
Received: August 25, 2022. Revised: January 10, 2023. 228

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

LotkaVoltera and Elman Hebbian Recurrent Neural Network Cache-Based

Resource Allocation in Fog Environment

S.V. Nethaji1* M. Chidambaram1

1PG & Research Department of Computer Science, Rajah Serfoji Government College(Autonomous),

(Affiliated to Bharathidasan University, Tiruchirappalli),Thanjavur, India.

* Corresponding author’s Email: nethajisv@gmail.com

Abstract: The internet of things (IoT) affects everyday life because digital technology improves. IoT is a group of

devices with sensors that talk to each other to reach a goal. IoT systems have traditionally been built on top of cloud

computing (CC). IoT devices are slow because CC data centres are separated from them. This slows down the speed

at which real-time applications respond. In addition, IoT devices send a lot of data to the cloud to be processed, which

overloads the cloud. Edge computing can stop IoT devices from being slow or overloaded. Fog computing (FC) is a

way to get services at the edge of a network. With locationawareness, the FC cuts down on latency and overloading.

Bandwidth and jitter must be looked at during the process of allocating resources. In this work, the Lotka-Voltera load

balancer and elman hebbian-recurrent neural network cache (LV-EHRCC) are proposed for allocating resources in an

FC context. LV-EHRCC is made up of load balancing and allocating resources. First, the LotkaVoltera traffic load

balancer model is used to increase the amount of Bandwidth available for load balancing. Second, an Elman Hebbian-

Recurrent Neural Network model for allocating cached resources efficiently is made for the best load-balanced FC

context. Simulations test what will happen. The load balancing capacity of the proposed scheme is 93.25 and attains

the highest Bandwidth of 45. In FC simulations, the LV-EHRCC method improves the efficiency of load balancing in

terms of Bandwidth, makespan, and jitter rate. The simulation results back up our study and show that LV-EHRCC is

better than the benchmark approaches when they are compared.

Keywords: IoT, Cloud computing, Fog computing, LotkaVoltera, Load balancer, Virtual machine, Elman, Hebbian.

1. Introduction

IoT has recently given rise to a fresh wave of

embedded internet-connected applications.

Numerous different applications can be deployed

with cloud computing (CC), and its concentric

administration provides effective object

communication. Scalable systems can be managed by

IoT thanks to their enormous data storage, computing

power, and resource provisioning. IoT's low latency

is used in CC's centralized framework despite its

ability to handle scalability issues. FC can address

these issues. Fog effective prediction and resource

allocation methodology (EPRAM) was presented in

[1]. The prediction method assisted EPRAM in

resource management. EPRAM consisted of the

following modules: Data pre-processing module

(DPM), resource allocation module (RAM), and

effective prediction module (EPM). To forecast the

target field using one or more predictors, EPM

employed PNN. Here, utilizing user IoT data, the

PNN predicts the likelihood of a heart attack and

takes appropriate action. The objective was to

improve QoS metrics, including response time,

Bandwidth, and energy consumption while lowering

latency. These elements were found with deep

reinforcement learning (RL). Although response time,

Bandwidth, and energy usage all improved, load

balancing effectiveness was not given priority. To

ensure processing and IoT data transfer to the CC

environment, [2] suggests load balancing for IoT

gateways. This topology suspended the FoT data

streams to provide scalability and latency. Cloud and

fog data traffic saw the least latency and capacity

thanks to the effective management of the software

defined network (SDN) controller. We measured

response time, active time, and missing samples. The

Received: August 25, 2022. Revised: January 10, 2023. 229

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

results defeated round robin and least connection. IoT

with FC involves hardware and software resource

allocation; response time and busy time were

enhanced; bandwidth and jitter rate was not. The

neural network and meta-scheduler in [3] effectively

predicted fog resources. Five algorithms were

employed to identify the best help. [4] examines

issues with the fog computing (FC) environment.

Offloading energy and data from consumer devices

with limited resources to cloud infrastructure led to

system optimization and better performance. Fog

unloading was thoroughly investigated in [5]. One of

the most significant advancements in recent years has

been moving data control and storage to the cloud to

satisfy traffic demands. It affects latency by causing

network delays. Fog computing, which moves

control and data storage to the network edge, has

become unavoidable in recent years as a solution to

this problem. [6] offered a method for allocating

resources and offloading work in multi-fog node

systems. The average success rate and partial

observability were enhanced using deep Q network

(DQN) and deep convolutional Q network (DCQN).

lack of load balance. [7] recommended a load-

balancing method using cat swarm optimization to

increase throughput and lower energy usage. In this

study, a load-balancing and resource-provisioning

strategy are proposed and implemented. The

suggested approach combines optimization and deep

neural networks to increase Bandwidth, jitter,

makespan, and load balancing. The FC environment's

best load balancing and resource distribution are

made possible by the elman hebbian-recurrent neural

network cache resource allocation (LV-EHRCC) and

LotkaVoltera load balancer.

1.1 Contributions

Work contributions include:

• Propose LotkaVoltera load balancer and elman

hebbian-recurrent neural network cache resource

allocation (LV-EHRCC) in fog computing

environment for significant prediction by combining

a novel load balancing and resource allocation model,

ensuring accurate balancing analysis with minimum

Bandwidth and jitter.

