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Abstract: Hyperspectral image (HSI) segmentation and classification is trending research in military and civil 

applications area. However, HSI classification is facing various challenges in analyzing spectral and spatial regions. 

In order to improve the performance of HSI classification models, segmentation is essential step.  Therefore, this article 

is focused on implementation of unified HSI segmentation network (HSIS-Net) using active learning. Initially, HSI 

preprocessing operation is performed to normalize the spectral-spatial regions. Then, joint spatial-spectral boundary 

extraction operation is performed using spatial information divergence (SID) and spectral correlation mapper (SCM). 

Finally, segmentation of boundary estimated HSI bands is performed using multi-view active learning network based 

fully convolutional segmentation network (MAL-FCSN). The simulations revealed that the proposed HSIS-Net 

resulted in superior segmentation performance with segmentation accuracy (SA) of 0.999, and segmentation F1-score 

of 0.999 as compared to the existing HSI classification approaches for four publicly available HSI datasets. 

Keywords: Hyperspectral image, Fully convolutional segmentation network, Spatial information divergence, Multi-

view active learning network. 

 

 

1. Introduction 

Optical images are the prime sources of 

information in remote sensing data analysis. Since 

their inception, they have played a vital role in the 

success of various information mining and image 

interpretation tasks since their inception [1]. 

Contemporary examples include, but are not limited 

to, mapping (or classification) and monitoring 

applications of land use/land cover change [2], health 

care, weather, and climate forecasts [3], and 

Planetary exploration missions [4]. Imaging systems 

use sensors, which are sensitive to one or more 

wavelengths of an electromagnetic spectrum, to 

capture images for the visual representation of an area. 

Depending on the imaging techniques used, the 

visual representation and structure of an image can 

take many forms to convey different levels of 

information of the desired scanning scene based on 

the surface reflectance. Some optical imaging 

techniques used in modern times include 

panchromatic imaging, red, green, and blue (RGB) 

imaging [5], HSI, thermal imaging, etc. HSI remote 

sensing combines two technologies, namely imaging 

and spectroscopy [6]. HSI for remote sensing can be 

divided into two main techniques based on the 

continuity of the data stored in the wavelength 

domain, and multispectral-HSI [7].  

In the past few years, HSI systems have gained 

significant attention from researchers across various 

scientific and engineering disciplines [8]. Unlike 

traditional panchromatic and RGB imaging systems, 

HSI systems use specialized sensors operating 

primarily from the visible through infrared 

wavelength ranges to acquire images with more than 

three spectral bands [9]. Further, HSI is the technique 

of producing images containing both spatial and 

spectral domain information of scanning area on the 

surface of the earth based on surface reflectance [10]. 

The HSIs are three-dimensional data structures 

having two spatial dimensions and one spectral 
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dimension. The main difference between normal 

images and HSI is in the usage of the sampling 

technique, the bandwidth of each spectral channel, 

and the number of bands [11]. Multispectral remote 

sensing collects MSI data that have several bands 

each sampled at discrete, often discontinuous, 

wavelengths with wider spectral bandwidths, i.e., low 

spectral resolution. While hyperspectral remote 

sensing collects HSI data having spectral bands, each 

sampled at contiguous wavelengths with narrow 

bandwidths (typically in 10nm or less), i.e., high 

spectral resolution [12]. The evolution of very high-

resolution HSIs classification has proved to be 

particularly advantageous for most remote sensing 

image interpretation tasks. But there are challenges 

associated with the use of HSIs for transforming [13] 

the rich spectral data into information for applications. 

Whereas with HSIs, class separability is largely 

owing to the high spectral resolution. However, the 

increase in the dimensionality of the data increases 

the possibility of problems with the curse of 

dimensionality. In practice, it is difficult or not 

possible to collect complete information about the 

training samples of classes of interest. Only a limited 

number of labeled samples of classes of interest are 

only available at hand before training.   

Therefore, to overcome these challenges, the 

novel contribution of this work is organized as 

follows: 

• HSI image is divided into multiple spectral 

bands, and preprocessing, boundary analysis 

and segmentation operation is carried out on 

each band. 

• Spatial boundaries are extracted using SID 

and spectral boundaries are extracted using 

SCM. 

• Multi-layer perception-based MAL-FCSN is 

used to perform the segmentation operation 

by analyzing the sub-pixel, pixel and super- 

pixel views of various regions. 

Rest of the article is organized as follows: section 

2 deals with the related work, section 3 delas with the 

proposed HSIS-Net implementation analysis, section 

4 deals with the results and discussions, and section 

5 delas with the conclusion. 

2. Related work 

This section performs the detailed survey on 

segmentation approaches. There are three different 

categories of segmentation approaches are used, 

pixel-level segmentation [15], object-level 

segmentation [16], and sub-pixel segmentation or 

unmixing [17]. The choice of approach depends 

mainly on the application requirement since they 

offer both advantages and limitations. Time-critical 

and real-time applications such as target detection, 

diurnal change detection, industrial quality 

inspection require real or near real-time computation 

solutions and segmentation framework. In particular, 

there are a plethora of applications, which bank upon 

HSIs, needing real-time processing systems for 

image analysis. There are different types of dee- 

learning depending upon the network architecture 

used to perform the HSI segmentation tasks, some of 

the deep learning models are recurrent neural 

networks [18], cyclic neural network, convolutional 

neural networks, and deep belief neural networks. 

