polynomial order function of 

the lane or for an augmented observer. The global 

stabilization of the model dynamic was ensured by 

the suggested control law. The proposed controller, 

LQR controller, and a human driver's transfer 

function controller, furthermore sliding mode 

controller, were compared and analyzed by CarSim-

Simulink under different coefficients of friction. 

Moreover, the performance of the proposed 

controller was tested under a limited disturbance for 

an autonomous vehicle changing lanes. 

The remaining sections of this papers are 

organized as follows. In section 2 a desired path is 

described. Section 3 presents the formulation of the 

dynamics of the 2DOF vehicle model. A systematic 

derivation of the input control algorithm and the 

stability of the controller is presented in section 4. 

The simulation and results are given in section 5, 

and to the proposed controller is compared to the 

LQR controller and the human driver's controller in 

[36]. Finally, section 6 presents conclusions based 

on the results of this research. 

2. Path planning 

A 5th-degree polynomial function was 

implemented in this study for double lane changes, 

as shown in Fig. 1. Assuming that the state vectors 

ζa and ζb are the lateral displacement, velocity, and 

acceleration of the starting point (𝑖) and the final 

point (𝑓) for each lane change interval (𝐼 and 𝐼𝐼), 

respectively, i.e., 

 

ζI=[yi
ẏ

i
ÿ

i    yf
ẏ

f
ÿ

f]I
T
 

ζII=[yi
ẏ

i
ÿ

i    yf
ẏ

f
ÿ

f]II

T
               (1) 

 

Presuming that these initial and final states can 

be estimated or measured, then a 5th-degree 

polynomial equation for the path planning can be 

defined at every time 𝑡 as 

 

𝑦(𝑡) = ∑ 𝑎𝑗𝑡
𝑗

5

𝑗=0
                      (2) 

 

where 𝑎𝑗  are the coefficients of the polynomial, 

which can be written as a vector: 

 

𝑎 = [𝑎0 𝑎1 𝑎2    𝑎3 𝑎4 𝑎5]𝑇        (3) 

 

which can be calculated for both 5th-degree 

polynomial lane intervals as 
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Figure. 1 Desired path (y(t)) for double lane change 

 

 
Figure. 2 Dynamics of a 2DOF model of autonomous 

vehicle 
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         (5) 

 

Then, the desired path can be designed as four 

intervals: (i) horizontal straight interval (0-2s), (ii)  

 

left of 5th-degree polynomial function lane change 

(2-7s), (iii) right of the 5th-degree polynomial lane 

change (7-12s), (iv) horizontal straight interval (12-

14s). However, the desired yaw angle can be 

designed as: 𝜓𝑑 = arctan((𝑑𝑦 𝑑𝑡⁄ ) 𝑉𝑥⁄ )  , where 𝑉𝑥 

is the x-axis of the velocity as indicated in Fig. 2 

[32]. 

3. Vehicle dynamics 

In this study, a simplified 2DOF bicycle model 

(Fig. 2) for modeling an autonomous vehicle was 

implemented. According to Newton's second law, 

the equations of motion along the y-direction and 

yaw-direction, respectively, are: 

 

𝑚�̈� = 2𝐹𝑓 + 2𝐹𝑟                        (6) 

 

𝐼�̈� = 2𝑙𝑓𝐹𝑓 − 2𝑙𝑟𝐹𝑟                  (7) 

 

Here, 𝑟 refers to rear and 𝑓 front, 𝑚 is the mass 

of the vehicle, 𝐼 is the moment of inertia, 𝑙𝑓  and 𝑙𝑟 

are the distances of the front and rear wheel axles 

from the center of gravity. Here 𝑦  represents the 

vehicle’s lateral displacement, and 𝜓  yaw angle. 

The lateral forces acting on the front and rear wheels, 

𝐹𝑓 and 𝐹𝑟, respectively, can be reformulated as [36]: 

 

𝐹𝑓 = 𝐾𝑓 (𝛿 + 𝜓 −
1

𝑉
�̇� −

𝑙𝑓 

𝑉
�̇�)         (8) 

 

𝐹𝑟 = 𝐾𝑟 (𝜓 −
1

𝑉
�̇� +

𝑙𝑟 

𝑉
�̇�)                 (9) 

 

Where 𝛿  is the steering angle, while 𝐾𝑓  and 

𝐾𝑟 represent the front and rear wheel cornering 

stiffness, respectively. Substituting these variables 

into Eqs. (6) and (7), and rearranging gives the 

following: 

 

𝑚�̈� = −
2(𝐾𝑓 +𝐾𝑟 )

𝑉
�̇� −

2(𝑙𝑓 𝐾𝑓 −𝑙𝑟 𝐾𝑟 )