• A LotkaVoltera traffic load balancer model to

minimize Bandwidth and improve load balancing

during user request jobs.

• Elman hebbian-recurrent neural network-based

cache resource allocation model enables resilient and

accurate decision-making based on studied load and

optimal resource allocation across user-requested

tasks.

• Extensive experimental assessment of LV-EHRCC

approach against EPRAM and load balancing for

FoT-Gateways to show the predictive analytical

performance of the suggested method.

1.2 Organization of the paper

Here's how the rest of the paper is organized. A

literature review of load balancing and resource

allocation is presented in section 2. The proposed

methodology LV-EHRCC, resource allocation in a

fog computing environment is presented in section 3.

The experimental setup is described in section 4,

results and analysis are discussed in section 5, and

conclusions are presented in section 6.

2. Related works

The upcoming fog computing and the Internet of

Things IoT are said to be mandatory for next-

generation communication applications. However,

the communication capacity was found to be

constrained upon comparison with the increase in

internet of things (IoT) devices. Moreover, the

optimal allocation of distinct tasks ignites the load-

balancing aspect in the FC network to ensure optimal

resource allocation.

In [8], a fog load balancing problem was

designed,considering the communication and

computation aspects to reduce the cost involved in

load balancing. However, processing time, another

factor involved during load balancing, should also be

considered. Finally, in [9], home edge computing was

designed based on clustering and load-balancing

technique. With this,the congestion was avoided, but

it also resulted in the minimization of latency.

Despite the outstanding work performed to

enhance fog computing applications, task scheduling

is still a significant concern. Owing to this, a novel

multiobjective method was presented in [10] based

on combining marine predator's algorithm with the

polynomial mutation mechanism. With this, efficient

task scheduling in FC environments was ensured.

Furthermore, an outpouring in the significance of

sensors and real-time monitoring factors has led to

combining two powerful techniques: the cloud

computing environment and the internet of things

(IoT). Moreover, large-stream data processing has

resulted in yet another novel approach, fog

computing.

A survey of application algorithms for fog

computing was investigated in [11]. In [12], there

were five essential factors: concerns in fog

computing, optimization process involved in fog and

IoT, compared scheduling algorithms, rationalized

the scheduling patterns and measures were also taken

Received: August 25, 2022. Revised: January 10, 2023. 230

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

for improving scheduling. A protection mechanism

for edge computing was analyzed in [13].

Real-time decision-making is said to be arrived at

when applied with latency-aware resource allocation.

Fog nodes would ensure optimized decision-making

when employed in a cloud computing environment.

In [14], an efficient resource allocation and fault

tolerance method for the fog layer was proposed.

Also,the recovery time involved in failure was said to

be improved. In [15] log likelihood ratio was

measured for enhanced decision-making in a cloud

environment.

To attain significant resource allocation and

minimize users’ computing time, the virtual machine

(VM) allocation must be optimized. A new

multiobjective optimization method with dynamic

resource allocation combining the present state and

future predicted data concerning each load, virtual

machine relocation cost and new VM stability were

also considered comprehensively. Also, a

multiobjective optimization genetic algorithm was

presented to address the issues concerning time and

VM allocation [16]. Yet another method for data

reduction was proposed in [17] by employing a naïve

bayes classifier. Finally, in [18], by introducing

mixed integer nonlinear optimization offloading was

introduced to ensure smooth computing resource

allocation.

The explosive evolution of small cell base

stations (SBSs) delegated with computing

potentialities presents one of the most ingenious

factors applied as far as fifth-generation (5G) cellular

networks are concerned to address data explosion and

ultralow latency. In [19], green-based edge network

management (GENM) algorithm was proposed that

ensured green-based load balancing in base station

BSs and reduced consumption of energy within the

multi-access edge computing (MEC) server. In [20],

another hybridization of the heuristics technique was

applied to cope with the load balancing issue.

[21] models resource optimization in fog

computing with shift-invariant deep convolutive load

balancing technique in simulated fog computing

environment using ifogsim.

In a fog computing environment, another [22]

load balancing method using the differential

evolution-based grey wolf optimization model and

the resource allocation method utilizing the

stochastic gradient and deep reinforcement learning-

based resource allocation model are examined.

The existing approaches face the issues such as

proficient allocation of resources and balancing the

load. However, the current system does not

accomplish accurate and effective decision-making

without latency.

From the above research gaps, it has been

analyzed that previous works on load balancing in the

FC environment has given little significance to

bandwidth-improved load balancing and jitter-

optimized resource allocation. Therefore, present

research on load balancing and resource provisioning

has been done to understand better the issues

considered earlier and to bridge the gaps in the

previous studies.

3. Methodology

This section presents a three-plane LV-EHRCC

resource allocation method of an FC network. The

first tier of the LV-EHRCC process consists of

sensors NEC personal cloud traces, for example,

volume, node, session and request types and

transmits to the fog nodes. The fog nodes constitute

the second place of the method. The fog nodes

analyze the data or data packets obtained from IoT

devices, and the results are sent back for further

analysis. To ensure that all the combinations of

workloads and providers are addressed in a real-time

environment, the fog nodes are placed at the edge of

the network,i.e. adjacent to the IoT devices. The

results of combinations of workloads and providers

are also stored in the cloud data centre present at the

cloud plane.