However, deep learning convolution neural networks 

(DLCNN) [19] have attracted widespread attention in 

many vital applications.  

In [20] authors implemented the object-based 

image analysis (OBIA) model for HSI segmentation. 

In contrast to grayscale and color images, HSIs 

provide the benefit of analyzing images in a pixel-by-

pixel fashion accurately using spectral information 

alone. Further, A semi-supervised reduced-space 

(SSRS) method [21] is implemented for HSI 

segmentation. This method benefit is due to the 

increasing order of pixel-wise spectral information 

from panchromatic. In [22] authors implemented the 

conditional random field (CRF) for HSI 

segmentation. The most common limiting factors 

known to increase the risk in analyzing HSIs [23]. 

Due to the low spectral resolution, the separability of 

classes of interest (within classes and between 

classes) is limited. In [24] authors implemented the 

end-to-end fully convolutional network (EFCN) for 

HSI segmentation. Then, recurrent convolutional 

neural network (RCNN) is used to perform the 

segmentation operation.  In [25] authors implemented 

a hybrid network, which contains principal 

component analysis (PCA) based feature extraction, 

spectrally segmented-folded-PCA (SSeg-Fol-PCA) 

for HSI segmentation, support vector machine 

(SVM)-based segmentation. In [26] authors 

implemented the entropy rate super-pixel (ERS) 

approach for HSI segmentation, multi-spectral ERS 

approach is used for joint spatial-spectral feature 

analysis. Further, two-branch convolutional neural 

network (TBNN) is used to perform the segmentation.  

However, this method suffering with high 

computational complexity. The adaptive spatial 

pyramid constraint network (ASPCN) [27] is used to 

perform the HSI segmentation, which utilizes limited 

training samples. Here, dimensionality reduction 

refers to the process of reducing the number of 

attributes or features either by using feature selection 

or by feature extraction methods. In [28] authors 

implemented the HyperUnet model for HSI  
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Figure. 1 Proposed HSIS-Net architecture 

 

segmentation. A typical objective of HSI processing 

and analysis in different fields of application includes 

one or more of the techniques such as dimensionality 

reduction, target detection, and segmentation. In [29] 

authors implemented the covariance matrix 

representation (CMR) model for spectral–spatial 

feature extraction using locally homogeneous 

properties. This prominence is because the 

segmentation technique helps transform the large 

volumes of remotely sensed image data into useful 

information with multiple usages. 

In [30] authors implemented the spatial and 

spectral kernels generation network (SSKNet) for 

HSI segmentation using spatial and spectral kernels 

generation. In [31] authors implemented the spectral–

spatial based SuperPCA approach for HSI feature 

extraction and segmentation operation is carried out 

using SVM. In [32] authors implemented the 

multiscale curvature filters-for HSI feature extraction. 

Due to the stochastic nature of landscapes, there are 

different types of uncertainties ranging from image 

acquisition to image processing and analysis [33], 

including training and segmentation. Some of the 

uncertainties are sensor noise, limited training 

knowledge of known classes. The incomplete 

knowledge about the actual number of classes in the 

imagery, i.e., presence of unknown classes, which are 

unknown or unseen during training [34]. The 

uncertainties are one of the significant factors 

responsible for omission and commission errors. 

3. Proposed methodology 

The conventional HSI segmentation models are 

facing the challenges with complexities, noises, 

errors, and uncertainties. Further, challenges are 

inducing by these methods during adoption in 

applications, which slows down the application 

performance. Therefore, the development of novel 

algorithms is needed to exploit the full latent potential 

of spatial-spectral information present in HSIs. Fig. 1 

shows the block diagram of proposed HSIS-Net. 

Initially, HSI Processing operation is performed for 

normalizing the spatial-spectral bands of HSI, which 

also removes the different types of noises and 

enhances the region. In addition, spatial boundaries 

are extracted using SID, spectral boundaries are 

extracted using SCM methods and joint spatial-

spectral boundary map is formed by concatenation. 

Finally, multi-layer perception adopted transfer 

learning-based MAL-FCSN is used to perform the 

segmentation operation, which spates the spatial-

spectral regions based on boundary analysis. 

