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Abstract: In the universe, an infinite number of patterns are visible, which is the premier beauty of
nature. Mathematical modeling is a powerful tool to decorate the patterns in scientific computation.
This paper studied the Gierer-Meinhardt reaction-diffusion model of pattern formation to visualize a
class of patterns for different animals and plants. It is also noted that many biological and chemical
phenomena can be explained using the Gierer-Meinhardt model. We have analyzed the linear sta-
bility to get the stability and instability conditions of a system of reaction-diffusion equations with
diffusion and in the absence of diffusion. Finally, as an application, a series of different types of
patterns are presented using numerical simulation of the model.
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Introduction

The pattern is a common phenomenon in nature. We have found patterns almost everywhere
in the surroundings. For example, the formation of clouds, rivers, water waves, and crystals all
are followed a specific pattern. People are always curious about these patterns in nature. They
always want to know these different patterns in nature, how they formed, and the evolution of
patterns. To answer all these questions, the scientist uses mathematical modeling. Alan Turing was
the first scientist who used mathematical modeling to describe the pattern in nature (Teuscher and
Hofstadter, 2004). He suggested that shapes and patterns found in nature might be explained by
two biological substances moving and interacting with one another in a mathematically predictable
way. Turing mathematical modeling came up with a system of coupled differential equation (Kondo,
2017). However, solving that system with the computational technique available at that time
was undoubtedly hard. However, Turing did complete the painstaking task once, which produced a
pattern that resembled a cow’s skin (Green and Sharpe, 2015). Although pattern formation is a broad
topic, it is mainly used in biological science. Pattern creation in biology refers to the process by which
genes create intricate arrangements of cells’ fates in time and space (Meinhardt and Klingler, 1987).
The traditional reaction-diffusion model by Alan Turing is included in the numerical simulations of
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pattern formation in bio-molecules. The behavior of two species (substances) interacting with each
other can be easily simulated using the reaction-diffusion equation (Harrison, 2005). The species
(substances) are transformed into each other, the reaction that yields a higher concentration of the
given substances at a spot. At the same time, they also dissolve, which is the diffusion, outspreading
themselves over the area. The interaction between two or more species (or objects) is a reaction.
One dimensional reaction is the interaction in which the species reacts with zero, either increasing
the density of itself or decreasing (Nakamasu et al., 2009). For instance, a decaying reaction can be
described by the system

du

dt
= −u = f(u)

In other words, we can also say that the reactive term f(u), describes the changes in concentra-
tion of u depending on its local value. On the other hand, the word diffusion describes the concept
of spreading out. In Physics, diffusion is used to explain how liquids spread in the surrounding area
when the gas particles (Glover et al., 2017). The model solution and visible natural patterns are
shown in Figure 1.

Figure 1: A comparative diagram between computer simulated results and natural patterns.

Let u(x, t) be the chemical’s (species) concentration which is at the real line on x at time t.
Then the reaction-diffusion equation is,

∂u

∂t
= μ

∂2u

∂x2
+ f(u), (1)

where μ is the diffusion coefficient and f(u) describes how u grows or decays based on the con-
centration (Hentschel et al., 2004). A lot of physical phenomena can be described by using this
reaction-diffusion equation. In the present work, we mainly focused on a particular reaction-diffusion
model by which we can describe the pattern formation on an animal’s skin. The considered model is
a Gierer-Meinhardt model, consisting of two partial differential equations. The findings significantly
present the novel results which are matching with the existing multiple animal’s pattern.

The main objective of this paper is to show the effects of parameters on pattern formation and
compare the theoretical results with the existing pattern available in nature to compare the findings
visually. The paper is organized as follows: the mathematical model (2) is take place and described
in Section . We discuss the stability analysis and develop the analytic results in Section . The
computational results are presented in Section , where we consider different values of the parameter
and varying boundary conditions while the others are fixed. It is remarked that the significant change
of the domain and changing time satisfy the stability criteria for certain large values of time, t. In
Section , we have compared the simulations and exiting pattern to ensure the results and validity of
the model. Finally, we conclude a summary and future direction of the study as presented in Section
.
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Mathematical Model

The Gierer-Meinhardt model depicts the concentration of an activator, a short-range autocatalytic
substance that controls the synthesis of its inhibitor, a long-range antagonist substance. Although
it is a very simple model, it is a theoretical link connecting observations and the inference of the
fundamental molecular-genetic pathways (Alonso Garćıa, 2016; Schneider, 2012). In this study, we
have studied the following mathematical model (Meinhardt, 2006),⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut =
u2(t, x)
v(t, x)

− bu(t, x) + μΔu(t, x), t > 0, x ∈ Ω,

vt = u2(t, x)− v(t, x) + νΔv(t, x), t > 0, x ∈ Ω,

u(t, x) = β1(t, x), v(t, x) = β2(t, x), t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