Moreover, the transmission link between a cloud

server and fog nodes is constructed via a proxy server.

The cloud data centre is predominantly utilized to

ensure optimal data centres for storage. The fog

computing-based method of our proposed method is

shown in Fig. 1. It shows the three FC planes: end,

fog, and cloud. End plane: contains end devices D=D1,

D2..., Dm or IoT devices and is FG's data source. Let's

assume Bandwidth and jitter categorize user-

requested jobs. Then, for each user-requested task,

Bandwidth and jitter are pre-arranged based on the

number of instructions or data packets.

Fog plane: fog nodes FN=FN1,FN 2,...,FN n next

to end devices D=D1,D2,...,Dm. Data exchanges

between fog nodes (FN) and end devices D expose

delay. Fog nodes are co-located with base stations to

which IoT devices are attached. Offloaded jobs

require a central processing unit (CPU), memory, and

storage in a virtual machine (VM) to process data

packets for Bandwidth and jitter.

The confined resource volume at the fog node may

not allow all tasks T=T1, T2..., Tm to be processed

simultaneously due to the Bandwidth and jitter

associated with offloading activities. So, tasks are

queued up.

Cloud plane has an unlimited-resource cloud data

centre (CDC). 'CDC' uses a single-user VM to

Received: August 25, 2022. Revised: January 10, 2023. 231

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

Figure. 1 Structure of three-plane optimal load balancing and resource allocation

process 'T' for best performance. The Bandwidth

between FN and CDC and jitter causes data

transmission latency. Based on the user-requested

task processing arrangement in the three-plane fog

computing network, processing (optimal load-

balanced resource allocation) is split into two

portions. User request task buffering (URTB) at fog

nodes defines implementation sequences on user

request task arrivals. LotkaVoltera traffic load

balancer is used to accomplish URTB in this work.

By calculating traffic load and looking at the queue

using LotkaVoltera optimization, this approach

achieves efficient load balancing with better

Bandwidth, even with many user-requested jobs.

Virtual machines are allocated according to user-

requested tasks in a bandwidth-optimized load-

balancing manner. Optimal resource allocation at fog

nodes (ORA): The elman hebbian-recurrent neural

network assigns user-requested tasks to fog resources

in the waiting queue, so scheduled tasks can run.

With global cloud networks connecting millions

of IoT devices to many servers, cloud user requests

across devices take a long time. Due to this, cloud

user requests on the edge of the cloud are moved to a

costly fog layer. Therefore, optimized load balancing

between fog and cloud layers is required for excellent

service quality and efficiency. This study introduces

a LotkaVoltera traffic load balancer model that

optimizes bandwidth rate by considering traffic load

and LotkaVoltera function. Fig. 2 depicts the

LotkaVoltera traffic load balancer structure. The

following LotkaVoltera

Traffic load balancer model indicates that

correlations between transfer speed and load are

recognized using two steps. First, the actual traffic

load is evaluated using the IoT device's transmission

power, channel gain, and size. Second, a

LotkaVoltera optimization function considers

incoming and queued workloads' propagation speed

and saturation rate.

This balances the demand, increasing Bandwidth.

Let's assume that ‘L' is a location identifying three

types of volumes ‘Volume', and IP address of node

‘node IP' in area ‘A', and IoT device ‘D' put at ‘P'

location has transmission power ‘TransP(L)', channel

gain ‘CG(L)', and noise power ‘2'.

𝑆𝑁𝑅(𝐿) =
𝑇𝑟𝑎𝑛𝑠𝑃(𝐿)×𝐶𝐺(𝐿)

𝜎2 (1)

The channel gain 'CG' is measured as follows.

𝐶𝐺(𝐿) = 10 log 10 [
𝜆

(2𝜋𝐷)
] (2)

The channel gain for a location in region ‘A' is

based on wavelength ‘' with IoT device ‘D' and base

stations ‘BS' differentiated via distance ‘D'. If an IoT

device ‘D' is associated with ‘j-th' base station ‘BSj'

with bandwidth ‘BWj', then the IoT device's

magnitude ‘Mag j (L)' is mathematically defined as

follows.

End devices

End devices

End devices

𝐸𝑛𝑑 𝑃𝑙𝑎𝑛𝑒

Fog nodes

𝐹𝑜𝑔 𝑃𝑙𝑎𝑛𝑒

𝐶𝑙𝑜𝑢𝑑 𝑃𝑙𝑎𝑛𝑒

Received: August 25, 2022. Revised: January 10, 2023. 232

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

𝑀𝑎𝑔𝑗(𝐿) = 𝐵𝑊𝑗𝑋 log 10 [1 + 𝑆𝑁𝑅(𝐿)] (3)

From Eq. (1), a poisson process describes random

occurrences (i.e., user-requested activities).

Moreover, the IoT device ‘𝐷 ’ at location ‘𝐿 ’

includes some traffic load for the base station. ‘𝐵𝑆𝑗’.

Then, the traffic load is mathematically stated as

given below.