3.1 Data processing 

Let us consider a 3D HSI data cube denoted by 

𝑋 ∈  ℝ𝑚×𝑛×𝑑  has 𝑚 rows or lines, 𝑛 columns or 

samples, and 𝑑 spectral bands or dimensionality. For 

convenience, the 3D data cube 𝑋 of size 𝑚 × 𝑛 × 𝑑 

can be written into a 2D × 𝑁 (where 𝑁 = 𝑚 × 𝑛) 

matrix form ( 𝑋 ∈  ℝ𝑑×𝑁), known as data matrix as 

shown in Eq. (1). The data matrix 𝑿, is typically 

defined as the rastered ordering of 𝑁 column pixel 

vectors 𝑥𝑖  ∈  ℝ
𝑑, such that 𝑋 =  [𝑥1, 𝑥2, …… 𝑥𝑁] ∈

 ℝ𝑑×𝑁 . Where each pixel vector 𝑥𝑖 , see Eq. (2), 

represents a spectral measurement and 𝑁 is the total 

number of pixel vectors, i.e., 𝑁 is product of 𝑚 and n,  
 

𝑋 = [𝑥1, 𝑥2, …… 𝑥𝑁]𝑑𝑥𝑁 = [

𝑥11 ⋯ 𝑥𝑁1
⋮ ⋱ ⋮

𝑥1𝑑 ⋯ 𝑥𝑁𝑑
] 

= 𝑋 ∈  ℝ𝑑×𝑁    (1) 

 

𝑥𝑖 = [

𝑥𝑖1
𝑥𝑖2
⋮
𝑥𝑖𝑑

] ∈  ℝ𝑑   (2) 

 

For a pixel-by-pixel-based image analysis, each 

dimensional pixel vector is given as input to the 

algorithm as one-by-one in a streaming fashion. For 

instance, assume that the HSI arrives in a pixel-by-

pixel manner from a data matrix or in band-

interleaved-by pixel format from a sensor. As a result, 

a pixel vector-based analysis can be performed. In 
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other two image data formats, such as band-

interleaved-by-line and band sequential, the 3D data 

cube is transformed to a 2D data matrix and then 

streamed pixel-wise to the segmentation algorithm. 

Further, noise removal operation is carried out, which 

enhances the pixel wise information. 

3.2 Boundary extraction 

The HSI images consist of both spatial and 

spectral boundaries, where spatial boundaries hold 

the temporal redundancy and spectral boundaries 

holds the structural boundaries. These are the edge 

oriented statistical properties, which holds the spatial 

and spectral information of HSI. Therefore, the 

extraction of boundaries should be done carefully 

without losing the original information. Here, spatial 

boundaries (𝜓𝑆𝐼𝐷) are extracted using SID, spectral 

boundaries (𝜓𝑆𝐶𝑀) are extracted using SCM methods 

and joint spatial-spectral boundary map is formed by 

concatenation. 

3.2.1. SID 

SID is a stochastic measure derived from 

information theory. It is used for measuring spatial 

similarity and discriminability between unknown test 

pixel spatial and target reference spatial. SID views 

each pixel vector as a random variable and calculates 

the probabilistic behaviors between the reference 

pixel vector 𝑥 and test pixel vector 𝑧. The probability 

vectors of 𝑥  and 𝑧  are given by 𝑝 =  {𝑝𝑖}𝑖=1
𝑑  and 

𝑞 =  {𝑞𝑖}𝑖=1
𝑑 , respectively, where 𝑝𝑖 and 𝑞𝑖 are given 

as follows: 

 

𝑝𝑖 =
𝑥𝑖

∑ 𝑥𝑘
𝑑
𝑘=1

     (3) 

 

𝑞𝑖 =
𝑧𝑖

∑ 𝑥𝑘
𝑑
𝑘=1

      (4) 

 

The SID ((𝜓𝑆𝐼𝐷) between 𝑥 and 𝑧 is given by 

 

(𝜓𝑆𝐼𝐷(𝑧, 𝑥𝑖) = 𝐷(𝑥𝑖|| 𝑧 ) + 𝐷(𝑧||𝑥𝑖    )    (5) 

 

𝐷(𝑥𝑖|| 𝑧 ) = ∑ 𝑝𝑙𝐷𝑙(𝑥𝑖||𝑧)
𝑑
𝑙=1 = ∑ 𝑝𝑙 log2 (

𝑝𝑖

𝑞𝑖
)𝑑

𝑙=1   

         (6) 

 

𝐷(𝑧||𝑥𝑖) = ∑ 𝑞𝑙𝐷𝑙(𝑧||𝑥𝑖)
𝑑
𝑙=1 = ∑ 𝑞𝑙 log2 (

𝑝𝑖

𝑞𝑖
)𝑑

𝑙=1   

       (7) 

 

Where 𝐷(𝑥𝑖 ∥ 𝑧)  and 𝐷(𝑧 ∥ 𝑥𝑖)  are relative 

entropy of 𝑥 with respect to 𝑧 and 𝑧 with respect to 𝑥, 

respectively, and are also known as Kullack-Leibler 

divergence or cross-entropy. The values of 

𝜓𝑆𝐼𝐷 ranges from 0 to ∞. A value of 𝜓𝑆𝐼𝐷  =  0 

indicates a perfect match with no divergence between 

the two spatial. The lower the 𝜓𝑆𝐼𝐷value, the better 

the level of similarity between the reference spatial 

and unknown test spatial. 

3.2.2. SCM 

SCM is a derivative of Pearson’s linear 

correlation coefficient. It is commonly used to 

measure the similarity between the reference pixel 

and unknown pixel. The spectral matching 

performance of SCM is relatively higher than spectral 

angle mapper (SAM) because SCM can perceive a 

difference between positive and negative correlation. 