(2)

Here, u(t, x) represents the activator and v(t, x) represents the inhibitor. The rate of the change of
activator concentration is represented by ut and the rate of the change of inhibitor concentration is
represented by vt. The term μΔu(t, x) describes the diffusion term of the activator and similarly,

νΔv(t, x) is for the inhibitor dispersal. The reaction term for the activator is represented by u2(t,x)
v(t,x) −

bu(t, x) while the reaction term for the activator is u2(t, x)− v(t, x) (Doelman et al., 2007; Lengyel
and Epstein, 1992). In order to study this model, first of all, we need to perform a stability analysis
of this model, from which we will get some stability conditions for which our considered model may
have a stable solution. Then, we will use numerical analysis and MATLAB code to visualize the
results.

Steady states and mathematical analysis

The defined model is a system of non-linear partial differential equations, and finding the stability
conditions for the exact system is challenging. In order to find the behavior of the solution, it will
be convenient if we approximate the system. We may use the linearized approximation method
for approximation as it will be easier for analysis. First, we will attempt to determine the stability
conditions of the system without considering the diffusion effect on the system. Finally, we will also
try to find out the stability condition of the system with diffusion effect (Hossine et al., 2021; Hossine
and Kamrujjaman, 2019; Salazar-ciudad and Jernvall, 2004). Let us now consider the system (2)
without diffusion such that

du

dt
=

u2

v
− bu

dv

dt
= u2 − v

In case of steady state solution, it is obtained that u0 = 0, 1
b and v0 = 0, 1

b2
.

Hence, linearizing about the steady state [u0, v0] =
[
1
b ,

1
b2

]
, we find the Jacobian matrix is:

J =

[
fu fv
gu gv

]

⇒ J |( 1
b
, 1
b2

) =

[−b+ 2u
v −u2

v2

2u −1

]
( 1
b
, 1
b2

)

=

[
b −b2
2
b −1

]

In order to find the stability, we have to satisfy the following two conditions,

det(J) > 0, and tr(J) < 0,
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which yields b > 0, b < 1 such that the limit of b is 0 < b < 1
Therefore, Gierer-Meinhardt model without diffusion is stable as long as 0 < b < 1 (Hossine et al.,
2021).

Now, it’s time to recall the governing problem (2) with diffusion. We have introduced a minor
perturbation apart from the stable equilibrium to analyze this system, and then we will determine
the parameter values.

Consider u(x, t) = uo+ ũ and v(x, t) = vo+ ṽ , with ũ and ṽ are very small. Then, the linearized
system has the form,

∂ũ

∂t
= bũ− b2ṽ + μ

∂2ũ

∂x2

∂ṽ

∂t
=

2ũ

b
− ṽ + ν

∂2ṽ

∂x2

So, fu = b, fv = −b2 and gu = 2
b , gv = −1. Now, the solution of this system is,

ũ(x, t) = u̇eσt sinαx and ṽ(x, t) = v̇eσt sinαx,

where above equations are the Fourier models. Therefore, the modified first equation of (2) is,

σeσtu̇ sinαx = −α2μu̇eσt sinαx+ fuu̇e
σt sinαx+ fvv̇e

σt sinαx

⇒ σeσtu̇ sinαx = −α2μu̇eσt sinαx+ bu̇eσt sinαx− b2v̇eσt sinαx (3)

Dividing both sides of the equation (3) by eσt sinαx, we get

σu̇ = −α2μu̇+ bu̇− b2v̇.

Similarly, the second equation of (2) becomes

σv̇ = −α2νv̇ +
2

b
u̇− v̇.

Combining the immediate last two equations, we have modified Jacobian matrix,

J =

[
fu − α2μ fv

gu gv − α2ν

]
=

[
b− α2μ −b2

2
b −1− α2ν

]

For stability, there are two conditions such that, det(J) > 0 and tr(J) < 0. Trace of the Jacobian
matrix is:

fu + gv − α2(μ+ ν) < 0

⇒ b− 1− α2(μ+ ν) < 0,

and determinant of the Jacobian matrix implies

(fu − α2μ)(gv − α2ν)− fvgu > 0

⇒ (b− α2μ)(−1− α2ν) + 2b > 0.