𝑇𝐿𝑗(𝐿) =
𝐷𝑃𝐹𝑅(𝐿)𝑋𝐷𝑃(𝐿)×𝐷𝐶𝑗(𝐿)

𝑀𝑎𝑔𝑗(𝐿)
 (4)

From the above Eq. (4), the traffic load at location

‘𝐿’ ‘𝑇𝐿𝑗(𝐿)’ is measured based on the data packet

flow rate ‘𝐷𝑃𝐹𝑅(𝐿)’, number of data packets ‘𝐷𝑃(𝐿)’

and dual criterion. ‘𝐷𝐶𝑗(𝐿)’ if the device is associated

with the respective base station. ‘𝐵𝑆𝑗’ or not. Also,to

improve the volume or number of information (i.e.,

data packets) transmitted at a specific time instance

in a load-balanced fashion, in our work, the

LotkaVoltera function is employed. The

LotkaVoltera function also referred to as the

predator-prey equations (i.e., user-requested tasks-

tasks in the queue) denotes the pair of nonlinear

differential equations in which two species interact

(i.e., incoming tasks and the tasks already in the

queue), one as a predator (i.e., user-requested tasks)

and the other as prey (i.e., tasks in the queue). This is

mathematically formulated as given below.

𝑑𝑇

𝑑𝑡
= 𝛼 𝑇 − 𝛽𝑇𝑄 (5)

𝑑𝑄

𝑑𝑡
= 𝛿𝑇𝑄 − 𝛾𝑄 (6)

From Eqs. (5) and (6), and refer to the

propagation rate of user-requested tasks, saturation

rate of user-requested jobs, saturation rate of charges

in a queue, and propagation rate of the queue

concerning tasks ‘T' in queue ‘Q' correspondingly.

By using the propagation and saturation rate, load

balancing between user-requested jobs is ensured,

increasing the maximum quantity of data or data

packets transmitted over the internet in a given time.

Below is LotkaVoltera's pseudo code.

In the LotkaVoltera above traffic load balancer

algorithm, the traffic load is measured using the

poisson process to improve Bandwidth first. Second,

with the observed traffic load, a LotkaVoltera

optimization function assesses the tasks that may be

handled, balancing the load optimally. Third, user-

requested tasks are distributed evenly between virtual

Input: Dataset ‘𝐷𝑆’, end devices ‘𝐷 =
𝐷1, 𝐷2, … , 𝐷𝑚’, fog nodes ‘𝐹𝑁 =
𝐹𝑁1, 𝐹𝑁2, … , 𝐹𝑁𝑛’, data packet ‘𝐷𝑃 =
𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑘’, Virtual Machine ‘𝑉𝑀’, tasks

‘𝑇 = 𝑇1, 𝑇2, … , 𝑇𝑙’

Output:Bandwidth-improved optimal load

balancing

1: Initialize ‘𝑚, 𝑛, 𝑙, 𝑘’, cloud data centre ‘𝐶𝐷𝐶’,

Base Stations ‘𝐵𝑆’, queue ‘𝑄’

2: Initialize CPU ‘𝐶𝑃𝑈’, memory ‘𝑀’ and storage

‘𝑆’, transmission power ‘𝑇𝑟𝑎𝑛𝑠𝑃(𝐿)’

3: Initialize ‘𝛼 = 0.1’, ‘𝛽 = 0.02’, ‘𝛾 = 0.4’ and

‘𝛿 = 0.02’

4: Begin

5: For each Dataset ‘𝐷𝑆’ with end devices ‘𝐷’, fog

nodes ‘𝐹𝑁’ and data packet ‘𝐷𝑃’

6: Evaluate Signal to Noise Ratio as in (1)

7: Estimate the magnitude of the IoT device as in

(3)

8: For each Base Stations ‘𝐵𝑆’

9: Evaluate traffic load as in (4)

10: End for

11: For each tasks ‘𝑇’ and tasks in queue ‘𝑄’

12: Evaluate predator and prey as in equations (5)

and (6)

13: End for

14: End for

15: End

Algorithm 1 LotkaVoltera traffic load balancer

computers.These two functions increase Bandwidth

and load ba lance.

3.1 Elman hebbian-recurrent neural network-

based cache resource allocation

Upon load balancing, user-requested tasks must

be allocated to fog resources in the waiting queue, so

planned tasks can be done on time. Despite various

studies ensuring effective resource allocation,

significant congestion is reported to cause

dissimilarity in data packet flow between two

systems or user-requested tasks, resulting in delay.

This part presents an elman hebbian-recurrent neural

network-based cache resource allocation model. In

this model, all user-requested jobs are expected to be

stored in the local cache and can be obtained directly

from base stations without downloading from the

cloud data centre. In elman hebbian-recurrent neural

network-based cache resource allocation, inputs and

outputs are provided to learn the mapping between

inputs (i.e., load-balanced user-requested tasks) and

outputs (i.e., optimal resource allocation). The elman

https://en.wikipedia.org/wiki/Nonlinear
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Predator

Received: August 25, 2022. Revised: January 10, 2023. 233

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

Figure. 2 LotkaVoltera traffic load balancer model

hebbian-context unit of hidden layer matrix. ‘𝐶𝑈𝐻𝐿’,

previously hidden layer. ‘𝐻𝐿𝑡−1’ and the bias of the

hidden layer. ‘ 𝐵𝐻𝐿 ’ respectively. For the first

iteration, the weight is initialized as ‘1’, and at each

time instance,the hebbian learning rule is applied to

update the importance as given below.

