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Abstract: The internet of things (IoT) affects everyday life because digital technology improves. IoT is a group of 

devices with sensors that talk to each other to reach a goal. IoT systems have traditionally been built on top of cloud 

computing (CC). IoT devices are slow because CC data centres are separated from them. This slows down the speed 

at which real-time applications respond. In addition, IoT devices send a lot of data to the cloud to be processed, which 

overloads the cloud. Edge computing can stop IoT devices from being slow or overloaded. Fog computing (FC) is a 

way to get services at the edge of a network. With locationawareness, the FC cuts down on latency and overloading. 

Bandwidth and jitter must be looked at during the process of allocating resources. In this work, the Lotka-Voltera load 

balancer and elman hebbian-recurrent neural network cache (LV-EHRCC) are proposed for allocating resources in an 

FC context. LV-EHRCC is made up of load balancing and allocating resources. First, the LotkaVoltera traffic load 

balancer model is used to increase the amount of Bandwidth available for load balancing. Second, an Elman Hebbian-

Recurrent Neural Network model for allocating cached resources efficiently is made for the best load-balanced FC 

context. Simulations test what will happen. The load balancing capacity of the proposed scheme is 93.25 and attains 

the highest Bandwidth of 45. In FC simulations, the LV-EHRCC method improves the efficiency of load balancing in 

terms of Bandwidth, makespan, and jitter rate. The simulation results back up our study and show that LV-EHRCC is 

better than the benchmark approaches when they are compared.  

Keywords: IoT, Cloud computing, Fog computing, LotkaVoltera, Load balancer, Virtual machine, Elman, Hebbian. 

 

 

1. Introduction 

IoT has recently given rise to a fresh wave of 

embedded internet-connected applications. 

Numerous different applications can be deployed 

with cloud computing (CC), and its concentric 

administration provides effective object 

communication. Scalable systems can be managed by 

IoT thanks to their enormous data storage, computing 

power, and resource provisioning. IoT's low latency 

is used in CC's centralized framework despite its 

ability to handle scalability issues. FC can address 

these issues. Fog effective prediction and resource 

allocation methodology (EPRAM) was presented in 

[1]. The prediction method assisted EPRAM in 

resource management. EPRAM consisted of the 

following modules: Data pre-processing module 

(DPM), resource allocation module (RAM), and 

effective prediction module (EPM). To forecast the 

target field using one or more predictors, EPM 

employed PNN. Here, utilizing user IoT data, the 

PNN predicts the likelihood of a heart attack and 

takes appropriate action. The objective was to 

improve QoS metrics, including response time, 

Bandwidth, and energy consumption while lowering 

latency. These elements were found with deep 

reinforcement learning (RL). Although response time, 

Bandwidth, and energy usage all improved, load 

balancing effectiveness was not given priority. To 

ensure processing and IoT data transfer to the CC 

environment, [2] suggests load balancing for IoT 

gateways. This topology suspended the FoT data 

streams to provide scalability and latency. Cloud and 

fog data traffic saw the least latency and capacity 

thanks to the effective management of the software 

defined network (SDN) controller. We measured 

response time, active time, and missing samples. The 
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results defeated round robin and least connection. IoT 

with FC involves hardware and software resource 

allocation; response time and busy time were 

enhanced; bandwidth and jitter rate was not. The 

neural network and meta-scheduler in [3] effectively 

predicted fog resources. Five algorithms were 

employed to identify the best help. [4] examines 

issues with the fog computing (FC) environment. 

Offloading energy and data from consumer devices 

with limited resources to cloud infrastructure led to 

system optimization and better performance. Fog 

unloading was thoroughly investigated in [5]. One of 

the most significant advancements in recent years has 

been moving data control and storage to the cloud to 

satisfy traffic demands. It affects latency by causing 

network delays. Fog computing, which moves 

control and data storage to the network edge, has 

become unavoidable in recent years as a solution to 

this problem. [6] offered a method for allocating 

resources and offloading work in multi-fog node 

systems. The average success rate and partial 

observability were enhanced using deep Q network 

(DQN) and deep convolutional Q network (DCQN). 

lack of load balance. [7] recommended a load-

balancing method using cat swarm optimization to 

increase throughput and lower energy usage. In this 

study, a load-balancing and resource-provisioning 

strategy are proposed and implemented. The 

suggested approach combines optimization and deep 

neural networks to increase Bandwidth, jitter, 

makespan, and load balancing. The FC environment's 

best load balancing and resource distribution are 

made possible by the elman hebbian-recurrent neural 

network cache resource allocation (LV-EHRCC) and 

LotkaVoltera load balancer. 