Unlike SAM, SCM is invariant to the linear 

transformation of spectra. The mathematical 

expression of SCM, 𝜓𝑆𝐶𝑀, for any 𝑧 is given by 

 

𝜓𝑆𝐶𝑀 (𝑧, 𝑥) =
∑ (𝑧𝑙−𝑧 ) (𝑥𝑙−)
𝑑
𝑙=1

√[∑ (𝑧𝑙−𝑧 )
2 𝑑

𝑙=1 ][∑ (𝑥𝑙−𝑥 )
2 𝑑

𝑙=1 ]
2

   (8) 

 

𝑥 =
1

𝑑
(∑  𝑑

𝑙=1 𝑥𝑙)     (9) 

 

𝑧 =
1

𝑑
(∑  𝑑

𝑙=1 𝑧𝑙)     (10) 

 

Where 𝑥  and 𝑧  are the means of 𝑥  and 𝑧  pixel 

vectors, respectively. The values of the 𝜓𝑆𝐶𝑀 ranges 

from − (i.e., no similarity) to + (i.e., perfect 

similarity). 

3.3 MAL-FCSN 

Active learning is one of the most widely 

researched approaches in the image segmentation 

domain. This is because of its ability to provide 

accurate predictions for a given training set. Further, 

the multi-view active learning performs the 

segmentation by analyzing the sub-pixel, pixel and 

super- pixel views of various regions. Fig. 2 presents 

the block diagram of multi-layer perception-based 

MAL-FCSN segmentation. Fig. 3 shows the layer 

wise architecture diagram of FCSN model. There are 

generally two phases or stages involved in using any 

MAL-FCSN technique, namely the training phase 

and the testing phase. The key idea in MAL-FCSN 

can be summarized as the task of learning a mapping 

function 𝑓 that maps inputs (𝑥)  to a unique 

segmented label from a prefixed set of discrete 

outputs labels, categories or target (𝑦). 

Mathematically, MAL-FCSN is expressed as 

𝑓: 𝑥 →  𝑦 or 𝑦 =  𝑓(𝑥).  In the training stage of the 

MAL-FCSN learning process, a discriminant 

function 𝑓 is formulated using a training set 
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Figure. 2 HSI segmentation using MAL-FCSN 

 

 consisting of 𝑙 labeled pixel vectors, i.e., 𝑆 =

 { 𝑥𝑖, 𝑦𝑖  }𝑙=1
𝑙  with training samples 𝑥𝑖  ∈  ℝ𝑑, and the 

corresponding class labels 𝑦𝑖  ∈  ℝ𝑙 . To produce a 

generalized classification model 𝑓  using S, a grid 

search method with a cross-validation (CV) strategy 

is adopted to find the optimal values of model 

parameters and free parameters. During training, 

algorithm-specific free parameter 𝜃𝑓  =

 {𝜃𝑓1
, 𝜃𝑓2

, …… . . , 𝜃𝑓𝑖
}  are given as input to the 

training model to produce optimal model parameters 

𝜃𝑚 = {𝜃𝑚1
 , 𝜃𝑚2

, … , 𝜃𝑚𝑗
} to make the model fit the 

data.  
The available training data 𝑆  is then split into 

three different sample subsets, namely sub-pixel set 

(𝑆𝑆𝑢𝑏 ⊆ 𝑆), pixel set (𝑆𝑃𝑖𝑥𝑐𝑒𝑙 ⊆ 𝑆 ), and super-pixel 

set (𝑆𝑠𝑢𝑝𝑒𝑟 ⊆ 𝑆 ). Then, cross validation accuracy 

(CVA) is calculated for each sub-set by rand sub 

sampling validation. The optimal combination of 

model parameters is selected highest values of CVA. 

The procedure is done for tuning or configure the 

optimal model parameters (𝜃𝑚). In the second phase 

of the MAL-FCSN approach, the trained model (i.e., 

𝑓 (𝑥: 𝜃𝑚)  is used for segmented label class 

prediction for each test pixels. Finally, the test 

features (𝑆𝑇𝑒𝑠𝑡) are compared with trained data and 

produces the segmented outcome.  

3.3.1. FCSN segmentation 

Transfer learning techniques have seen a global 

trend towards increase in popularity and use across 

various scientific and engineering disciplines in 

recent years. The increasing popularity and usage of 

these algorithms are mainly because of their ability to 

learn representative and discriminative features 

hierarchically employing various layers of 

abstraction. The word transfer learning usually means 

a depth of more than two hidden layers in a neural 

network architecture. Fig. 3 shows the FCSN model 

architecture for segmentation of HSI, which contains 

the convolutional encoder and decoder networks.  