𝑉
�̇� +  

2(𝐾𝑓 + 𝐾𝑟 )𝜓 + 2𝐾𝑓𝛿  (10) 

 

𝐼�̈� = −
2(𝑙𝑓 𝐾𝑓 −𝑙𝑟 𝐾𝑟 )

𝑉
�̇� −

2(𝑙𝑓
2

 
𝐾𝑓 +𝑙𝑟

2𝐾𝑟 )

𝑉
�̇� +  

2(𝑙𝑓 𝐾𝑓 − 𝑙𝑟 𝐾𝑟 )𝜓 + 2𝑙𝑓 𝐾𝑓𝛿      (11) 
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[
 
 
 
 
 

0 1

0 −
2(𝐾𝑓+𝐾𝑟)

𝑚𝑉

0 0
2(𝐾𝑓+𝐾𝑟)

𝑚
−

2(𝑙𝑓𝐾𝑓−𝑙𝑟𝐾𝑟)

𝑚𝑉

0 0

0 −
2(𝑙𝑓𝐾𝑓−𝑙𝑟𝐾𝑟)

𝐼𝑉

0 1
2(𝑙𝑓𝐾𝑓−𝑙𝑟𝐾𝑟)

𝐼
−

2(𝑙𝑓
2𝐾𝑓−𝑙𝑟

2𝐾𝑟)

𝐼𝑉 ]
 
 
 
 
 

[

𝑦
�̇�
𝜓

�̇�

] +

[
 
 
 
 

0
2𝐾𝑓

𝑚

0
2𝑙𝑓𝐾𝑓

𝐼 ]
 
 
 
 

𝛿                   (12) 
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Then the dynamic model of the 2DOF 

autonomous vehicle can be written in a matrix form 

as 

For simplifications, let 𝑥1 = 𝑦 ,  𝑥2 = 𝜓 ,  �̇�1 =

�̇�, , �̇�2 = �̇�, and  𝑢 = 𝛿 then this state model can be 

written in a reduced form as 

 

�̇�1 = 𝑥3  

�̇�2 = 𝑥4  

�̇�3 = 𝐴2𝑥2 + 𝐴1𝑥3 + 𝐴3𝑥4 + 𝐴4𝑢                      (13) 

�̇�4 = 𝐵2𝑥2 + 𝐵1𝑥3 + 𝐵3𝑥4 + 𝐵4𝑢  

 

Rewriting the state variables as follows: 𝑞1 =
𝑥1 , 𝑞2 = 𝑥2 , 𝑝1 = 𝑥3 , 𝑝2 = 𝑥4 , 𝑔1 = 𝐴4 , and  𝑔2 =
𝐵4 , and rewriting the state model of the 2DOF 

autonomous vehicle as follows: 

 

�̇�1 = 𝑝1  

�̇�2 = 𝑝2  

�̇�3 = 𝑓1(𝑞, 𝑝) + 𝑔1(𝑞)𝑢                                       (14) 

�̇�4 = 𝑓2(𝑞, 𝑝) + 𝑔2(𝑞)𝑢  

 

The state vector can be written as 𝑋 =
[𝑞1 𝑞2 𝑝1 𝑝2]𝑇. 

4. Block backstepping controller design 

Because the dynamic model is not in strict 

feedback form, one cannot apply the method of 

integrator backstepping control of [37] directly. 

Consequently, the dynamic model should be first 

converted into a block-strict feedback form [20]. 

4.1 The controller design 

Step 1: Consider the desired trajectory as: 𝑋𝑑 =
[𝑞𝑑1 𝑞𝑑2 𝑝𝑑1 𝑝𝑑2]𝑇 . Substituting it into Eq. 

(14) produces 

 

�̇�𝑑1 = 𝑝𝑑1  

�̇�𝑑2 = 𝑝𝑑2  

�̇�𝑑3 = 𝑓𝑑1(𝑞𝑑 , 𝑝𝑑) + 𝑔𝑑1(𝑞)𝑢𝑑                           (15) 

�̇�𝑑4 = 𝑓𝑑2(𝑞𝑑 , 𝑝𝑑) + 𝑔𝑑2(𝑞)𝑢𝑑  

 

Then the tracking error vector can be stated as 

 

𝑒 = 𝑋𝑑 − 𝑋 = [𝑒1 𝑒2 𝑒3 𝑒4]𝑇    (16) 

 

Differentiation with respect to time on two sides 

of Eq. (16) gives the error dynamics as 

 

�̇�1 = 𝑒3  

�̇�2 = 𝑒4  

�̇�3 = 𝑓𝑑1(𝑞𝑑 , 𝑝𝑑) + 𝑔𝑑1(𝑞𝑑)𝑢𝑑 −  
(𝑓1(𝑞, 𝑝) + 𝑔1(𝑞)𝑢)             (17) 