1.1 Contributions 

Work contributions include: 

 

• Propose LotkaVoltera load balancer and elman 

hebbian-recurrent neural network cache resource 

allocation (LV-EHRCC) in fog computing 

environment for significant prediction by combining 

a novel load balancing and resource allocation model, 

ensuring accurate balancing analysis with minimum 

Bandwidth and jitter. 

• A LotkaVoltera traffic load balancer model to 

minimize Bandwidth and improve load balancing 

during user request jobs. 

• Elman hebbian-recurrent neural network-based 

cache resource allocation model enables resilient and 

accurate decision-making based on studied load and 

optimal resource allocation across user-requested 

tasks. 

• Extensive experimental assessment of LV-EHRCC 

approach against EPRAM and load balancing for 

FoT-Gateways to show the predictive analytical 

performance of the suggested method. 

1.2 Organization of the paper 

Here's how the rest of the paper is organized. A 

literature review of load balancing and resource 

allocation is presented in section 2. The proposed 

methodology LV-EHRCC, resource allocation in a 

fog computing environment is presented in section 3. 

The experimental setup is described in section 4, 

results and analysis are discussed in section 5, and 

conclusions are presented in section 6. 

2. Related works 

The upcoming fog computing and the Internet of 

Things IoT are said to be mandatory for next-

generation communication applications. However, 

the communication capacity was found to be 

constrained upon comparison with the increase in 

internet of things (IoT) devices. Moreover, the 

optimal allocation of distinct tasks ignites the load-

balancing aspect in the FC network to ensure optimal 

resource allocation.  

In [8], a fog load balancing problem was 

designed,considering the communication and 

computation aspects to reduce the cost involved in 

load balancing. However, processing time, another 

factor involved during load balancing, should also be 

considered. Finally, in [9], home edge computing was 

designed based on clustering and load-balancing 

technique. With this,the congestion was avoided, but 

it also resulted in the minimization of latency.  

Despite the outstanding work performed to 

enhance fog computing applications, task scheduling 

is still a significant concern. Owing to this, a novel 

multiobjective method was presented in [10] based 

on combining marine predator's algorithm with the 

polynomial mutation mechanism. With this, efficient 

task scheduling in FC environments was ensured. 

Furthermore, an outpouring in the significance of 

sensors and real-time monitoring factors has led to 

combining two powerful techniques: the cloud 

computing environment and the internet of things 

(IoT). Moreover, large-stream data processing has 

resulted in yet another novel approach, fog 

computing.  

A survey of application algorithms for fog 

computing was investigated in [11]. In [12], there 

were five essential factors: concerns in fog 

computing, optimization process involved in fog and 

IoT, compared scheduling algorithms, rationalized 

the scheduling patterns and measures were also taken 
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for improving scheduling. A protection mechanism 

for edge computing was analyzed in [13].  

Real-time decision-making is said to be arrived at 

when applied with latency-aware resource allocation. 

Fog nodes would ensure optimized decision-making 

when employed in a cloud computing environment. 

In [14], an efficient resource allocation and fault 

tolerance method for the fog layer was proposed. 

Also,the recovery time involved in failure was said to 

be improved. In [15] log likelihood ratio was 

measured for enhanced decision-making in a cloud 

environment.  

To attain significant resource allocation and 

minimize users’ computing time, the virtual machine 

(VM) allocation must be optimized. A new 

multiobjective optimization method with dynamic 

resource allocation combining the present state and 

future predicted data concerning each load, virtual 

machine relocation cost and new VM stability were 

also considered comprehensively. Also, a 

multiobjective optimization genetic algorithm was 

presented to address the issues concerning time and 

VM allocation [16]. Yet another method for data 

reduction was proposed in [17] by employing a naïve 

bayes classifier. Finally, in [18], by introducing 

mixed integer nonlinear optimization offloading was 

introduced to ensure smooth computing resource 

allocation.  

The explosive evolution of small cell base 

stations (SBSs) delegated with computing 

potentialities presents one of the most ingenious 

factors applied as far as fifth-generation (5G) cellular 

networks are concerned to address data explosion and 

ultralow latency. In [19], green-based edge network 

management (GENM) algorithm was proposed that 

ensured green-based load balancing in base station 

BSs and reduced consumption of energy within the 

multi-access edge computing (MEC) server. In [20], 

another hybridization of the heuristics technique was 

applied to cope with the load balancing issue. 

[21] models resource optimization in fog 

computing with shift-invariant deep convolutive load 

balancing technique in simulated fog computing 

environment using ifogsim. 

In a fog computing environment, another [22] 

load balancing method using the differential 

evolution-based grey wolf optimization model and 

the resource allocation method utilizing the 

stochastic gradient and deep reinforcement learning-

based resource allocation model are examined. 