Here, encoding process is used to reduce the 

number of features using max pooling layers, there 

by performs the segmentation operation in sub-pixel 

level with detailed edge identification.  After the 

encoding phase, a decoding procedure using a 

number of up sampling layers, which is used to 

perform the increased number of pixels and performs 

the segmentation operation in super-pixel level.  Up 

sampling is accomplished by the use of transposed 

convolution (Conv2DTranspose), which is also 

referred to more precisely as fractionally strided 

convolution. This is an operation that goes in the 

opposite direction of a convolution and enables us to 

translate the activations into something meaningful 

related to the size of the image by scaling up the 

activation size to the same size as the image. This is 

accomplished by scaling the activation size up to the 

same size as the image. This is performed by 

increasing the size of the activation to be the same as 

the size of the picture. Scaling up the activation size 

to match the image's size does this. A convolution 

layer produces feature maps using the following 

expression 

 

𝑥𝑗
𝑙 = 𝑓 ((∑ 𝑥𝑖

𝑙−1
𝑖 ∗ 𝑘𝑖𝑗

𝑙 ) + 𝑏𝑖
𝑙)           (11) 

 

Here, 𝑥𝑖
𝑙−1 is the 𝑖𝑡ℎ  feature map of (𝑙 − 1)𝑡ℎ  

layer, 𝑥𝑗
𝑙 represents the 𝑗𝑡ℎ feature map of current 𝑖𝑡ℎ 

layer, and 𝑓(. )  is a non-linear activation function. 

The trainable parameters 𝑘𝑖𝑗
𝑙  and 𝑏𝑖

𝑙  represents the 

kernel or weights and bias in the convolution layer, 

respectively. The pooling layer is used to down 

sample the feature maps using either max or average 

rule. The fully connected layers stack the reduced 

features to perform segmentation. 

 



Received:  August 27, 2022.     Revised: November 1, 2022.                                                                                             19 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.02 

 

 
Figure. 3 FCSN architecture 

 

4. Results and discussion 

The University of Pavia, Indian Pines, Salinas 

dataset, and Kennedy space center (KSC) dataset are 

the four datasets used for the simulations [35]. Each 

dataset has distinct categories with its own 

characteristics. As a result, the performance of the 

suggested system was successfully assessed using 

several performance indicators for each dataset. Here, 

segmentation accuracy (SA), segmentation precision 

(SP), segmentation recall (SR), segmentation F1-

score (SF1) are the segmentation performance 

measures. 

4.1 Dataset 

Indian Pines: Above the Indian Pines test site in 

northwest Indiana, the AVIRIS sensor recorded the 

Indian Pines dataset. Each picture in this collection 

comprises 145145 pixels and 220 spectral bands with 

wavelengths ranging from 0.4 to 2.5 m. There are 16 

categories in this picture that need to be categorised, 

such as the grassy field, the trees, and more. 

University of Pavia: The ROSIS03 satellite 

sensor captured this HSI image of the metropolitan 

region around the University of Pavia. This HSI has 

103 spectral bands, and each band picture has a 

resolution of 610340 pixels with a spectral coverage 

of 0.43 to 0.86 meters. There are nine categories in  
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Table 1. Segmentation performance evaluation on the Indian-pines dataset 

Metrics OBIA 

[20] 

CRF 

[22] 

SSRS 

[21] 

EFCN 

[24] 

CRF 

[23] 

SSeg-Fol-PCA 

[25] 

HyperUnet 

[28] 

HSIS-

Net 

SA 0.548 0.590 0.626 0.706 0.746 0.831 0.882 0.993 

SP 0.579 0.686 0.683 0.775 0.810 0.888 0.909 0.987 

SR 0.642 0.738 0.792 0.793 0.777 0.869 0.901 0.973 

SF1 0.657 0.726 0.722 0.759 0.799 0.823 0.905 0.983 

 

Table 2. Segmentation performance evaluation on the KSC dataset 

Metrics OBIA 

[20] 

CRF 

[22] 

SSRS 

[21] 

EFCN 

[24] 

CRF 

[23] 

SSeg-Fol-PCA 

[25] 

HyperUnet 

[28] 

HSIS-

Net 

SA 0.561 0.669 0.624 0.786 0.884 0.893 0.920 0.991 

SP 0.521 0.679 0.668 0.760 0.810 0.880 0.906 0.997 

SR 0.538 0.622 0.674 0.796 0.883 0.892 0.933 0.983 

SF1 0.595 0.616 0.683 0.718 0.839 0.867 0.922 0.993 

 

 
            (a)                            (b)                           (c)        

Figure. 4 The segmentation results of Indian pines 

dataset:(a) ground truth, (b) boundary detection, and (c) 

final segmentation  

 

 
             (a)                          (b)                            (c)        

Figure. 5 The segmentation results of KSC dataset: (a) 

ground truth, (b) boundary detection, and (c) final 

segmentation 

 

 
              (a)                          (b)                         (c)        

Figure. 6 The segmentation results of Pavia University 

dataset: (a) ground truth, (b) boundary detection, and (c) 

final segmentation  

 

this scenario that need to be categorized, including 

asphalt, meadows, and other things. 

KSC dataset: With wavelengths spanning from 

0.4 to 2.5 m, AVIRIS gathered information from the 

KSC in 224 bands. The water absorption bands are 

categorized using a total of 176 spectral bands. There 

are 13 possible land-cover categories in this dataset. 