Now, consider the determinant,

det(J) =(fu − α2μ)(gv − α2ν)− fvgu

=α4μν − α2(−μ+ bν)− b+ 2b,

which employ the instability if α4μν + α2(μ− bν)− b+ 2b < 0.
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We have seen that the determinant of the Jacobian matrix is a quadratic function of α2. We
know from algebra that a quadratic equation has an equal or distinct real root depending on the
value of the discriminant of that equation which is dependent on the coefficient of that quadratic
equation. Our derived quadratic equation will have zero, one, or two real roots, depending on b. We
will get patterns from the numerical simulation of the model when the derived quadratic equation
has real solutions (Liehr, 2013). In order to get two real roots for the quadratic, we must have

μν

(−bν + μ

2μν

)2

+ (−bν + μ)

(−bν + μ

2μν

)
− b+ 2b < 0

⇒ (−bν + μ)2 > 4μνb

Because of second condition required for instability (b > 0), it follows that

−bν + μ > 2
√

μνb.

This further implies
fuν + gvμ > 0.

For better representation of our findings clarity, we will restate all four conditions here for which
diffusion-driven stability will occur:

Condition i: tr(J) = fu + gv < 0 ⇒ tr(J) = b− 1 < 0

Condition ii: det(J) = fugv − fvgu > 0 ⇒ det(J) = b > 0

Condition iii: fuν + gvμ > 0 ⇒ bν − μ > 0

Condition iv: fuν + gvμ > 2
√
μν(fugv − fvgu) ⇒ bν − μ > 2

√
μνb.

Computational approach and examples

To get the visualized results using numerical simulation, we have constructed a MATLAB program
that can generate some dynamic simulations of the pattern. This program can represent a complete
dynamic pattern simulation over time that shows how pattern formation executes after initial time
and then changes unstably over time till it reaches its stable point. After getting stable, it remains
unchanged no matter how much time we input. In this program, we have considered fixed b, μ, ν
and time step-size Δt. In particular, we have chosen b = 0.2, μ = 0.5, ν = 35, Δt = 0.00001. We
have chosen these parameters’ values so that stability conditions are satisfied.

Gierer-Meinhardt model and numerical simulations

Regarding numerical calculations, We have employed the finite difference method to discretize the
partial differential equations by designing a MATLAB code to simulate the numerical result. MAT-
LAB code will show us how to numerically simulate the 2D Gierer-Meinhardt system and create
a simplified version in the Turing instabilities. The code executes and represents figures of the
concentration of activator and inhibitor at every point in the given time range. We have gen-
erated all the simulations for same initial conditions u0(x, y) = π sin(x) sin(y) + cos(πy) and
v0(x, y) = 1.25 + 0.5 sin(y) cos(x) with different boundary conditions. For each simulation, we
represent five sets of figures of a certain time that are titled in the figures.
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Figure 2: Patterns of the model with boundary conditions β1(t, x, y) = sin (xπ) sin (yt ) + cos (yt ) cos (y) and
β2(t, x, y) = sin (xπt ) sin (y) + 2 cos (x) cos (y) for t = 1 and t = 20.

Figure 3: Patterns formation for β1(t, x, y) = sin (xπ) sin (yt ) + cos (yt ) cos (y) and β2(t, x, y) =
sin (xπt ) sin (y) + 2 cos (x) cos (y) at t = 100 to t = 1000.

Figure 4: Stable patterns when β1(t, x, y) = sin (xπ) sin (yt ) + cos (yt ) cos (y) and β2(t, x, y) =
sin (xπt ) sin (y) + 2 cos (x) cos (y) for t = 100000.

We simulated the result of the Gierer-Meinhardt model with boundary conditions β1(t, x, y) =
sin (xπ) sin (yt ) + cos (yt ) cos (y) and β2(t, x, y) = sin (xπt ) sin (y) + 2 cos (x) cos (y) for different
values of time t. It is seen from the outcome that the model’s output oscillates at the beginning
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of time and presented in Figure 2. Gradually the oscillation is being smaller (Figure 3), and after
a certain time, the model’s solution becomes stable, and we get a stable pattern as presented in
Figure 4. At our current case the stable point is at t = 100000.

Figure 5: Result of the model with boundary conditions β1(t, x, y) = 4 sin (πxt ) sin (yt ) + cos (x) cos (y) and
β2(t, x, y) = sin (x) sin (y) + 2 cos (xt ) cos (y) for t = 2 and t = 20.

Figure 6: Result of the model with boundary conditions β1(t, x, y) = 4 sin (πxt ) sin (yt ) + cos (x) cos (y) and
β2(t, x, y) = sin (x) sin (y) + 2 cos (xt ) cos (y) for t = 100 to t = 100000.

The Figure 5 shows the result of the Gierer-Meinhardt model with boundary conditions β1(t, x, y) =
4 sin (πxt ) sin (

y
t ) + cos (x) cos (y) and β2(t, x, y) = sin (x) sin (y) + 2 cos (xt ) cos (y) with respect to

time t. In activator and inhibitor, it shows that the patterns are stable after a certain time of
oscillation (Figure 6), and in the present case, the stable point is t = 1000.
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Figure 7: Patterns of the model with boundary conditions β1(t, x, y) = sin ( x
πt ) sin (

y
t ) + cos (0.6x) cos (y)

and β2(t, x, y) = sin (x) sin (y) + 2 cos (xt ) cos (y).