The existing approaches face the issues such as 

proficient allocation of resources and balancing the 

load. However, the current system does not 

accomplish accurate and effective decision-making 

without latency. 

From the above research gaps, it has been 

analyzed that previous works on load balancing in the 

FC environment has given little significance to 

bandwidth-improved load balancing and jitter-

optimized resource allocation. Therefore, present 

research on load balancing and resource provisioning 

has been done to understand better the issues 

considered earlier and to bridge the gaps in the 

previous studies. 

3. Methodology  

This section presents a three-plane LV-EHRCC 

resource allocation method of an FC network. The 

first tier of the LV-EHRCC process consists of 

sensors NEC personal cloud traces, for example, 

volume, node, session and request types and 

transmits to the fog nodes. The fog nodes constitute 

the second place of the method. The fog nodes 

analyze the data or data packets obtained from IoT 

devices, and the results are sent back for further 

analysis. To ensure that all the combinations of 

workloads and providers are addressed in a real-time 

environment, the fog nodes are placed at the edge of 

the network,i.e. adjacent to the IoT devices. The 

results of combinations of workloads and providers 

are also stored in the cloud data centre present at the 

cloud plane. 

Moreover, the transmission link between a cloud 

server and fog nodes is constructed via a proxy server. 

The cloud data centre is predominantly utilized to 

ensure optimal data centres for storage. The fog 

computing-based method of our proposed method is 

shown in Fig. 1. It shows the three FC planes: end, 

fog, and cloud. End plane: contains end devices D=D1, 

D2..., Dm or IoT devices and is FG's data source. Let's 

assume Bandwidth and jitter categorize user-

requested jobs. Then, for each user-requested task, 

Bandwidth and jitter are pre-arranged based on the 

number of instructions or data packets. 

Fog plane: fog nodes FN=FN1,FN 2,...,FN n next 

to end devices D=D1,D2,...,Dm. Data exchanges 

between fog nodes (FN) and end devices D expose 

delay. Fog nodes are co-located with base stations to 

which IoT devices are attached. Offloaded jobs 

require a central processing unit (CPU), memory, and 

storage in a virtual machine (VM) to process data 

packets for Bandwidth and jitter. 

The confined resource volume at the fog node may 

not allow all tasks T=T1, T2..., Tm to be processed 

simultaneously due to the Bandwidth and jitter 

associated with offloading activities. So, tasks are 

queued up. 

Cloud plane has an unlimited-resource cloud data 

centre (CDC). 'CDC' uses a single-user VM to 
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Figure. 1 Structure of three-plane optimal load balancing and resource allocation 

 

process 'T' for best performance. The Bandwidth 

between FN and CDC and jitter causes data 

transmission latency. Based on the user-requested 

task processing arrangement in the three-plane fog 

computing network, processing (optimal load-

balanced resource allocation) is split into two 

portions. User request task buffering (URTB) at fog 

nodes defines implementation sequences on user 

request task arrivals. LotkaVoltera traffic load 

balancer is used to accomplish URTB in this work. 

By calculating traffic load and looking at the queue 

using LotkaVoltera optimization, this approach 

achieves efficient load balancing with better 

Bandwidth, even with many user-requested jobs. 

Virtual machines are allocated according to user-

requested tasks in a bandwidth-optimized load-

balancing manner. Optimal resource allocation at fog 

nodes (ORA): The elman hebbian-recurrent neural 

network assigns user-requested tasks to fog resources 

in the waiting queue, so scheduled tasks can run. 

With global cloud networks connecting millions 

of IoT devices to many servers, cloud user requests 

across devices take a long time. Due to this, cloud 

user requests on the edge of the cloud are moved to a 

costly fog layer. Therefore, optimized load balancing 

between fog and cloud layers is required for excellent 

service quality and efficiency. This study introduces 

a LotkaVoltera traffic load balancer model that 

optimizes bandwidth rate by considering traffic load 

and LotkaVoltera function. Fig. 2 depicts the 

LotkaVoltera traffic load balancer structure. The 

following LotkaVoltera  

Traffic load balancer model indicates that 

correlations between transfer speed and load are 

recognized using two steps. First, the actual traffic 

load is evaluated using the IoT device's transmission 

power, channel gain, and size. Second, a 

LotkaVoltera optimization function considers 

incoming and queued workloads' propagation speed 

and saturation rate. 

This balances the demand, increasing Bandwidth. 

Let's assume that ‘L' is a location identifying three 

types of volumes ‘Volume', and IP address of node 

‘node IP' in area ‘A', and IoT device ‘D' put at ‘P' 

location has transmission power ‘TransP(L)', channel 

gain ‘CG(L)', and noise power ‘2'. 