�̇�4 = 𝑓𝑑2(𝑞𝑑 , 𝑝𝑑) + 𝑔𝑑2(𝑞𝑑)𝑢𝑑 −  
(𝑓2(𝑞, 𝑝) + 𝑔2(𝑞)𝑢) 

 

Step 2: Defining an adequate new control 

variable 𝑧1[34] as  

 

𝑧1 = 𝑒2 − 𝑘(𝑒1 + 𝑔2𝑒3 − 𝑔1𝑒4)        (18) 

 

where 𝑘 is a design constant. Deriving 𝑧1 with 

respect to time can be written as 

 

�̇�1 = 𝑒4 − 𝑘(𝑒3 + 𝑔2�̇�3 + �̇�2𝑒3 − 𝑔1𝑒4 − �̇�1𝑒4)  

= 𝑒4 − 𝑘(𝑒3 + 𝑔2((𝑓𝑑1 + 𝑔𝑑1𝑢𝑑) − (𝑓1 + 𝑔1𝑢))  

+𝑒3𝐷(𝑔) − 𝑔1((𝑓𝑑2 + 𝑔𝑑2𝑢𝑑) − (𝑓2 + 𝑔2𝑢)) 

−𝑒4𝐷(𝑔)) (19) 

 

where 𝐷(𝑔) = ∑(𝜕𝑔𝑖𝑗 𝜕𝑒𝑘⁄ ) �̇�𝑘, which maps the 

time derivative of 𝑔𝑖(𝑞) . Since 𝑔𝑖 = constant, 

hence, 𝐷(𝑔) = 0. For simplification of Eq. (19), let 
 

�̇�1 = 𝑒4 − 𝑘Ω                         (20) 

 

Where 

 

Ω = 𝑒3 + 𝑔2((𝑓𝑑1 + 𝑔𝑑1𝑢𝑑) − (𝑓1 + 𝑔1𝑢)) −

𝑔1((𝑓𝑑2 + 𝑔𝑑2𝑢𝑑) − (𝑓2 + 𝑔2𝑢))  

 

Step 3: Here, a stabilization function is chosen, 

which is given as 

 

𝛼 = −𝑐1𝑧1 − 𝜆Γ + 𝑘𝛺          (21) 

 

where Γ = ∫ 𝑧1𝑑𝑡
𝑡

0
 is the integral error, which 

was added to enhance steady state achievement, and 

𝜆 and 𝑐1 are positive design constants. 

 

Step 4: The second control variable is defined 

as 𝑧2 which can be written as 

 

𝑧2 = 𝑒4 − 𝛼              (22) 

 

Substitution Eqs. (21) and (22) into Eq. (23) 

leads to the dynamics of the first control variable: 
 

�̇�1 = 𝑒4 − 𝛼 − 𝑐1𝑧1 − 𝜆Γ         (23) 

 

or it can be written as 

 

�̇�1 = 𝑧2 − 𝑐1𝑧1 − 𝜆Γ               (24) 

 

By deriving Eq. (22), the dynamics of second 

control variable can be written as 
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�̇�2 = �̇�4 − �̇�                                  (25) 

 

�̇�2 = �̇�4 + 𝑐1�̇�1 + 𝜆Γ̇ − 𝑘Ω̇            (26) 

 

or in expanding form: 

 

�̇�2 = �̇�4 + 𝑐1�̇�1 + 𝜆Γ̇ − 𝑘 (
𝜕Ω

𝜕𝑒1
�̇�1 +

𝜕Ω

𝜕𝑒2
�̇�2 +

𝜕Ω

𝜕𝑒3
�̇�3 +

𝜕Ω

𝜕𝑒4
�̇�4 +

𝜕Ω

𝜕𝑞1𝑑
�̇�1𝑑 +

𝜕Ω

𝜕𝑞2𝑑
�̇�2𝑑 +

𝜕Ω

𝜕𝑞3𝑑
�̇�3𝑑 +

𝜕Ω

𝜕𝑞4𝑑
�̇�4𝑑)  

(27) 

 

where the derivatives of Ω  with respect to errors 

are 

 
𝜕Ω

𝜕𝑒1
= −𝑔2

𝜕𝑓1

𝜕𝑒1
+ 𝑔1

𝜕𝑓2

𝜕𝑒1
  

𝜕Ω

𝜕𝑒2
= −𝑔2

𝜕𝑓1

𝜕𝑒2
+ 𝑔1

𝜕𝑓2

𝜕𝑒2
  

𝜕Ω

𝜕𝑒3
= 1 − 𝑔2

𝜕𝑓1

𝜕𝑒3
+ 𝑔1

𝜕𝑓2

𝜕𝑒3
                                    (28) 