∆𝑊𝑖 = 𝜂𝐹𝑖𝑦 (9)

𝑊𝑀 = 𝑊 =

[

𝑊1

𝑊2

𝑊3

…
𝑊𝑚]

=

[

𝑊11 𝑊12 … 𝑊1𝑛

𝑊21 𝑊22 … 𝑊2𝑛

𝑊31 𝑊32 … 𝑊3𝑛

… … … …
𝑊𝑚1 𝑊𝑚2 … 𝑊𝑚𝑛]

 (10)

From the above Eqs. (9) and (10), the weights and

input features are utilized to generate an output (i.e.,

resource allocation). The importancegiven above is

represented in a matrix called connection matrix.

Moreover, in the context unit, cache resource

allocation is performed via base stations ‘𝐵𝑆’. Here,

the total data or packets acquired by all the users at

any time are given below.

𝐷𝑃𝑇𝑜𝑡 = ∑ 𝐷𝑃𝑖
𝑛
𝑖=1 (11)

For each cache level resource allocation, to

increase the total receivable data packets of all users

is formulated as given below.

𝐷𝑃𝑖 = 𝑀𝐴𝑋[∑ ∑ 𝜑𝑖𝑗𝐹𝑗
𝑛
𝑗=1

𝑚
𝑖=1], 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝜑𝑖𝑗𝐹𝑗

𝜗
≤

 𝐿𝐶𝑖𝑗
𝐶𝐼 (12)

From the above Eq. (12), ‘𝜑𝑖𝑗 ’ represent the

optimal cache resource allocation factor concerning

the given input features. ‘𝐹𝑗’. This total receivable

data packets of all users ‘𝐷𝑃𝑖’ is formulated in such a

manner that the transmission delay ‘𝜗’ represents the

aggregated sum of data packet processing and data

packet exchange time between user-requested tasks

‘𝑇’ and the base stations ‘𝐵𝑆’. Finally, the result is

obtained in the output layer, as given below.

𝑂𝐿𝑡 = 𝜎𝑂𝐿(𝑊𝑂𝐿𝐻𝐿𝑡 + 𝐵𝑂𝐿) (13)

From the above Eq. (13), the output layer. ‘𝑂𝐿𝑡’

is formulated utilizing the output layer activation

Personal Cloud

Dataset

Estimate

traffic load

𝑇𝑟𝑎𝑛𝑠𝑃(𝐿)

𝐶𝐺(𝐿)

𝑀𝑎𝑔𝑗(𝐿)

Apply

LotkaVoltera

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

Optimal load balancing

Received: October 18, 2020. Revised: December 20, 2020. 234

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

Figure. 3 Structure of the input layer and hidden layer, and an output layer

function. ‘𝜎𝑂𝐿’,the weight of the output layer matrix

‘𝑊𝑂𝐿’ hidden layer ‘𝐻𝐿𝑡’ and the bias of the output

layer. ‘ 𝐵𝑂𝐿 ’ respectively. The pseudo-code

representati on of elman hebbian-recurrent neural

network-based cache resource allocation is given

below.

In the above elman hebbian-recurrent neural

network-based cache resource allocation algorithm,

the input layer receives feature values and load-

balanced virtual machines for each user request. Then,

the hidden layer formulates the resource allocation

problem—hebbian based context unit weight update.

Also, user-requested tasks and base stations exchange

cache-level data packets. Finally, the output layer

shows whether resources were allocated. Because the

cache is handled instead of the cloud data centre, the

delay between received data packets is minimized.

This reduces jitter and increases the makespan.

4. Experimental settings

In this section, iFogSim simulates the proposed

LV-EHRCC and existing methods, namely

EPRAM[1] and load balancing for FoT-Gateways [2]

that is investigated over different performance

Table 1. Storage layer description

S.

No
Feature Description

1 Volume

Considered a directory with three

types of volumes: i) root/predefined,

ii) UDF (user-defined folder), and iii)

share (sub-volume of another user to

which the current user has access).

2 Node
A node is a file or a directory in the

system.

3 Session

The session is used to identify

requests of a single user during a

session lifetime that does not expire

automatically. The client may

disconnect, or the server may go

down, therefore resulting at the end

of the session

4
Request

types

There are different request types.

They are storage, session and RPC.

metrics using personal cloud dataset. (obtained from

http://cloudspaces.eu/results/datasets). Ifogsim

simulator measure load balancing and resource

management across for and cloud resource.

𝑎1

𝑎2

𝑎𝑛

… ..

𝐼𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

𝑏1

𝑏2

𝑏𝑛

… ..

𝐻𝑖𝑑𝑑𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟

𝑐1

𝑐2

𝑐𝑛

… ..

𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

𝐶𝑈1

𝐶𝑈2

𝐶𝑈𝑛

… ..

𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑈𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

∑

Jitter-improved resource

allocation

Received: October 18, 2020. Revised: December 20, 2020. 235

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

Table 2. Column fields description

S.