 

𝑆𝑁𝑅(𝐿) =
𝑇𝑟𝑎𝑛𝑠𝑃(𝐿)×𝐶𝐺(𝐿)

𝜎2  (1) 

 

The channel gain 'CG' is measured as follows. 

 

𝐶𝐺(𝐿) = 10 log 10 [
𝜆

(2𝜋𝐷)
] (2) 

 

The channel gain for a location in region ‘A' is 

based on wavelength ‘' with IoT device ‘D' and base 

stations ‘BS' differentiated via distance ‘D'. If an IoT 

device ‘D' is associated with ‘j-th' base station ‘BSj' 

with bandwidth ‘BWj', then the IoT device's 

magnitude ‘Mag j (L)' is mathematically defined as 

follows. 

 
End devices 

 
End devices 

 
End devices 

 

𝐸𝑛𝑑 𝑃𝑙𝑎𝑛𝑒  

 
Fog nodes 

𝐹𝑜𝑔 𝑃𝑙𝑎𝑛𝑒 

 

𝐶𝑙𝑜𝑢𝑑 𝑃𝑙𝑎𝑛𝑒  
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𝑀𝑎𝑔𝑗(𝐿) = 𝐵𝑊𝑗𝑋 log 10 [1 + 𝑆𝑁𝑅(𝐿)]       (3) 

 

From Eq. (1), a poisson process describes random 

occurrences (i.e., user-requested activities). 

Moreover, the IoT device ‘𝐷 ’ at location ‘𝐿 ’ 

includes some traffic load for the base station. ‘𝐵𝑆𝑗’. 

Then, the traffic load is mathematically stated as 

given below.  

 

𝑇𝐿𝑗(𝐿) =
𝐷𝑃𝐹𝑅(𝐿)𝑋𝐷𝑃(𝐿)×𝐷𝐶𝑗(𝐿)

𝑀𝑎𝑔𝑗(𝐿)
                (4) 

 

From the above Eq. (4), the traffic load at location 

‘𝐿’ ‘𝑇𝐿𝑗(𝐿)’ is measured based on the data packet 

flow rate ‘𝐷𝑃𝐹𝑅(𝐿)’, number of data packets ‘𝐷𝑃(𝐿)’ 

and dual criterion. ‘𝐷𝐶𝑗(𝐿)’ if the device is associated 

with the respective base station. ‘𝐵𝑆𝑗’ or not. Also,to 

improve the volume or number of information (i.e., 

data packets) transmitted at a specific time instance 

in a load-balanced fashion, in our work, the 

LotkaVoltera function is employed. The 

LotkaVoltera function also referred to as the 

predator-prey equations (i.e., user-requested tasks-

tasks in the queue) denotes the pair of nonlinear 

differential equations in which two species interact 

(i.e., incoming tasks and the tasks already in the 

queue), one as a predator (i.e., user-requested tasks) 

and the other as prey (i.e., tasks in the queue). This is 

mathematically formulated as given below. 

 
𝑑𝑇

𝑑𝑡
= 𝛼 𝑇 − 𝛽𝑇𝑄        (5) 

 
𝑑𝑄

𝑑𝑡
= 𝛿𝑇𝑄 − 𝛾𝑄        (6) 

 

From Eqs. (5) and (6), and refer to the 

propagation rate of user-requested tasks, saturation 

rate of user-requested jobs, saturation rate of charges 

in a queue, and propagation rate of the queue 

concerning tasks ‘T' in queue ‘Q' correspondingly. 

By using the propagation and saturation rate, load 

balancing between user-requested jobs is ensured, 

increasing the maximum quantity of data or data 

packets transmitted over the internet in a given time. 

Below is LotkaVoltera's pseudo code. 

In the LotkaVoltera above traffic load balancer 

algorithm, the traffic load is measured using the 

poisson process to improve Bandwidth first. Second, 

with the observed traffic load, a LotkaVoltera 

optimization function assesses the tasks that may be 

handled, balancing the load optimally. Third, user-

requested tasks are distributed evenly between virtual  
 

Input: Dataset ‘𝐷𝑆’, end devices ‘𝐷 =
𝐷1, 𝐷2, … , 𝐷𝑚’, fog nodes ‘𝐹𝑁 =
𝐹𝑁1, 𝐹𝑁2, … , 𝐹𝑁𝑛’, data packet ‘𝐷𝑃 =
𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑘’, Virtual Machine ‘𝑉𝑀’, tasks 

‘𝑇 = 𝑇1, 𝑇2, … , 𝑇𝑙’ 

Output:Bandwidth-improved optimal load 

balancing 

1: Initialize ‘𝑚, 𝑛, 𝑙, 𝑘’, cloud data centre ‘𝐶𝐷𝐶’, 

Base Stations ‘𝐵𝑆’, queue ‘𝑄’ 