𝜕Ω

𝜕𝑒4
= −𝑔2

𝜕𝑓1

𝜕𝑒4
+ 𝑔1

𝜕𝑓2

𝜕𝑒4
  

 

And with respect to desired states are 

 
𝜕Ω

𝜕𝑞1𝑑
= 𝑔2 (

𝜕𝑓1𝑑

𝜕𝑞1𝑑
−

𝜕𝑓1

𝜕𝑞1𝑑
) − 𝑔1 (

𝜕𝑓2𝑑

𝜕𝑞1𝑑
−

𝜕𝑓2

𝜕𝑞1𝑑
)  

𝜕Ω

𝜕𝑞2𝑑
= 𝑔2 (

𝜕𝑓1𝑑

𝜕𝑞2𝑑
−

𝜕𝑓1

𝜕𝑞2𝑑
) − 𝑔1 (

𝜕𝑓2𝑑

𝜕𝑞2𝑑
−

𝜕𝑓2

𝜕𝑞2𝑑
)  

𝜕Ω

𝜕𝑝1𝑑
= 𝑔2 (

𝜕𝑓1𝑑

𝜕𝑝1𝑑
−

𝜕𝑓1

𝜕𝑝1𝑑
) − 𝑔1 (

𝜕𝑓2𝑑

𝜕𝑝1𝑑
−

𝜕𝑓2

𝜕𝑝1𝑑
)      (29) 

𝜕Ω

𝜕𝑝2𝑑
= 𝑔2 (

𝜕𝑓1𝑑

𝜕𝑝2𝑑
−

𝜕𝑓1

𝜕𝑝2𝑑
) − 𝑔1 (

𝜕𝑓2𝑑

𝜕𝑝2𝑑
−

𝜕𝑓2

𝜕𝑝2𝑑
)  

 

Then the actual time derivative of 𝑧2 becomes 

 

�̇�2 = Ψ𝑢 − Ψ1𝑢𝑑 + 𝜆𝑧1 + 𝑐1(𝑧2 − 𝑐1𝑧1 − 𝜆Γ) − ∅   

(30) 

 

Where 

 

Ψ = 𝑔2 − 𝑘 (𝑔1
𝜕Ω

𝜕𝑒3
+ 𝑔2

𝜕Ω

𝜕𝑒4
)       (31) 

 

Ψ1 = 𝑔2𝑑 − 𝑘 (𝑔1𝑑
𝜕Ω

𝜕𝑒3
+ 𝑔2𝑑

𝜕Ω

𝜕𝑒4
+  

𝑔1𝑑
𝜕Ω

𝜕𝑝1𝑑
+ 𝑔2𝑑

𝜕Ω

𝜕𝑝2𝑑
)    (32) 

 

And 

 

�̇�2 = 𝑓2 − 𝑓2𝑑 − 𝑘 (
𝜕Ω

𝜕𝑒1
(𝑝1 − 𝑝1𝑑) +

𝜕Ω

𝜕𝑒2
(𝑝1 −

𝑝1𝑑) +
𝜕Ω

𝜕𝑒3
(𝑓1 − 𝑓1𝑑) +

𝜕Ω

𝜕𝑒4
(𝑓2 − 𝑓2𝑑) +

𝜕Ω

𝜕𝑞1𝑑
�̇�1𝑑 +

𝜕Ω

𝜕𝑞2𝑑
�̇�2𝑑 +

𝜕Ω

𝜕𝑞3𝑑
�̇�3𝑑 +

𝜕Ω

𝜕𝑞4𝑑
�̇�4𝑑)                          (33) 

 

Step 5: The desired dynamics of 𝑧2 can be 

designed as 

 

�̇�2 = −𝑧1 − 𝑐1𝑧2               (34) 

 

where the design constant 𝑐2 > 0. 

As a result, the control input (i.e., front steering 

angle 𝛿) can be estimated by the equality of Eqs. 

(30) and (34), as in the following law: 

 

𝑢 = 𝛿 = Ψ1𝑢𝑑 − (1 − 𝑐1
2 + 𝜆)𝑧1 − (𝑐1 + 𝑐2)𝑧2 + 

𝜆𝑐1Γ − ∅/Ψ  (35) 

 

Eventually, the following strict block feedback 

state of the original error dynamics of the state 

model of the system in terms of the variables 𝑧1 and 

𝑧2 is achieved: 

 

{
�̇�1 = 𝑧2 − 𝑐1𝑧1 − 𝜆Γ

�̇�2 = −𝑧1 − 𝑐2𝑧2
                (36) 

4.2 Stability analysis  

Lemma 1: For the 2DOF vehicle model, 

applying the control law of Eq. (35) can derive it 

along the continuous desired tracking path. 