Salinas dataset: Additionally, a Salinas dataset 

was obtained by the AVIRIS sensor, which had 

images of the Salinas Valley in California with a 

spatial resolution of 3.7 meters. This HSI has 220 

bands, each of which has a picture with a 512 by 217-

pixel resolution. 

4.2 Performance evaluation 

Fig. 4 shows the segmented outcomes of Indian 

pines dataset. The joint SID-SCM method accurately 

identifies segmented outcome of Indian pines dataset 

and it is matched to ground truth.  

Table 1 presents the segmentation performance 

comparison of various approaches, where proposed 

HSIS-Net resulted in superior performance as 

compared existing segmentation methods like OBIA 

[20], CRF [22], SSRS [21], EFCN [24], CRF [23], 

SSeg-Fol-PCA [25], and HyperUnet [28]. 

The KSC is also another important dataset, which 

contains the greatest number of pixels in the 

background. Fig. 5 shows that the proposed method 

results in a much similar segmented outcome as 

ground truth. Table 2 presents the segmentation 

performance comparison of various approaches, 

where proposed HSIS-Net resulted in superior 

performance as compared existing segmentation 

methods like OBIA [20], CRF [22], SSRS [21], 

EFCN [24], CRF [23], SSeg-Fol-PCA [25], and 

HyperUnet [28]. 

The Pavia dataset attracts significant attention in 

the HSI classification process as it contains more 

robust ground truth and a smaller number of classes. 

Fig. 6 shows that the proposed method results in a 

much similar segmented outcome as ground truth.  
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Table 3. Segmentation performance evaluation on the Pavia University dataset 

Metrics OBIA 

[20] 

CRF 

[22] 

SSRS 

[21] 

EFCN 

[24] 

CRF 

[23] 

SSeg-Fol-PCA 

[25] 

HyperUnet 

[28] 

HSIS-

Net 

SA 0.542 0.628 0.751 0.816 0.888 0.891 0.927 0.999 

SP 0.590 0.686 0.747 0.813 0.879 0.897 0.915 0.989 

SR 0.536 0.741 0.766 0.843 0.839 0.928 0.945 0.992 

SF1 0.575 0.731 0.784 0.834 0.890 0.914 0.934 0.999 

 
Table 4. Segmentation performance evaluation on the Pavia University dataset 

Metrics OBIA 

[20] 

CRF 

[22] 

SSRS 

[21] 

EFCN 

[24] 

CRF 

[23] 

SSeg-Fol-PCA 

[25] 

HyperUnet 

[28] 

HSIS-

Net 

SA 0.574 0.796 0.803 0.829 0.870 0.916 0.934 0.999 

SP 0.545 0.751 0.810 0.868 0.883 0.913 0.932 0.998 

SR 0.591 0.665 0.831 0.832 0.909 0.928 0.966 0.997 

SF1 0.620 0.715 0.853 0.883 0.915 0.939 0.942 0.999 

 
            (a)                            (b)                           (c)        

Figure 7. The segmentation results of Salinas dataset: (a) 

ground truth, (b) boundary detection, and (c) final 

segmentation 

 

Table 3 presents the segmentation performance 

comparison of various approaches, where proposed 

HSIS-Net resulted in superior performance as 

compared existing segmentation methods. Fig. 7 

shows the segmented outcomes of Salinas dataset. 

The joint SID-SCM method accurately identifies the 

segmented outcome of Salinas dataset, and it is 

matched to ground truth. Table 4 presents the 

segmentation performance comparison of various 

approaches, where proposed HSIS-Net resulted in 

superior performance as compared existing 

segmentation methods. 

5. Conclusions 

This article implemented the HSIS-Net for HSI 

segmentation using multi-view active learning 

adopted with transfer learning. Initially, HSI 

preprocessing operation is carried out for 

normalization of spatial-spectral bands and also 

removed the different types of noises. Further, spatial 

boundaries are extracted using SID, spectral 

boundaries are extracted using SCM and joint 

boundary map was formed. Furthermore, multi-layer 

perception-based MAL-FCSN generates the HSI 

segmented outcome by analyzing the sub-pixel, pixel 

and super- pixel views of various regions. Here, 

transfer learning based FCSN model was used to 

segment the HSI regions based on spatial-spectral 

boundary analysis, which contain the multi-layer 

encoder and decoder networks. This work can be 

extended with natural inspired optimization 

algorithms for better segmentation and classification.  

Conflicts of interest 

The authors declare no conflict of interest.  

Author contributions (Mandatory) 

 “Conceptualization, M. Krishna Satya Varma; 

methodology, M. Krishna Satya Varma; software, M. 

Krishna Satya Varma; validation, M. Krishna Satya 

Varma; formal analysis, M. Krishna Satya Varma; 

investigation, M. Krishna Satya Varma; writing—

original draft preparation, M. Krishna Satya Varma; 

writing—review and editing, M. Krishna Satya 

Varma, K. Raja, N. K. Kameswara Rao. 

References 

[1] P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. Plaza, 

“Advanced spectral classifiers for hyperspectral 

images: A review”, IEEE Geoscience and 

Remote Sensing Magazine, Vol. 5, No. 1, pp. 8–

32, 2017.  