2: Initialize CPU ‘𝐶𝑃𝑈’, memory ‘𝑀’ and storage 

‘𝑆’, transmission power ‘𝑇𝑟𝑎𝑛𝑠𝑃(𝐿)’ 

3: Initialize ‘𝛼 = 0.1’, ‘𝛽 = 0.02’, ‘𝛾 = 0.4’ and 

‘𝛿 = 0.02’ 

4: Begin  

5: For each Dataset ‘𝐷𝑆’ with end devices ‘𝐷’, fog 

nodes ‘𝐹𝑁’ and data packet ‘𝐷𝑃’ 

 

6: Evaluate Signal to Noise Ratio as in (1) 

7: Estimate the magnitude of the IoT device as in 

(3) 

8: For each Base Stations ‘𝐵𝑆’ 

9: Evaluate traffic load as in (4) 

10: End for  

11: For each tasks ‘𝑇’ and tasks in queue ‘𝑄’ 

12: Evaluate predator and prey as in equations (5) 

and (6) 

13: End for 

14: End for  

15: End  

Algorithm 1 LotkaVoltera traffic load balancer 

 

computers.These two functions increase Bandwidth 

and load ba lance. 

3.1 Elman hebbian-recurrent neural network-

based cache resource allocation 

Upon load balancing, user-requested tasks must 

be allocated to fog resources in the waiting queue, so 

planned tasks can be done on time. Despite various 

studies ensuring effective resource allocation, 

significant congestion is reported to cause 

dissimilarity in data packet flow between two 

systems or user-requested tasks, resulting in delay. 

This part presents an elman hebbian-recurrent neural 

network-based cache resource allocation model. In 

this model, all user-requested jobs are expected to be 

stored in the local cache and can be obtained directly 

from base stations without downloading from the  
 

cloud data centre. In elman hebbian-recurrent neural 

network-based cache resource allocation, inputs and 

outputs are provided to learn the mapping between 

inputs (i.e., load-balanced user-requested tasks) and 

outputs (i.e., optimal resource allocation). The elman  
 

https://en.wikipedia.org/wiki/Nonlinear
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Predator
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Figure. 2 LotkaVoltera traffic load balancer model 

 
hebbian-context unit of hidden layer matrix. ‘𝐶𝑈𝐻𝐿’, 

previously hidden layer. ‘𝐻𝐿𝑡−1’ and the bias of the 

hidden layer. ‘ 𝐵𝐻𝐿 ’ respectively. For the first 

iteration, the weight is initialized as ‘1’, and at each 

time instance,the hebbian learning rule is applied to 

update the importance as given below.  

 

∆𝑊𝑖 = 𝜂𝐹𝑖𝑦   (9) 

 

𝑊𝑀 = 𝑊 =

[
 
 
 
 
𝑊1

𝑊2

𝑊3

…
𝑊𝑚]

 
 
 
 

=

[
 
 
 
 
𝑊11 𝑊12 … 𝑊1𝑛

𝑊21 𝑊22 … 𝑊2𝑛

𝑊31 𝑊32 … 𝑊3𝑛

… … … …
𝑊𝑚1 𝑊𝑚2 … 𝑊𝑚𝑛]

 
 
 
 

 (10) 

 

From the above Eqs. (9) and (10), the weights and 

input features are utilized to generate an output (i.e., 

resource allocation). The importancegiven above is 

represented in a matrix called connection matrix. 

Moreover, in the context unit, cache resource 

allocation is performed via base stations ‘𝐵𝑆’. Here, 

the total data or packets acquired by all the users at 

any time are given below. 

 

𝐷𝑃𝑇𝑜𝑡 = ∑ 𝐷𝑃𝑖
𝑛
𝑖=1   (11) 

 

For each cache level resource allocation, to 

increase the total receivable data packets of all users 

is formulated as given below.  

 

𝐷𝑃𝑖 = 𝑀𝐴𝑋[∑ ∑ 𝜑𝑖𝑗𝐹𝑗
𝑛
𝑗=1

𝑚
𝑖=1 ], 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝜑𝑖𝑗𝐹𝑗

𝜗
≤

 𝐿𝐶𝑖𝑗
𝐶𝐼  (12) 

 

From the above Eq. (12), ‘𝜑𝑖𝑗 ’ represent the 

optimal cache resource allocation factor concerning 

the given input features. ‘𝐹𝑗’. This total receivable 

data packets of all users ‘𝐷𝑃𝑖’ is formulated in such a 

manner that the transmission delay ‘𝜗’ represents the 

aggregated sum of data packet processing and data 

packet exchange time between user-requested tasks 

‘𝑇’ and the base stations ‘𝐵𝑆’. Finally, the result is 

obtained in the output layer, as given below.  