In Figure 7, we have considered the boundary conditions β1(t, x, y) = sin ( x
πt) sin (

y
t )+cos (0.6x) cos (y)

and β2(t, x, y) = sin (x) sin (y)+2 cos (xt ) cos (y) and the patterns results are presented for different
values of time t. Again the stable patterns are focused at t = 1000 while the fluctuation was visible
at the beginning of time.

Figure 8: Result of the model with boundary conditions β1(t, x, y) = sin (2x) sin (y) + sin (x) sin (yt ) and
β2(t, x, y) = sin (x) sin (y) + 2 cos (xt ) sin (y).

The result of the Gierer-Meinhardt model is generated with boundary conditions, β1(t, x, y) =
sin (2x) sin (y) + sin (x) sin (yt ) and β2(t, x, y) = sin (x) sin (y) + 2 cos (xt ) sin (y) and for different
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values of time t. We have seen from the output that the model’s output oscillates at the beginning
of time, and after a certain time, the model’s output becomes stable, and we get a stable pattern.
At our current case the stable point is t = 1000.

Figure 9: Result of the model with boundary conditions β1(t, x, y) = sin (x) cos (xt ) + sin (πy) cos (xt ) +
2 cos (yπt ) and β2(t, x, y) = sin (x) cos (xt ) + sin (πy) cos (xt ) + 2 cos (3y).

In Figure 9, we simulated the result of the problem with boundary conditions, β1(t, x, y) =
sin (x) cos (xt ) + sin (πy) cos (xt ) + 2 cos (yπt ), and β2(t, x, y) = sin (x) cos (xt ) + sin (πy) cos (xt ) +
2 cos (3y) and for different values of time t. Similar results are visible compared with the previous
results.

Figure 10: Result of the model with boundary conditions β1(t, x, y) = 2 sin (x) cos (2x)+ 1
2 sin (πy) cos (

x
t )+

2 cos (yπt ) and β2(t, x, y) = sin (x) sin (y) + cos (x) cos (yt ) + 2 cos (3y).

The above result of the Gierer-Meinhardt model as shown in Figure 10 with boundary conditions,
β1(t, x, y) = 2 sin (x) cos (2x) + 1

2 sin (πy) cos (
x
t ) + 2 cos (yπt ), and β2(t, x, y) = sin (x) sin (y) +

cos (x) cos (yt ) + 2 cos (3y) and for various time t. It is noted that the fluctuation patterns are seen
for a lower time, and gradually the solution patterns become stable. At our current case the stable
point is t = 3000.
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Actual pattern vs computer model

Creation and nature are full of various patterns. In the surroundings, we can see different patterns
with different colors. Above we have done by computer programming and established the results
and figures. Now we will compare those figures with the skin patterns of different animals.

Figure 11: Different types of natural pattern compared with computer simulated pattern.

Figure 12: Different types of natural pattern compared with data simulated results.

We have the following conclusion as presented in Figures 11 and 12:

In the first figure, we have compared Blue Phalaenopsis orchid (orchidrepublic) with the
computer output generated in Figure 7 (Activator at t=100000) .

In the second figure, we have compared Red Candy Basslet’s skin (Liopropoma carmabi)
(Wikipedia) with the computer output generated in Figure 2 (Activator at t=100000) .

In the third figure, we have shown the comparison between Corn snake’s skin (Wikipedia)
and the computer output generated in Figure 5 (Activator at t=2).

In the fourth figure, a comparative findings between Sri Lanka Pit Viper’s skin (Trimeresu-
rus trigonocephalus) (Agefotostock) and the computer output generated in Figure 8 (Acti-
vator at t=10).

1112



ISSN:2372-0743 print
ISSN:2373-2989 on line

International Journal of Ground Sediment & Water Vol.17
2023

Summary and concluding remarks

In this study, we studied the Gierer-Meinhardt model to develop the patterns of various animals
and plants and compared the existing scenario and the modeling outcome. The results concluded
that different natural patterns could be simulated through mathematical modeling and many models
exhibiting a pattern. In forming a pattern, a model must be satisfied all the conditions for Turing
instability. By changing parameters, first, we checked Turing instability. If the model is stable, we
took different initial conditions to get different patterns. From this general Gierer-Meinhardt model,
we got some spot and stripe patterns by using random initial conditions and applying Dirichlet
boundary conditions. These patterns are different in colors and also different types. Finally, we
compared these figures with some animals’ skin patterns.
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