No
Feature Description

1 Row_id
Database row

identifier

2 Account_id
Personal cloud

account

3 File_size
Size of the uploaded

file

4 Operation_time_start
Starting time of the

API call

5 Operation_time_end
Ending time of the

API call

6 Time_zone Time zone of a node

7 Operation_ID
The ID of the API

call

8 Operation_Type Type of API call

9 Bandwidth_Trace Time series trace

10 Node_ip
The IP address of the

node

11 Node_name Name of node

12 Quota_start
Amount of data at the

start of API call

13 Quota_end
Amount of data at the

end of API call

14 Quota_total
The total amount of

data

15 Capped Capped or not

16 Failed
Indicates if API has

failed

17 Failure
Available failure

information

Table 3. Comparison results of load balancing efficiency

using LV-EHRCC, EPRAM [1] and load balancing for

FoT [2]

Number of

tasks

Load balancing efficiency (%)

LV-

EHRCC
EPRAM

Load

balancing for

FoT

5000 98.7 97.7 96.3

10000 97.15 94.35 92.15

15000 97 94.15 90

20000 96.85 93.56 88.35

25000 96.35 92.15 86.15

30000 96 91.15 83.25

35000 95.15 90.35 81

40000 95.05 87.35 80.15

45000 94.35 85.25 79.35

50000 93.25 83 78

4.1 Dataset details

The NEC personal cloud dataset integrates two

sources of information, i.e., from the storage layer

and sharing interactions. Table 1 below provides the

storage layer description, whereas Table 2 below

provides the column field description.

5. Discussion

This section compares the proposed (LV-

EHRCC) in an FC environment with existing state-

of-the-art methods, EPRAM [1] and load balancing

for FoT-Gateways [2]. In addition, personal cloud

datasets are utilized for performance analysis using

metrics, Bandwidth, load balancing efficiency, jitter,

and makespan for 50000 specific user-requested jobs

in the iFogSim simulator using graphical user

interfaces.

5.1 Performance analysis of load balancing

Load balancing distributes network traffic

between servers to improve potential and

dependability. It also refers to user-requested task

dispersal. This efficient workload distribution

manages the workload better by allocating resources

between numerous servers quickly, resulting in

higher performance. The goal is to distribute load

among multiple servers effectively. When one server

is busy with user requests and others are idle, some

burdens are moved to a nearby server with fewer

requests. By distributing workload, Bandwidth and

jitter are effectively used. This is shown below.

𝐸𝑓𝑓𝐿𝐵 = [
𝑇𝐴𝐸

𝑛
] 𝑋100 (14)

From the above Eq. (14), load balancing

efficiency. ‘𝐸𝑓𝑓𝐿𝐵 ’ is measured based on the user

request tasks allocated efficiently. ‘𝑇𝐴𝐸’ to the total

number of user-requested tasks ‘𝑛’ in the queue. The

load balancing efficiency is measured in terms of

percentage (%). Table 3 below lists the load

balancing efficiency results obtained using the

equation from (14).

Load balancing efficiency measures how well

user-requested activities are assigned in fog

computing. Fig. 4 shows load balancing efficiency

for LV-EHRCC, EPRAM [1], and FoT [2] at

different service sizes (i.e., concerning other numbers

of tasks in the range of 5000 to 50000). According to

the analysis of the results, the difference between the

three approaches is minimal but grows when the

number of user-requested actions increases. Our

load-balancing approach performs better for all task

sizes. The simulation with 5000 tasks showed that the

three techniques were 98.7%, 97.7%, and 96.3 &

efficient at load balancing. The suggested LV-

EHRCC approach balances load more efficiently

Received: October 18, 2020. Revised: December 20, 2020. 236

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

Figure. 4 Graphical representation of load balancing

efficiency

Table 4. Comparison results of Bandwidth using LV-

EHRCC, EPRAM [1] and load balancing for FoT [2]

Number

of tasks

Bandwidth (Mbps)

LV-

EHRCC
EPRAM

Load balancing

for FoT

5000 20 21 18

10000 23 22 19

15000 25 24 20

20000 28 27 22

25000 31 28 23

30000 35 31 25

35000 38 33 27

40000 40 35 29

45000 42 38 32

50000 45 40 35

than [1] and [2]. LotkaVoltera's optimization function

boosted performance. This function examined

propagation speed, task saturation rate, and queued

tasks. Thus, VMs were balanced and allocated to

user-requested tasks. The LSR LV-EHRCC approach

improves load balancing efficiency by 6% compared

to [1] and 13% compared to [2].

5.2 Performance analysis of Bandwidth

Bandwidth is the amount of data sent at one time

and the most significant quantity of data or packets

transmitted over the internet in a given time. It relates

to network speed, not data packet movement speed.

More data packets are delivered with higher

Bandwidth. Bandwidth is the quantity of data that can

be transferred in a given period within a network.

Table 4 includes bandwidth measurements utilizing

LV-EHRCC, EPRAM [1], and Load balancing for

FoT [2].

Figure. 5 Graphical representation of Bandwidth

Table 5. Comparison results of load balancing efficiency

using LV-EHRCC, EPRAM [1] and load balancing for

FoT [2]

Number of

tasks

Makespan (ms)

LV-

EHRCC
EPRAM

Load balancing

for FoT

5000 7.5 12.5 16.5

10000 9.35 12.85 17.25

15000 10.15 13.35 17.85

20000 10.85 14 18.35

25000 11.25 15.15 18.85

30000 11.85 17.85 21.35

35000 12.35 19.35 25.25

40000 14.55 20.15 27.15

45000 16 23.45 29

50000 17.85 25 29.85

Figure. 6 Graphical representation of makespan

5.3 Performance analysis of makespan

Makespan refers to the time difference between

Received: October 18, 2020. Revised: December 20, 2020. 237

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

the beginning and finishing of a sequence of user-

requested tasks. This is obtained as given below.

