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Lamiya NABADOVA1 

 

 

 

OPTIMAL DOCKING PROBLEM OF UAV AT DETECTED MOVING 

OBJECT 
 

Summary. In the article, the problem of detecting a suspicious object in the 

control by unmanned air vehicle (UAV) and tracking it by reaching and changing 

its direction in the shortest period of time is explored. To solve this optimal control 

problem, it is considered that the flight of UAV is described with simple motion 

equations. In the beginning, known quantities are current coordinates and speed of 

UAV, equation of motion of detected suspicious object. 

Keywords: drone, algorithm, optimal control, uav, docking 

 

 

1. INTRODUCTION 

 

Due to their sufficient processing and low cost, unmanned aerial vehicles are currently used 

to solve various problems. One of such issues is related to the protection of territories and 

borders. An unmanned aerial vehicle (UAV) equipped with a video camera flies along a certain 

route in the area where it is deployed and monitors the area. As a rule, the analysis of video 

images is performed in automatic mode. When the UAV detects a suspicious object moving in 

the area, it first reports it to the control center. Such UAVs with electric motors fly "quietly" 

from a sufficient height, therefore, without attracting attention, they change their trajectory and 

approach a suspicious object and fly over it. The main requirement put forward during this 

maneuver is the minimum docking time. 
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In the scientific and technical literature, these types of issues are often related to the control 

of the process of docking ships to bridges (for example, [1, 2, 3]), connecting space vehicles to 

each other (for example, [4, 5, 6]) or reaching an asteroid [7]. in connection with and in other 

cases. Depending on the requirements, the formalization of the relevant issues and the methods 

of solving them are different. 

In the article, the issue of optimal control of the UAV, which realizes the process of docking 

to the detected moving object in the minimum time without changing the flight height, is 

studied. It is believed that the aircraft can move in different directions while maintaining the 

same height while performing the video-monitoring process. The area control process is carried 

out by means of a video camera attached to the aircraft. If a suspicious object is detected in the 

video image, the movement trajectory of the detected object is determined based on those 

images. The essence of the docking issue is that, regardless of the direction in which the UAV 

is moving, if it detects a suspicious object moving on the territory at any time, it should change 

its direction and reach the suspicious object in the shortest possible time and start tracking it. 

From a mathematical point of view, this problem is an optimal control problem with phase 

constraints or on time-optimal control (for example, [8, 9, 10]). Mathematical formalization of 

this type of problems differs from each other depending on the characteristics of the problem 

and the proposed conditions. Mathematical formalization of this type of problems differs from 

each other depending on the characteristics of the problem and the proposed conditions. 

Below is given a mathematical formalization of the problem of docking an object which 

motion is described by simple equations on a plane to another object moving in a straight line 

along a known trajectory, a stable control function and a suitable optimal solution are 

established. 

 

 

2. STATEMENT OF THE ISSUE 
 

The investigated issue is related to the tracking of the suspicious object detected in the video 

camera image. From this point of view, the geographical scale of the issue is such that the area 

can be considered a flat part. Since the flight altitude of the UAV does not change, it flies 

parallel to the ground, so we will make the flight plane the same as the Earth's plane. 

In order to describe the mutual position of the UAV and the suspect object, let us introduce 

a rectangular OXY  coordinate system with respect to the ground. Let's mark the time of the 

docking process with 0t  and the coordinates of the UAV as a function of time with 

 )(),()( 21 txtxt x . In a simple case, the governing equations of the UAV can be written as 

follows: 
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Here is the control function, which physically represents the ratio (momentum) of the 

propulsion force generated by the UAV's engines to its mass. As a rule, the controllability of 

the aircraft is limited, which means that there is a known 00 u  quantity determined by the 

power of the UAV engine that, 
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For the sake of simplicity, we can assume that the UAV is located at the origin of coordinates 

at the moment 0t , and let us denote its speed  2,1, ,)0( xx vvV  at that moment. These 

conditions can be written as follows: 
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As mentioned above, the movement trajectory of the suspicious object is determined based 

on the camera images. We will consider that the movement of this object has the character of 

straight-line uniform speed movement. If we mark the coordinates of the suspicious object as a 

function of time, its trajectory can be expressed as follows: 
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Here 2,1,2,1, ,,, xxxx bbaa  coefficients are known  quantities. In order to track the detected 

object, it is necessary to choose control  )(),()( 21 tutut u  in such a way that regardless of 

where the aircraft is at the moment of detection, it will change its trajectory and reach the 

suspicious object and begin to move along with it (parallel) and follow it. This can happen when 

the speed of the aircraft is greater than the speed of the detected object, i.e. 
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Let us mark the moment when the UAV will be controlled and reach the suspicious object 

with T . As the case may be, the UAV should be managed in such a way that, at the moment 

T   its coordinates and velocity should coincide with the current coordinates and velocity of the 

suspect object, in other words, the following equations should be satisfied. 
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The optimal docking problem can be formulated as follows: 

− It is necessary to find a control )(tu  function that satisfies the inequality (2) so that the 

solution of the system of equations (1) satisfies the conditions (3)-(4), (6)-(7) and T  is minimal. 

In other words, the UAV whose movement is given by equations (1) should be controlled in 

such a way that it reaches the suspect object in the shortest possible time, so minT . 
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3. PROBLEM SOLUTION 

 

In order to apply the mathematical apparatus of optimal control theory with phase 

constraints, let us write the system (1) as a system of first order ordinary differential equations. 