Proof: The system of Eqs. (24) and (34) for the 

closed loop system should prove that it is 

asymptotically stable. Proposing the following 

Lyapunov’s function, the first step can be verified, 

as follows: 

 

𝑉 =
1

2
𝑧1

2 +
1

2
𝑧1

2+
1

2
𝜆Γ2           (37) 

 

Deriving Eq. (37) with respect to time and 

substituting Eqs. (24) and (34) into it and 

simplifying lead to 

 

�̇� = 𝑧1�̇�1 + 𝑧2�̇�2 + 𝜆Γz1  

= −𝑐1𝑧1
𝑇𝑧1 − 𝑐2𝑧2

𝑇𝑧2 ≤ 0              (38) 

 

Eq. (38) appears to prove that 𝑉(𝑡) ≤ 𝑉(0) is 

confirmed; thereforeΓ , 𝑧1 , and  𝑧2 are bounded in 

addition to �̇�1 and �̇�2. Deriving Eq. (38) again gives 

 

�̈� = −2𝑐1𝑧1
𝑇�̇�1 − 2𝑐2𝑧2

𝑇�̇�2        (39) 

 

Because 𝑧1 ,  𝑧2  , �̇�1  and �̇�2 are bounded, �̈�  is 

bounded also. Applying Barbalat's lemma [38] 

proves that 𝑧1  and  𝑧2  converge to zero when 𝑡 →
∞: 

Lemma 2: The trajectory tracking errors of Eq. 

(16) grantees asymptotically converge to zero when 

applying the control law with initial conditions 

 [𝑞1(0) 𝑞2(0) 𝑝1(0) 𝑝2(0)]𝑇. 



Received:  December 1, 2022.     Revised: January 11, 2023.                                                                                          246 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.20 

 

Proof: As long as 𝑧1 and 𝑧2 are proved, it 

converges asymptotically to zero and the gain 𝑘 >
0; hence, Eq. (18) gives 

 

lim
𝑡→∞

𝑒2 = lim
𝑡→∞

[𝑘(𝑒1 + 𝑔2𝑒3 − 𝑔2𝑒4)]     (40) 

 

From Eqs. (21) and (22), the following can be 

achieved: 

 

lim
𝑡→∞

𝑒4 = lim
𝑡→∞

𝛼 =  lim
𝑡→∞

Ω = 0               (41) 

 

Substituting these results into Eq. (40): 

 

𝑒1 + 𝑘𝑔2𝑒3 → 0             (42) 

 

leads to 

 

lim
𝑡→∞

𝑒1 = lim
𝑡→∞

𝑒3 =  0           (43) 

 

As a result, the four variables of the tracking 

error vector of Eq. (16) converge asymptotically to 

zero. Consequently, the global stabilization of the 

dynamic of the 2DOF bicycle car model can be 

ensured by the suggested control law. 

5. Simulation and results 

In this section, simulations were conducted to 

verify the proposed block backstepping controller 

method using the linking of CarSim and Simulink 

software. The proposed method was applied to drive 

a 2DOF autonomous vehicle along a desired double 

lane change tracking path. Simultaneously, the 

proposed block backstepping controller was 

compared with a human driver’s control [36], and 

with the traditional LQR controller (Fig. 3) as 

described in [26] for the same double lane change 

tracking path. The weighted matrix used in LQR is 

selected as: Q= diag([1,3,1,3]), R= 10.  

 

 
Figure. 3 Schematic diagram of a modified block 

backstepping, LQR, and driver transfer function 

controllers for an autonomous vehicle 

Table 1. Design parameters of the autonomous vehicle 

used in this study [36] 

Symbol  Parameter Value 

𝑚 Mass 1500 kg 

𝐼 
Moment of inertia about z-

axis 
2500 

kgm2 

𝑙𝑓  
Distance from C.O.G. to front 

axle 
1.1 m 

𝑙𝑟  
Distance from C.O.G. to rear 

axle 
1.6 m 

𝐾𝑓  Front cornering stiffness 
55000 

N/rad 

𝐾𝑟  Rear cornering stiffness 
60000 

N/rad 

𝑉 = 𝑉𝑥 Velocity 25 m/s 

𝜏𝐿 1st order delay time 0.02 sec 

ℎ Proportional gain 0.02 m 

 

 
Table 2. Manually found parameters of the block 

backstepping controller 

µ  c1 c2 λ k 

1 0.01 0.01 0.01 1 

0.3 0.01 0.01 0.011 4 

 

 

The used vehicle model for the simulation is the 

E - class. The parameters of the vehicle are tabulated 

in Table 1. Assuming the initial state of the first 5th-

degree polynomial function interval is  
ζ2→7sec=[0 0 0    3.75 0 0] m, and for the 

second 5th-degree polynomial interval is  
ζ7→12sec=[3.75 0 0    0 0 0] m. 