[2] M. H. Phan, S. L. Phung, K. Luu, and A. 

Bouzerdoum, “Efficient Hyperspectral Image 

Segmentation for Biosecurity Scanning Using 

Knowledge Distillation from Multi-head 

Teacher”, Neurocomputing, Vol. 504, pp. 189-

203, 2022. 

[3] L. Zhang, L. Zhang, D. Tao, X. Huang, and B. 

Du, “Hyperspectral remote sensing image target 



Received:  August 27, 2022.     Revised: November 1, 2022.                                                                                             22 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.02 

 

detection based on supervised metric learning”, 

IEEE Transactions on Geoscience and Remote 

Sensing, Vol. 52, No. 8, pp. 4955–4965, 2014. 

[4] A. Kaul, “A Review of Hyperspectral Image 

Classification with Various Segmentation 

Approaches Based on Labelled Samples”, Smys, 

S., Tavares, J.M.R.S., Balas, V.E. (eds) 

Computational Vision and Bio-Inspired 

Computing. Advances in Intelligent Systems and 

Computing, Singapore, Vol. 1420, 2022.  

[5] S. L. Polk, K. Cui, R. J. Plemmons and J. M. 

Murphy, “Active Diffusion and VCA-Assisted 

Image Segmentation of Hyperspectral Images”, 

IEEE International Geoscience and Remote 

Sensing Symposium, pp. 1364-1367, 2022. 

[6] J. C. Cohrs, C. Bajaj, and B. Berkels, “A 

distribution-dependent Mumford-Shah model 

for unsupervised hyperspectral image 

segmentation”, arXiv:2203.15058, 2022. 

[7] B. Manifold, S. Men, R. Hu, and D. Fu, “A 

versatile deep learning architecture for 

classification and label-free prediction of 

hyperspectral images”, Nature Machine 

Intelligence, Vol. 3, No. 4, pp. 306-315, 2021. 

[8] X. Liu, J. Yu, T. Kurihara, L. Xu, Z. Niu, and S. 

Zhan, “Hyperspectral imaging for green pepper 

segmentation using a complex-valued neural 

network”, Optik, Vol. 265, Article ID 169527, 

2022. 

[9] L. Wei, M. Yu, Y. Zhong, J. Zhao, Y. Liang, and 

X. Hu, “Spatial-spectral fusion based on 

conditional random fields for the fine 

classification of crops in UAV-borne 

hyperspectral remote sensing imagery”, Remote 

Sensing, Vol. 11, No. 7, p. 780, Apr. 2019.  

[10] S. Subudhi, R. N. Patro, P. K. Biswal and F. 

Dell’Acqua, “A survey on superpixel 

segmentation as a preprocessing step in 

hyperspectral image analysis”, IEEE Journal of 

Selected Topics in Applied Earth Observations 

and Remote Sensing, Vol. 14, pp. 5015-5035, 

2021.  

[11] S. L. Polk, A. H. Y. Chan, K. Cui, R. J. 

Plemmons, D. A. Coomes, and J. M. Murphy, 

“Unsupervised detection of ash dieback disease 

(Hymenoscyphus fraxineus) using diffusion-

based hyperspectral image clustering”, arXiv 

preprint arXiv:2204.09041, 2022. 

[12] S. R. Delwiche, I. Baek, and M. S. Kim, “Does 

spatial region of interest (ROI) matter in 

multispectral and hyperspectral imaging of 

segmented wheat kernels?”, Biosystems 

Engineering, Vol. 212, pp. 106-114, 2021. 

[13] H. Du, H. Qi, X. Wang, R. Ramanath, and W. E. 

Snyder, “Band selection using independent 

component analysis for hyperspectral image 

processing”, In: Proc. 32nd Appl. Imagery 

Pattern Recognit. Workshop, pp. 93–98, 2003. 

[14] J. G. Zaballa, K. Basterretxea, J. Echanobe, M. 

Martínez, and I. D. Campo, “Exploring Fully 

Convolutional Networks for the Segmentation 

of Hyperspectral Imaging Applied to Advanced 

Driver Assistance Systems”, In: Proc. of 

International Workshop on Design and 

Architecture for Signal and Image Processing, 

Springer, Cham, pp. 136-148. 

[15] G. Jaiswal, A. Sharma, and S. K. Yadav, 

“Critical insights into modern hyperspectral 

image applications through deep learning”, 

Wiley Interdisciplinary Reviews: Data Mining 

and Knowledge Discovery, Vol. 11, No. 6, p. 

e1426, 2021. 

[16] S. Zhang, Q. Deng, and Z. Ding, “Hyperspectral 

Image Segmentation based on Graph Processing 

over Multilayer Networks”, arXiv preprint 

arXiv:2111.15018, 2021. 

[17] Y. H. Li, X. Tan, W. Zhang, Q. B. Jiao, Y. X. 

Xu, H. Li, and Y. P. Fang, “Research and 

application of several key techniques in 

hyperspectral image preprocessing”, Frontiers 

in Plant Science, Vol. 12, p. 627865, 2021. 