If we substitute )()(),()( 4231 txTxtxtx  , problem (1)-(7) will be as follows: 
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Note that, 

  
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dtJ
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minT  requirement can be written as minJ  by including (11) functional. Then, the 

problem of optimal docking considering its functions is formulated as follows with respect to 

)(),(),(),( 4321 txtxtxtx  functions:  

 

− It is necessary to find such a )(tu  control function that ensures the solution of the 

problem (8)-(10) so that the functional J  takes a minimal value.  

In order to check whether the control function is optimal, it is necessary to study the 

necessary conditions for optimality. For this purpose, let's construct the Lagrange function [11, 

p.125]: 
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Here 810 ,...,,   are positive Lagrange multiples, )(,...),(),( 421 tytyty  are is the solution 

of the conjugate system of equations (13).  

 

 





















).()(

),()(

,0)(

,0)(

24

13

2

1

tyty

tyty

ty

ty

 (13) 

 

From the transversality guarantees on  4321 ,,, xxxx , we can write values of 

)(,...),(),( 421 tytyty  functions at the moments 0t  and 0T .  
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The optimality condition on u becomes the extremum condition written as follows for the 

appropriate Hamiltonian function: 
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If we solve (13)-(14) problem, we find 4283172615 ,,,   TT , 

and get: 
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From (16) equalities it seems that,  there are 
1

3
1
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correspondingly )(3 ty  and )(4 ty  functions change their signs. This means that for the function 

(15) to have its maximum value, the 𝑢 vector function must also change at those moments of 

time. According to the nature of the matter,  T,0, 21  . In other words, )(),( 21 tutu  control 

functions can not be equal to the same constant in whole  T,0  interval, so they must change 

their values at least one time. Let us assume that both functions change their value at the same 

moment 21   , knowing that it does not lead to a contradiction later. In other words, there 

is a  T,0  point that flying control u changes at the t  moment when bringing a flying 

object from state (8) to state (9). 
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3. CONSTRUCTION OF THE OPTIMAL SOLUTION 

 

In  ,0  and  T,  intervals, let us denote the values of control vectors  0,20,1
, xx uu  and 

 TxTx uu ,2,1
,  accordingly. From the management theory of extremal problems, it is known that 

the solution of the optimization problem within the constraint (2) is realized in the case of 

equality, in other words, for TxTxxx uuuu ,2,10,20,1
,,,   quantities: 
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We can write the general solution of system (8) as follows: 
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Here 1,1,1,1, ,,, xxxx eecc are constant quantities. Taking account conditions (10): 
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On the other hand, from continuity condition of  4321 ,,, xxxx  functions at t  moment: 
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If we eliminate variables 1,1,1,1, ,,, xxxx eecc  from (20), (21) systems, by taking linear 

combinations of different rows, we get:  
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Based on (22) system, TxxTxx uuuu ,20,2,10,1
,,,  quantities can be expressed depending on 

and T : 
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If we consider the expressions (23) in (18),  considering the variables, the following system 

of nonlinear algebraic equations of the 4th order is obtained depending on  and T : 
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As can be seen from the system (24), the value of  and T  variables depends only on the 

initial data of the problem - known 2,2,1,1,2,1, ,,,,, xxxxxx babavv  quantities and 0u . Given 

these quantities, the system of equations (24) can be solved by approximate calculation 

methods, for example, simple iterations or Newton's method. ( [12, 13]). 

Thus, in order to solve the problem of optimal control of the UAV, which realizes the process 

of landing on the detected moving object in a minimum period of time without changing the 

flight height, first, according to the data of the problem, from the solution of the system (24), 

the minimum landing time and the control change moment are calculated. Then the values of 

the optimal control are calculated from isa (23) system. Then the values of the optimal control 

are calculated from the system (23). 

When it is required to construct the flight trajectory of the UAV, the values of the variables 

1,1,1,1, ,,, xxxx eecc  are first found from the system of linear algebraic equations (20). Then 

the optimal landing trajectory of the UAV is given by the system (19). 

 

 

4. AN EXAMPLE OF THE DOCKING PROBLEM 

 

Suppose that the equations of motion of the detected object are given by the following system 

of equations: 
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The speed of the UAV performing the control process sec]/[111, mvx  , 02, xv , 

maximum value of control ]sec/[4.10 2
0 mu  . Solving the docking problem means that, first 

of all, the moment of change of the control mode according to the data 𝜏 and the moment process 

ends T  -must be determined from (24) systems, then the values of control ),( 0,20,1 xx uu  and 

),( ,2,1 TxTx uu  in intervals ],0[   and ],[ T  accordingly must be calculated with (23) 

formulas.  

If we apply Newton iterations method to solve (24) equations systems, then [sec],4.9

[sec]6.15T  will be found. If these values are taken into account in (23): 
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Thus, the optimal value of control for UAV to approach suspicious object determined in 

monitoring zone is calculated based on initial data of problem. 

 

 

7. CONCLUSION 

 

Thus, based on the detection of UAV with simple equations of motion, the problem of 

optimal approach to the object is formulated in the order of problem (1)-(5) with phase controls. 

The solution of the problem in the class of piecewise stable control functions is given by 

formulas (6). The minimum arrival time is determined from the system of equations (7) using 

numerical calculation methods. 
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