After mathematical substitution for the current 

problem, it was easily found that the terms of Eq. 

(28) are 

 
𝜕Ω

𝜕𝑒1
=

𝜕Ω

𝜕𝑒2
=

𝜕Ω

𝜕𝑒3
= 0, and    

𝜕Ω

𝜕𝑒4
= 1  

 

which helps in the reduction of Eq. (30). 

The design parameters for the block 

backstepping controller can be selected by trials, as 

tabulated in Table 2. The numerical value of these 

parameters should be real and positive to guarantee 

the stability of the system. The desired control input 

(𝑢𝑑) is zero; hence, the required control input (i.e., 

the steering angle ) can be written as 

 

𝑢 = 𝛿 = −(1 − 𝑐1
2 + 𝜆)𝑧1 − (𝑐1 + 𝑐2)𝑧2 + 𝜆𝑐1Γ −  

∅/Ψ       (35) 

 

The first simulations were conducted under a  
 



Received:  December 1, 2022.     Revised: January 11, 2023.                                                                                          247 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.20 

 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure. 4 Vehicle performance by the suggested block backstepping controller compared to the LQR, and human driver’s 

transfer function controller: (a) displacement, (b) yaw angle, (c) lateral velocity, (d) yaw rate, and (e) front steering angle 
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(a) 

 
 

(b)  (c) 

  

(d) (e) 

Figure. 5 Vehicle performance by the suggested block backstepping controller compared to the controller presented by 

Reference [25]: (a) displacement, (b) yaw angle, (c) lateral velocity, (d) yaw rate, and (e) front steering angle 
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(a) 

  

(b)  (c) 

  

(d) (e) 

Figure. 6 Comparison of the suggested block backstepping controller vehicle front steering angle along the desired path 

for maneuver with 98.0=  and 3.0=  controllers: (a) Vehicle displacement; (b) Vehicle yaw angle; (c) Vehicle lateral 

velocity; (d) Vehicle yaw rate; (e) Vehicle front steering angle 
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constant longitudinal velocity of V=25 m/s, and the 

coefficient of friction of the road was 𝜇 = 1. These 

simulations for tracking the 2DOF autonomous 

vehicle in the desired double lane change were 

conducted using the proposed block backstepping 

control method. Meanwhile, for comparative 

purposes, a similar simulation for tracking the 2DOF 

autonomous vehicle in the desired double lane 

change were conducted using the LQR controller 

[26] and the driver transfer function controller 

method. 

Fig. 4 (a) illustrates the lateral displacement of 

all controllers compared to the reference double lane 

change tracking path and likewise with respect to 

yaw angle, lateral velocity, and yaw rate, as can be 

seen in Fig. 4 (b, c, d) respectively. There is a little 

difference between the modified block backstepping 

and LQR controller. However, It can be seen in Fig. 

4 (a, b, c, d) that there are a small overshoot with 

LQR controller at the second part of path. 

Additionally, in the case of block backstepping, 

the front steering angle shown in Fig. 4 (e) followed 

the desired path in spite of the small vibration 

during the second lane changing and at the start of 

the second horizontal tracking path. Consequently, it 

was clear that the block backstepping controller was 

stable, and its performance was better than the 

driver transfer function controller. Clearly, the 

performance of the block backstepping controller 

tended to be close to the desired path, while the 

driver transfer function controller had a delay time 

and there was a wide difference with respect to the 

desired path in spite of selecting the optimum τ𝐿. Fig. 

4 (e) shows the simulation result of steering angle 

(the controller output). Although the steering angle 

at (7-8) sec and (12-14) sec of the second half of the 

path using backstepping controller has vibration 

higher than that the LQR controller, the amplitude 

of backstepping controller was smaller than the 

LQR controller and converged quickly.        

Both controllers track the desired bath perfectly, 

but the performance of the modified block 

backstepping controller in reducing the position and 

velocity errors is noticeable, which indicates the 

effectiveness of the proposed controller. 

Recent algorithm of [25], which suggested a 

controller of sliding mode method based on 

Lyaponov stability condition , is compared to the 

proposed modified block backstepping method in 

order to further verify the performance. Using the 

same vehicle properties of Table 1, and ignoring the 

wind influence, and implementing the deviation 

between the actual and the desired yaw angle as the 

tracking error, i.e., 𝑒1 = 𝜓 − 𝜓𝑑  , and the sliding 

mode function is defined as   

 

𝑠1 = 𝑐1𝑒1 − �̇�1                   (44) 

 

Defining the control law as in [25] and selecting 

 𝜂1 =  150, 𝜆1 =5, 𝑐1 =250, then the front steering 

angle 𝛿𝑓  can be found to derive the vehicle along 

double lane change, which defined previously.  