[18] M. P. Uddin, M. A. Mamun, M. I. Afjal, and M. 

A. Hossain, “Information-theoretic feature 

selection with segmentation-based folded 

principal component analysis (PCA) for 

hyperspectral image classification”, 

International Journal of Remote Sensing, Vol. 

42, No. 1, pp. 286-321, 2021. 

[19] X. Zhang, X. Jiang, J. Jiang, Y. Zhang, X. Liu, 

and Z. Cai, “Spectral–spatial and superpixelwise 

PCA for unsupervised feature extraction of 

hyperspectral imagery”, IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 60, pp. 1-

10, 2021. 

[20] P. D. Dao, K. Mantripragada, Y. He, and F. Z. 

Qureshi, “Improving hyperspectral image 

segmentation by applying inverse noise 

weighting and outlier removal for optimal scale 

selection”, ISPRS Journal of Photogrammetry 

and Remote Sensing, Vol. 171, pp. 348-366, 

2021. 

[21] G. Aletti, A. Benfenati, and G. Naldi, “A semi-

supervised reduced-space method for 

hyperspectral imaging segmentation”, Journal 

of Imaging, Vol. 7, No. 12, 2021. 

[22] P. Ajay, “Unsupervised Hyperspectral 

Microscopic Image Segmentation Using Deep 

Embedded Clustering Algorithm”, Scanning, 

Vol. 2022, 2022. 



Received:  August 27, 2022.     Revised: November 1, 2022.                                                                                             23 

International Journal of Intelligent Engineering and Systems, Vol.16, No.2, 2023           DOI: 10.22266/ijies2023.0430.02 

 

[23] C. A. Hinojosa, F. Rojas, S. Castillo, and H. 

Arguello, “Hyperspectral image segmentation 

using 3D regularized subspace clustering 

model”, Journal of Applied Remote Sensing, Vol. 

15, No. 1, p. 016508, 2021. 

[24] H. Sun, X. Zheng, and X. Lu, “A supervised 

segmentation network for hyperspectral image 

classification”, IEEE Transactions on Image 

Processing, Vol. 30, pp. 2810-2825, 2021. 

[25] M. P. Uddin, “Information-theoretic boundary 

selection with segmentation-based folded 

principal component analysis for hyperspectral 

image classification”, International Journal of 

Remote Sensing, Vol. 42, No. 1, pp. 286-321, 

2021. 

[26] C. Mu, Z. Dong, and Y. Liu, “A Two-Branch 

Convolutional Neural Network Based on Multi-

Spectral Entropy Rate Superpixel Segmentation 

for Hyperspectral Image Classification”, Remote 

Sensing, Vol. 14, No. 7, 2022. 

[27] J. Nalepa, M. Myller, M. Cwiek, L. Zak, T. 

Lakota, L. Tulczyjew, and M. Kawulok. 

“Towards on-board hyperspectral satellite image 

segmentation: understanding robustness of deep 

learning through simulating acquisition 

conditions”, Remote Sensing, Vol. 13, No. 8, 

2021. 

[28] L. Wang, et al. “UNetFormer: A UNet-like 

transformer for efficient semantic segmentation 

of remote sensing urban scene imagery”, ISPRS 

Journal of Photogrammetry and Remote Sensing, 

Vol. 190, pp. 196-214, 2022. 

[29] C. Zhao, B. Qin, S. Feng, and W. Zhu, “Multiple 

superpixel graphs learning based on adaptive 

multiscale segmentation for hyperspectral image 

classification”, Remote Sensing, Vol. 14, No. 3, 

2022. 

[30] S. Manju, and K. Helenprabha, “A structured 

support vector machine for hyperspectral 

satellite image segmentation and classification 

based on modified swarm optimization 

approach”, Journal of Ambient Intelligence and 

Humanized Computing, Vol. 12, No. 3, pp. 

3659-3668, 2021. 

[31] Y. R. Fan, and T. Z. Huang, “Hyperspectral 

image restoration via superpixel segmentation of 

smooth band”, Neurocomputing, Vol. 455, pp. 

340-352, 2021. 

[32] Siddiqa, Ayasha, R. Islam, and M. I. Afjal, 

“Spectral segmentation-based dimension 

reduction for hyperspectral image classification”, 

Journal of Spatial Science, pp. 1-20, 2022. 

[33] L. Ding, H. Tang, and L. Bruzzone, “LANet: 

Local attention embedding to improve the 

semantic segmentation of remote sensing 

images”, IEEE Trans. Geosci. Remote Sens., 

doi: 10.1109/TGRS.2020.2994150. 

[34] G. Sun, “SpaSSA: Superpixelwise adaptive SSA 

for unsupervised spatial-spectral feature 

extraction in hyperspectral image”, IEEE 

Transactions on Cybernetics, 2021.  

[35] Y. Behroozi, and M. Yazdi, “Hyperspectral 

Image Denoising Based on Superpixel 

Segmentation Low-Rank Matrix Approximation 

and Total Variation”, Circuits, Systems, and 

Signal Processing, Vol. 41, No. 6, pp. 3372-

3396, 2022. 