Ms=n* t [SOT] (15)

From the above Eq. (15), makespan ‘Ms’ denotes

the number of user-requested tasks waiting in the

queue ‘n’ and the time involved in scheduling a single

user-requested task ‘t [SOT]’. It is measured in terms

of milliseconds (ms).

Table 5 below lists the makespan efficiency

results obtained using the equation from (15).

Fig. 6, given above, shows the impact of

makespan for 50000 different user-requested tasks

involved in optimal resource allocation in a fog

computing environment. For other numbers of tasks,

the makespan also varies, with no uniformity

observed between the three methods. However, with

simulations involving 5000 tasks, the time involved

in scheduling a single user-requested study using the

three methods was found to be 0.0015ms, 0.0025ms

and 0.0033ms, respectively. With this, the overall

makespan for 5000 tasks was observed to be 7.5ms,

12.5ms and 16.5ms using LV-EHRCC, EPRAM [1]

and load balancing for FoT [2], respectively, showing

an improvement using the proposed LV-EHRCC

method. The progress was the application of the

Elman Recurrent Neural Network. By applying this,

cache resource allocation was performed in the

context units via Base Stations ‘𝐵𝑆 ’. Due to this

optimal resource allocations were ensured by

obtaining total receivable data packets of all users in

such a way by reducing the transmission delay and

data packet exchange time between user-requested

tasks and the Base Stations ‘ 𝐵𝑆 ’. With this the

makespan using the proposed LV-EHRCC method

was found to be 30% improved compared to [1] and

45% improved compared to [2].

5.4 Performance analysis of jitter

Finally, the jitter is the delay between received

data packets. Jitter is considered the dissimilarity in

the data packet flow between two systems that might

occur owing to network congestion. With the

application of the FC environment, the jitter can be

reduced considerably. The jitter is measured by

identifying the average time difference between each

packet sequence.

𝐽 = (𝐷𝑃𝑆𝑒𝑞𝑇𝐷)/𝑛 (16)

Table 6. Comparison results of load balancing efficiency

using LV-EHRCC, EPRAM [1] and load balancing for

FoT [2]

Number

of tasks

Jitter (ms)

LV-

EHRCC
EPRAM

Load balancing

for FoT

5000 7.8 10.2 12.6

10000 9.5 11.35 16.15

15000 12.35 15.15 18

20000 14.15 18.25 22.55

25000 15.85 21.35 27.35

30000 17 22.15 29.25

35000 18.35 24.35 31.35

40000 21.45 28.15 33

45000 28.35 31.35 35.15

50000 30 34 37

Figure. 7 Graphical representation of jitter

Table 6 below lists the jitter measure results obtained

using the equation from (16).

Fig. 7 displays the ideal FC resource allocation

jitter rate. The figure shows that all three approaches

increased jitter for 25000 tasks. For 5000 user-

requested activities, 5 data packet sequence flows, the

time difference using the suggested LV-EHRCC

technique was 12ms, 11ms, 8ms, 3ms, 5ms, 15ms,

13ms, 11ms, 5ms, 7ms, and 18ms, 14ms, 13ms, 8ms,

10ms. The three approaches' jitter rates were 7.8ms,

10.2ms, and 12.6ms. LV-EHRCC had a lower jitter

rate than [1, 2]. Elman hebbian-recurrent neural

network-based cache resource allocation algorithm

minimized jitter rate. Our technique used a hebbian

learning-based context unit weight update in the

hidden layer to pose the resource allocation problem.

In the case of resource requirements, the cache was

processed instead of directly retrieving it from the

cloud data centre. This reduces the LV-EHRCC jitter

rate by 20% vs [1] and 35% vs [2].

Received: October 18, 2020. Revised: December 20, 2020. 238

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

6. Conclusion

This study discusses fog computing resource

allocation. Lotka Voltera load balancer and elman

hebbian-recurrent neural network cache resource

allocation (LV-EHRCC) are presented for fog

computing. LV-EHRCC approach balances the load

and allocates appropriate resources in fog computing.

The first bandwidth-efficient Lotka Voltera traffic

load balancer model balances incoming loads among

virtual machines. Elman hebbian-recurrent neural

network-based cache resource allocation approach

improves jitter-optimal resource allocation.

Simulations indicated that LV-EHRCC enhances

Bandwidth, jitter rate, and load balancing efficiency

over state-of-the-art techniques.

Conflicts of interest

The authors declare no conflict of interest.

Authors declare that any personal circumstances or

interest may be perceived as inappropriately

influencing the representation or interpretation of

reported research results.

Author contributions

The contributions of authors are as follows:

S.V. Nethaji: Conceptualization, Methodology,

software, validation, formal analysis, investigation,

data curation and writing-original paper draft. Dr. M.

Chidambaram: Validation, supervision.

References

[1] F. M. Talaat, “Effective prediction and resource

allocation method (EPRAM) in fog computing

environment for smart healthcare system”,

Multimedia Tools and Applications, Vol. 81, No.

6, pp. 8235-8258, 2022.

[2] E. Batista, G. Figueiredo, and C. Prazeres, “Load

balancing between fog and cloud in fog of things

based platforms through software-defined

networking”, Journal of King Saud University-

Computer and Information Sciences, Vol. 34,

No. 9, pp. 7111-7125, 2022.