 

𝑂𝐿𝑡 = 𝜎𝑂𝐿(𝑊𝑂𝐿𝐻𝐿𝑡 + 𝐵𝑂𝐿)           (13) 

 

From the above Eq. (13), the output layer. ‘𝑂𝐿𝑡’ 

is formulated utilizing the output layer activation  
 

Personal Cloud 

Dataset 

Estimate 

traffic load 

𝑇𝑟𝑎𝑛𝑠𝑃(𝐿) 

𝐶𝐺(𝐿) 

𝑀𝑎𝑔𝑗(𝐿) 

Apply 

LotkaVoltera 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

Optimal load balancing  
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Figure. 3 Structure of the input layer and hidden layer, and an output layer 

 

function. ‘𝜎𝑂𝐿’,the weight of the output layer   matrix 

‘𝑊𝑂𝐿’ hidden layer ‘𝐻𝐿𝑡’ and the bias of the output 

layer. ‘ 𝐵𝑂𝐿 ’ respectively. The pseudo-code 

representati on of elman hebbian-recurrent neural 

network-based cache resource allocation is given 

below. 

In the above elman hebbian-recurrent neural 

network-based cache resource allocation algorithm, 

the input layer receives feature values and load-

balanced virtual machines for each user request. Then, 

the hidden layer formulates the resource allocation 

problem—hebbian based context unit weight update. 

Also, user-requested tasks and base stations exchange 

cache-level data packets. Finally, the output layer 

shows whether resources were allocated. Because the 

cache is handled instead of the cloud data centre, the 

delay between received data packets is minimized. 

This reduces jitter and increases the makespan.  

4. Experimental settings 

In this section, iFogSim simulates the proposed 

LV-EHRCC and existing methods, namely 

EPRAM[1] and load balancing for FoT-Gateways [2] 

that is investigated over different performance  
 

Table 1. Storage layer description 

S. 

No 
Feature  Description  

1 Volume 

Considered a directory with three 

types of volumes: i) root/predefined, 

ii) UDF (user-defined folder), and iii) 

share (sub-volume of another user to 

which the current user has access). 

2 Node 
A node is a file or a directory in the 

system. 

3 Session 

The session is used to identify 

requests of a single user during a 

session lifetime that does not expire 

automatically. The client may 

disconnect, or the server may go 

down, therefore resulting at the end 

of the session 

4 
Request 

types 

There are different request types.  

They are storage, session and RPC. 

 

 

metrics using personal cloud dataset. (obtained from  

http://cloudspaces.eu/results/datasets). Ifogsim 

simulator measure load balancing and resource 

management across for and cloud resource. 

𝑎1 

𝑎2 

𝑎𝑛 

… .. 

𝐼𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑏1 

𝑏2 

𝑏𝑛 

… .. 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑐1 

𝑐2 

𝑐𝑛 

… .. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

𝐶𝑈1 

𝐶𝑈2 

𝐶𝑈𝑛 

… .. 

𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑈𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

∑ 

Jitter-improved resource 

allocation  
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Table 2. Column fields description 

S. 

No 
Feature  Description  

1 Row_id 
Database row 

identifier 

2 Account_id 
Personal cloud 

account 

3 File_size 
Size of the uploaded 

file 

4 Operation_time_start 
Starting time of the 

API call 

5 Operation_time_end 
Ending time of the 

API call 

6 Time_zone Time zone of a node 

7 Operation_ID 
The ID of the API 

call 

8 Operation_Type Type of API call 

9 Bandwidth_Trace Time series trace 

10 Node_ip 
The IP address of the 

node 

11 Node_name Name of node 

12 Quota_start 
Amount of data at the 

start of API call 

13 Quota_end 
Amount of data at the 

end of API call 

14 Quota_total 
The total amount of 

data 

15 Capped Capped or not 

16 Failed 
Indicates if API has 

failed 

17 Failure 
Available failure 

information 

 
Table 3. Comparison results of load balancing efficiency 

using LV-EHRCC, EPRAM [1] and load balancing for 

FoT [2] 

Number of 

tasks 

Load balancing efficiency (%) 

LV-

EHRCC 
EPRAM 

Load 

balancing for 

FoT 

5000 98.7 97.7 96.3 

10000 97.15 94.35 92.15 

15000 97 94.15 90 

20000 96.85 93.56 88.35 

25000 96.35 92.15 86.15 

30000 96 91.15 83.25 

35000 95.15 90.35 81 

40000 95.05 87.35 80.15 

45000 94.35 85.25 79.35 

50000 93.25 83 78 

 

 

4.1 Dataset details 

The NEC personal cloud dataset integrates two 

sources of information, i.e., from the storage layer 

and sharing interactions. Table 1 below provides the 

storage layer description, whereas Table 2 below 

provides the column field description. 