Again, under a constant longitudinal velocity of 

V=25 m/s, and the coefficient of friction of the road 

was 𝜇 = 1 , the 2DOF autonomous vehicle in the 

desired double lane change of 10 sec were simulated 

using the both methods. 

Fig. 5 (a) shows the lane changing trajectory 

produced by both methods with respect to the 

desired path, where both of them tracking it without 

vibrations and the error of block backstepping 

controller is smaller than Ref. [25] during the 

interval (5~7)sec. Fig. 5 (b) shows the yaw angle, 

and clearly that the block backstepping controller is 

superior than [25]. Meanwhile, Fig. 5 (c) presents 

the lateral velocity by both methods with respect to 

the reference velocity.  

However, the situations are not the same with 

respect to the yaw rate and front wheel steering 

angle where there are vibrations at the beginning of 

each lane interval as seen in Fig. 5 (d, e), 

respectively. It can be seen in Fig. 5 (d) that the 

maximum yaw rate error by using the method of 

[25] is 0.3511 deg/sec at the first lane, and 0.4757 

deg/sec at the second lane (after 5 sec), while the 

maximum yaw rate error by using the method of 

block backstepping is 0.2032 deg/sec at the first lane, 

and 0.1974 deg/sec at the second lane (after 5 sec). 

Fig. 5 (d) indicates that the maximum front steering 

angle error by using the method of [25] is 0.3252 

deg at the first lane, then goes suddenly at the 5th sec 

to 0.2772 deg then changes to -0.5599 deg at the 

5.019th sec which produces an enormous error of 

0.5729 deg then jump up again to +0.0408 deg at the 

second lane, which is not comfortable driving case 

along short lane with high speed. Meanwhile the 

maximum front steering angle error by using the 

method of block backstepping is 0.0701 deg at the 

first lane and 0.1083 deg at the second lane (after 5 

sec). It can be concluded that both methods can 

track the trajectory accurately, and the proposed 

block backstepping controller is superior to [25] in 

yaw rate and front wheel steering when vehicle 

travels at high speed and short trajectory.  

In the third simulations that were conducted only 

the proposed block backstepping controller was used 

with two different coefficients of road friction (𝜇 = 

0.98 and 𝜇 = 0.3). The longitudinal constant velocity 

was V=25 m/s. It is worth mentioning here that the 
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block backstepping parameters (Table 2) should be 

modified to ensure the stability of the proposed 

controller and to track the desired path precisely. It 

is clear from Fig. 6 (a) that the block backstepping 

controller precisely satisfied the tracking 

performance of a double lane change reference in 

cases of both high and low values of friction. This 

demonstrated the effectiveness of the proposed 

controller after the correct selection of the 

controller's parameters. Moreover, this was 

concluded from the lateral velocity and yaw angle 

behavior (regardless of the slight ripple along the 

yaw angle) as in Fig. 6 (b, c) respectively. However, 

the effect of low friction on the vehicle was clear 

where there was more vibration than with high 

friction (Fig. 6 (d)) because of the need for yaw 

moment to counter the effect of slipping. These 

sharp vibrations occurred more frequently and were 

more obvious in the low friction case than in the 

high friction case, as seen Fig. 6 (e). 

All the simulations indicated that the behavior of 

the suggested modified block backstepping 

algorithm was stable and could safely drive the 

vehicle along a desired path with different friction 

conditions with acceptable stability. 

For the controller robustness test, we considered 

the lateral side wind gust force, 𝑌𝑤, shown in Fig. 7, 

acting on the aerodynamic center (AC) of a vehicle 

moving on a 5th-degree polynomial path. The 

distance between the AC and the vehicle center of 

gravity is 𝑙𝑤, and it is positive if the AC is behind 

the center of gravity [36]. Consequently, the vehicle 

will deviate from its original path. Hence, the 

controller should return the vehicle to movement 

along the path. 

If the lateral force, 𝑌𝑤 , and yaw moment 𝑁𝑤 , 

where 𝑁𝑤 = −𝑙𝑤𝑌𝑤 , act on the vehicle, then the 

equations of motion of the vehicle are rewritten as 

 

𝑚�̈� = −
2(𝐾𝑓 +𝐾𝑟 )

𝑉
�̇� −

2(𝑙𝑓 𝐾𝑓 −𝑙𝑟 𝐾𝑟 )

𝑉
�̇� +  

2(𝐾𝑓 + 𝐾𝑟 )𝜓 + 2𝐾𝑓𝛿 + 𝑌𝑤   (45) 

 

𝐼�̈� = −
2(𝑙𝑓 𝐾𝑓 −𝑙𝑟 𝐾𝑟 )