[3] N. Mostafa, “Resource Selection Service Based

on Neural Network in Fog Environment”,

Technology and Engineering Systems Journal,

Vol. 5, pp. 408-417, 2020.

[4] H. T. Dang, S. Bhardwaj, T. Rahim, A.

Musaddiq, and D. S. Kim, “Reinforcement

learning based resource management for fog

computing environment: Literature review,

challenges, and open issues”, Journal of

Communications and Networks, Vol. 24, No. 1,

pp. 83-98, 2022.

[5] M. S. Sofla, M. H. Kashani, E. Mahdipour, and

R. F. Mirzaee, “Towards effective offloading

mechanisms in fog computing”, Multimedia

Tools and Applications, Vol. 81, pp. 1997-2042,

2022.

[6] J. Baek and G. Kaddoum, “Heterogeneous task

offloading and resource allocations via deep

recurrent reinforcement learning in partial

observable multifog networks”, IEEE Internet of

Things Journal, Vol. 8, No. 2, pp. 1041-1056,

2020.

[7] M. Junaid, A. Sohail, R. N. B. Rais, A. Ahmed,

O. Khalid, I. A. Khan, and N. Ejaz, “Modeling

an optimized approach for load balancing in

cloud”, IEEE Access, Vol. 8, pp. 173208-

173226, 2020.

[8] S. F. Abedin, A. K . Bairagi, M. S. Munir, N. H.

Tran, and C. S. Hong, “Fog load balancing for

massive machine type communications: A game

and transport theoretic approach”, IEEE Access,

Vol. 7, pp. 4204-4218, 2018.

[9] C. S. M. Babou, D. Fall, S. Kashihara, Y.

Taenaka, M. H. Bhuyan, I. Niang, and Y.

Kadobayashi, “Hierarchical load balancing and

clustering technique for home edge computing”,

IEEE Access,Vol. 8, pp. 127593-127607, 2020.

[10] M. A. Basset, N. Moustafa, R. Mohamed, O. M.

Elkomy, and M. Abouhawwash,

“Multiobjective task scheduling approach for

fog computing”, IEEE Access, Vol. 9, pp.

126988-127009, 2021.

[11] S. Smolka and Z. Á. Mann, “Evaluation of fog

application placement algorithms: A survey”,

Computing, Vol. 104, pp. 1397–1423, 2022.

[12] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R.

Buyya, “Resource Allocation and Task

Scheduling in Fog Computing and Internet of

Everything Environments: A Taxonomy,

Review, and Future Directions”, ACM

Computing Surveys (CSUR), Vol. 54, pp. 1-38,

2022.

[13] J. Shan, “Computing resource allocation

strategy considering privacy protection

mechanism in edge computing environment”,

The Journal of Engineering, Vol. 2022, pp. 401-

410, 2022.

[14] V. Divya and L. R. Sri, “Fault tolerant resource

allocation in fog environment using game

theory-based reinforcement learning”,

Concurrency and Computation Practice and

Experience, Vol. 33, No. 16, pp. 25-33, 2021.

[15] J. Polcari, “An informative interpretation of

decision theory: The information theoretic basis

for signal-to-noise ratio and log likelihood ratio”,

IEEE Access, Vol. 1, pp. 509-522, 2013.

Received: October 18, 2020. Revised: December 20, 2020. 239

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023 DOI: 10.22266/ijies2023.0430.19

[16] F. Shi and J. Lin, "Virtual Machine Resource

Allocation Optimization in Cloud Computing

Based on Multiobjective Genetic Algorithm",

Computational Intelligence and Neuroscience,

Vol. 2022, Article ID 7873131, pp.1-10, 2022.

[17] T. Moulahi, S. E. Khediri, U. Khan, and S. R.

Zidi, "A fog computing data reduce level to

enhance the cloud of things performance",

International Journal of Communication

Systems, Vol. 34, No. 9, 2021.

[18] Z. Qin, X. Qiu, J Ye, and L. Wang, “User-edge

collaborative resource allocation and offloading

strategy in edge computing”, Wireless

Communications and Mobile Computing, Vol.

2020, Article ID 8867157, pp. 1-12, 2020.

[19] T. Dlamini and S. Vilakati, “LSTM-based traffic

load balancing and resource allocation for an

edge system”, Wireless Communications and

Mobile Computing, Vol. 2020, Article ID

8825396, pp. 1-15, 2020.

[20] A. Kaur and B. Kaur, “Load balancing

optimization based on hybrid Heuristic-

Metaheuristic techniques in cloud environment”,

Journal of King Saud University-Computer and

Information Sciences, Vol. 34, No. 3, pp. 813-

824, 2019.

[21] S. V. Nethaji and M. Chidambaram, “Resource

Optimization in Fog Computing with Shift-

Invariant Deep Convolutive Load Balancing”,

Webology, Vol. 18, No. 6, pp. 3845-3861, 2021.

[22] S. V. Nethaji and M. Chidambaram,

“Differential Grey Wolf Load-Balanced

Stochastic Bellman Deep Reinforced Resource

Allocation in Fog Environment”, Applied

Computational Intelligence and Soft Computing,

Vol. 2022, Article ID 3183701, pp. 1-13, 2022.