5. Discussion 

This section compares the proposed (LV-

EHRCC) in an FC environment with existing state-

of-the-art methods, EPRAM [1] and load balancing 

for FoT-Gateways [2]. In addition, personal cloud 

datasets are utilized for performance analysis using 

metrics, Bandwidth, load balancing efficiency, jitter, 

and makespan for 50000 specific user-requested jobs 

in the iFogSim simulator using graphical user 

interfaces. 

5.1 Performance analysis of load balancing  

Load balancing distributes network traffic 

between servers to improve potential and 

dependability. It also refers to user-requested task 

dispersal. This efficient workload distribution 

manages the workload better by allocating resources 

between numerous servers quickly, resulting in 

higher performance. The goal is to distribute load 

among multiple servers effectively. When one server 

is busy with user requests and others are   idle, some 

burdens are moved to a nearby server with fewer 

requests. By distributing workload, Bandwidth and 

jitter are effectively used. This is shown below. 

 

𝐸𝑓𝑓𝐿𝐵 = [
𝑇𝐴𝐸

𝑛
] 𝑋100   (14) 

 

From the above Eq. (14), load balancing 

efficiency. ‘𝐸𝑓𝑓𝐿𝐵 ’ is measured based on the user 

request tasks allocated efficiently. ‘𝑇𝐴𝐸’ to the total 

number of user-requested tasks ‘𝑛’ in the queue. The 

load balancing efficiency is measured in terms of 

percentage (%). Table 3 below lists the load 

balancing efficiency results obtained using the 

equation from (14).  

Load balancing efficiency measures how well 

user-requested activities are assigned in fog 

computing. Fig. 4 shows load balancing efficiency 

for LV-EHRCC, EPRAM [1], and FoT [2] at 

different service sizes (i.e., concerning other numbers 

of tasks in the range of 5000 to 50000). According to 

the analysis of the results, the difference between the 

three approaches is minimal but grows when the 

number of user-requested actions increases. Our 

load-balancing approach performs better for all task 

sizes. The simulation with 5000 tasks showed that the 

three techniques were 98.7%, 97.7%, and 96.3 & 

efficient at load balancing. The suggested LV-

EHRCC approach balances load more efficiently  
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Figure. 4 Graphical representation of load balancing 

efficiency 

 
Table 4. Comparison results of Bandwidth using LV-

EHRCC, EPRAM [1] and load balancing for FoT [2] 

Number 

of tasks   

Bandwidth (Mbps) 

LV-

EHRCC 
EPRAM 

Load balancing 

for FoT 

5000 20 21 18 

10000 23 22 19 

15000 25 24 20 

20000 28 27 22 

25000 31 28 23 

30000 35 31 25 

35000 38 33 27 

40000 40 35 29 

45000 42 38 32 

50000 45 40 35 

 

 

than [1] and [2]. LotkaVoltera's optimization function 

boosted performance. This function examined 

propagation speed, task saturation rate, and queued 

tasks. Thus, VMs were balanced and allocated to 

user-requested tasks. The LSR LV-EHRCC approach 

improves load balancing efficiency by 6% compared 

to [1] and 13% compared to [2]. 

5.2 Performance analysis of Bandwidth 

Bandwidth is the amount of data sent at one time 

and the most significant quantity of data or packets 

transmitted over the internet in a given time. It relates 

to network speed, not data packet movement speed. 

More data packets are delivered with higher 

Bandwidth. Bandwidth is the quantity of data that can 

be transferred in a given period within a network. 

Table 4 includes bandwidth measurements utilizing 

LV-EHRCC, EPRAM [1], and Load balancing for 

FoT [2]. 

 

 
Figure. 5 Graphical representation of Bandwidth 

 

 

Table 5. Comparison results of load balancing efficiency 

using LV-EHRCC, EPRAM [1] and load balancing for 

FoT [2] 

Number of 

tasks 

Makespan (ms)    

LV-

EHRCC 
EPRAM 

Load balancing 

for FoT 

5000 7.5 12.5 16.5 

10000 9.35 12.85 17.25 

15000 10.15 13.35 17.85 

20000 10.85 14 18.35 

25000 11.25 15.15 18.85 

30000 11.85 17.85 21.35 

35000 12.35 19.35 25.25 

40000 14.55 20.15 27.15 

45000 16 23.45 29 

50000 17.85 25 29.85 

 

 
Figure. 6 Graphical representation of makespan 

 

5.3 Performance analysis of makespan 

Makespan refers to the time difference between 
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the beginning and finishing of a sequence of user-

requested tasks. This is obtained as given below.  