𝑉
�̇� −

2(𝑙𝑓
2

 
𝐾𝑓 +𝑙𝑟

2𝐾𝑟 )

𝑉
�̇� +  

2(𝑙𝑓 𝐾𝑓 − 𝑙𝑟 𝐾𝑟 )𝜓 + 2𝑙𝑓 𝐾𝑓𝛿 − 𝑙𝑤𝑌𝑤      (46) 

 

We executed a Simulink simulation of the 

vehicle motion subjected to a wind gust of  𝑌𝑤 = 2.0 

kN for a short period (from the 8th sec to the 8.9th 

sec) 𝑙𝑤 = − 0.31 m (it is negative because the AC is 

in front of the center of gravity). The vehicle is 

running at V = 25 m/s and it has the same 

parameters as in previous simulations. 

 
Figure. 7 Lateral side wind gust force 

 

Simulation results for the vehicle subjected to 

the gust force (from the 8th sec to 8.9th sec) are 

shown in Fig. 8 (a, b, c). In Fig. 8 (a), it can be seen 

that the modified block backstepping controller 

maintained the vehicle moving along the desired 

path with a deviation not more than 0.11 m, and this 

was not worse and was acceptable as long as the 

maneuvering of the car was 3.75 m during a speed 

of 90 km/h (25 m/s). Clearly, the effect of this 

disturbance gust force was seen in the velocity and 

yaw rate curves compared with the same motion 

without this disturbance gust force (Fig. 8 (b, c)).  

Although there was a vibration during the 

disturbance period, the controller damped it 

gradually, and the vehicle motion became stable 

again. Hence, one can perceive the robustness of the 

suggested control of the study. 

6. Conclusions and recommendations 

In this research, a double lane change desired 

track utilizing a 5th-degree polynomial was 

generated. A block backstepping controller was 

implemented for tracking the desired path of a 

2DOF autonomous vehicle. The state model of this 

underactuated system was converted into block strict 

feedback form. Later, a modified block 

backstepping input control law was formulated. To 

enhance the tracking control performance, an 

integral action was combined. The global 

asymptotic stability of this presented controller was 

proved by the Lyapunov theory and Barbalat's 

lemma. 

Simulation outcomes (using the CarSim-

Simulink Connection) demonstrated the 

effectiveness of this suggested block backstepping 

algorithm compared to the controller designed for 

the LQR controller and the human driver's transfer 

function as well as sliding mode controller. 

Furthermore, the controller maintained the vehicle 

stability in spite of different surfaces or disturbance 

forces over short periods. 

Eventually, finding the optimal constants of the 

modified block backstepping controller was 

achieved by trial and error. In upcoming research, a 

computational method that optimizes these constants,  
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(a) 

 
(b) 

 
(c) 

Figure. 8 Simulation results for the 2DOF vehicle model 

path tracking controller with and without disturbance: (a) 

Displacement; (b) Velocity; (c) Yaw rate 

 

for instance, particle swarm optimization (PSO), 

will be used to improve the candidate controller.  
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Notations  

Symbol  Parameter 

ζI  and ζII  

The state vectors of lateral 
displacement , velocity, and 

acceleration for each lane change 
interval (𝐼 and 𝐼𝐼) 

(𝑖) and (𝑓) 
The starting point and the final 

point 

𝑎𝑗 The coefficients of the polynomial 

𝑚 Mass of vehicle 

𝐼 Moment of inertia about z-axis 

𝑓 and  𝑟  front and rear 

𝑙𝑓 Distance from C.O.G. to front axle 

𝑙𝑟  Distance from C.O.G. to rear axle 

𝐾𝑓, 𝐾𝑟  
Cornering stiffness of (front, rear) 

tires 

𝐹𝑓 and 𝐹𝑟 
The lateral forces acting on the 

front and rear wheels 

𝑡 time 

𝑢 Input control signal 

𝑉 = 𝑉𝑥 Velocity 

𝑦 The vehicle’s lateral offset 

𝜓 Yaw angle 

𝛿 The steering angle 

𝑋 
The state vector in a rewritten 

form 

𝑋𝑑  The desired trajectory 

𝑒1 = 𝑦 − 𝑦𝑑  

    = 𝑝1 − 𝑝1𝑑 
lateral offset error 

𝑒2 = 𝜓 − 𝜓𝑑 

     = 𝑝2 − 𝑝2𝑑 
yaw angle error 

𝑘, 𝜆, 𝑐1, and 𝑐2 Positive design constants 

𝑧1, 𝑧2 
The first control variable and The 

second control variable 

𝜏𝐿 1st order delay time 

ℎ Proportional gain 

𝜇 Coefficient of road friction 

Q and  R Weighted matrix used in LQR 
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