 

Ms=n* t [SOT]     (15) 

 

From the above Eq. (15), makespan ‘Ms’ denotes 

the number of user-requested tasks waiting in the 

queue ‘n’ and the time involved in scheduling a single 

user-requested task ‘t [SOT]’. It is measured in terms 

of milliseconds (ms).  

Table 5 below lists the makespan efficiency 

results obtained using the equation from (15). 

Fig. 6, given above, shows the impact of 

makespan for 50000 different user-requested tasks 

involved in optimal resource allocation in a fog 

computing environment. For other numbers of tasks, 

the makespan also varies, with no uniformity 

observed between the three methods. However, with 

simulations involving 5000 tasks, the time involved 

in scheduling a single user-requested study using the 

three methods was found to be 0.0015ms, 0.0025ms 

and 0.0033ms, respectively. With this, the overall 

makespan for 5000 tasks was observed to be 7.5ms, 

12.5ms and 16.5ms using LV-EHRCC, EPRAM [1] 

and load balancing for FoT [2], respectively, showing 

an improvement using the proposed LV-EHRCC 

method. The progress was the application of the 

Elman Recurrent Neural Network. By applying this, 

cache resource allocation was performed in the 

context units via Base Stations ‘𝐵𝑆 ’. Due to this 

optimal resource allocations were ensured by 

obtaining total receivable data packets of all users in 

such a way by reducing the transmission delay and 

data packet exchange time between user-requested 

tasks and the Base Stations ‘ 𝐵𝑆 ’. With this the 

makespan using the proposed LV-EHRCC method 

was found to be 30% improved compared to [1] and 

45% improved compared to [2].  

5.4 Performance analysis of jitter 

Finally, the jitter is the delay between received 

data packets. Jitter is considered the dissimilarity in 

the data packet flow between two systems that might 

occur owing to network congestion. With the 

application of the FC environment, the jitter can be 

reduced considerably. The jitter is measured by 

identifying the average time difference between each 

packet sequence.   

 

𝐽 = (𝐷𝑃𝑆𝑒𝑞𝑇𝐷 )/𝑛  (16) 

 

 
 

Table 6. Comparison results of load balancing efficiency 

using LV-EHRCC, EPRAM [1] and load balancing for 

FoT [2] 

Number 

of tasks 

Jitter (ms)   

LV-

EHRCC 
EPRAM 

Load balancing 

for FoT 

5000 7.8 10.2 12.6 

10000 9.5 11.35 16.15 

15000 12.35 15.15 18 

20000 14.15 18.25 22.55 

25000 15.85 21.35 27.35 

30000 17 22.15 29.25 

35000 18.35 24.35 31.35 

40000 21.45 28.15 33 

45000 28.35 31.35 35.15 

50000 30 34 37 

 

 

 
Figure. 7 Graphical representation of jitter 

 

Table 6 below lists the jitter measure results obtained 

using the equation from (16). 

Fig. 7 displays the ideal FC resource allocation 

jitter rate. The figure shows that all three approaches 

increased jitter for 25000 tasks. For 5000 user-

requested activities, 5 data packet sequence flows, the 

time difference using the suggested LV-EHRCC 

technique was 12ms, 11ms, 8ms, 3ms, 5ms, 15ms, 

13ms, 11ms, 5ms, 7ms, and 18ms, 14ms, 13ms, 8ms, 

10ms. The three approaches' jitter rates were 7.8ms, 

10.2ms, and 12.6ms. LV-EHRCC had a lower jitter 

rate than [1, 2]. Elman hebbian-recurrent neural 

network-based cache resource allocation algorithm 

minimized jitter rate. Our technique used a hebbian 

learning-based context unit weight update in the 

hidden layer to pose the resource allocation problem. 

In the case of resource requirements, the cache was 

processed instead of directly retrieving it from the 

cloud data centre. This reduces the LV-EHRCC jitter 

rate by 20% vs [1] and 35% vs [2]. 
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6. Conclusion  

This study discusses fog computing resource 

allocation. Lotka Voltera load balancer and elman 

hebbian-recurrent neural network cache resource 

allocation (LV-EHRCC) are presented for fog 

computing. LV-EHRCC approach balances the load 

and allocates appropriate resources in fog computing. 

The first bandwidth-efficient Lotka Voltera traffic 

load balancer model balances incoming loads among 

virtual machines. Elman hebbian-recurrent neural 

network-based cache resource allocation approach 

improves jitter-optimal resource allocation. 

Simulations indicated that LV-EHRCC enhances 

Bandwidth, jitter rate, and load balancing efficiency 

over state-of-the-art techniques. 
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