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ITS-PRO-FLOW: A NEW ENHANCED SHORT-TERM TRAFFIC 

FLOW PREDICTION FOR INTELLIGENT TRANSPORTATION 

SYSTEMS 
 

Summary. Short-term traffic flow prediction plays a significant role in various 

applications of intelligent transportation systems (ITS), such as road traffic control 

and route guidance. This requires the development of intelligent prediction 

approaches for accurate and timely traffic flow information. To handle this issue, 

this paper emphasizes the potential of a new idea to propose a high-quality and 

intelligent prediction of short-term traffic flow in ITS. The proposed model, 

referred to as ITS-Pro-Flow, takes the benefits of the well-known Profile-Energy 

(Pro-Energy) as a landmark solution, relying on past observations and current 

conditions to forecast future short-term traffic flow volume. ITS-Pro-Flow has an 

effective prediction mechanism due to its unique enhancements over Pro-Energy. 

The distinctive feature of ITS-Pro-Flow is that it dynamically adjusts the 

contributions of past predictions and current observations for a particular 

prediction, which is equally performed in Pro-Energy. We prove the performance 

of ITS-Pro-Flow through extensive simulations with 2 datasets, in comparison to 
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Pro-Energy and IPro-Energy. Performance results clearly indicate that ITS-Pro-

Flow provides more accurate predictions than other schemes. 

Keywords: traffic flow, intelligent transportation, prediction, Pro-Energy 

 

 

1. INTRODUCTION 

 

Due to the ever-increasing population of cities with constrained resources, the 

implementation of smart technologies has been a critical part of shaping a typical city as into 

smart city [1]. This requires the utilization of technology-based intelligent strategies to improve 

the quality of life in many aspects of urban areas. The concept of a smart city is highly focused 

on Information and Communication Technology (ICT) based modern developments such as the 

Internet of Things (IoT), sensor technologies, networking and big data analytics [2]. It is well 

understood that smart cities offer a great number of application areas, such as smart metering, 

e-health and traffic control. Intelligent transportation system (ITS) is an emerging part of smart 

cities as the number of vehicles increases rapidly [3]. Therefore, smart cities are strongly 

required to employ efficient transportation strategies, in order to reduce traffic congestion 

thereby achieving low air pollution and safe traffic conditions.  

Traffic flow prediction, as one of the key major elements of ITS is gaining more interest 

with the increasing deployment of ITS in many parts of the world [4]. The main motivation 

behind the traffic flow prediction is to predict potential traffic congestion, in order to mainly 

avoid congestion [5]. Therefore, for an efficient traffic control mechanism, short-term traffic 

forecasting is required to be established with a minimum or acceptable prediction error level. 

In the literature, there are currently various prediction approaches proposed specifically for 

short-term traffic flow. The initial prediction methods were developed using AutoRegressive 

Integrated Moving Averaging (ARIMA) [6], Support Vector Machine (SVM) [7], Online 

Support Vector Machine for Regression (OL-SVR) [8] and Kalman Filter [9]. The main 

advantage of these schemes is their simple structure in practical implementations. In recent 

years, Long Short-Term Memory (LSTM), a special type of Recurrent Neural Network (RNN), 

has been widely used as an alternative solution for prediction. Many current promising 

approaches are inspired by LSTM which requires sufficient historical data for training [10, 11]. 

Consequently, LSTM-based solutions provide better prediction accuracy than state-of-the-art 

approaches. Another study aims at analysing the implications of training data size and other 

properties, such as number of hidden units [12]. To accomplish this purpose, the dataset is 

divided into clusters through popular clustering algorithms. With this study, it is possible to 

have preliminary knowledge about choosing the proper dataset size, prior to training the model. 

A deep learning (DL) model is developed to forecast traffic flow by combining a linear 

model [13]. It observes the possibility of capturing the strong uncertainties because of the 

transitions among free flow, breakdown, recovery and congestion. It has been shown that the 

proposed DL approach is able to detect these nonlinear behaviours through an intelligent way 

of designing layers. The k-nearest neighbour (kNN) is used for short-term traffic flow 

prediction with the aim of controlling the kNN parameters [14]. A fully automatic dynamic 

procedure kNN, called DP-kNN, is proposed to provide a self-adjustable parameter selection, 

to handle the dynamic nature of traffic characteristics. The proposed mechanism requires no 

training or calibration phase, improving the prediction performance over the traditional kNN. 

Support vector regression (SVR) based supervised learning models are designed to increase 

prediction accuracy and computational efficiency, exploiting the seasonal pattern by assigning 

a kernel to each season [15]. An online learning weighted support-vector regression 
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(OLWSVR) is proposed with the combinations of an online SVR approach and a weighted 

learning strategy [16]. It focuses mainly on unexpected traffic changes where the traffic faces 

a surprise abnormal flow. In this case, OLWSVR gives more weight to the most recent data to 

detect such an unusual variation for the upcoming prediction.  

In essence, traffic flow prediction takes on the responsibility of predicting future flow 

availability through the past observations. The traffic flow has an uncontrollable nature but 

exhibits a periodic behaviour. It usually has a diurnal/seasonal pattern, assuming that the 

volume of traffic flow on a particular day may be similar to past or future days. This requires 

the sensing, processing, transmission, storage and mining of the data, leading to the big data 

phenomena in ITS [17]. Rapid developments and enhancements in sensor technologies have 

enabled the collection of large volumes of traffic data for processing. In order to efficiently 

predict the traffic flow, existing data sets provide the traffic flow volume for a specific number 

of equal-length time slots in a day. Therefore, a typical day is represented by a number of slots, 

such as 48-slots with each slot lasting 30 minutes. Predictions are performed in each slot 

independently with respect to the historical data. There is no consensus on the selection of the 

total number of slots to be used, but many previous studies utilized a 15-minute duration for 

slots in short-term forecasting [18].  

In general, weighted moving-average (WMA) has been one of the most successful 

approaches for short-term prediction in diverse parts of science and engineering [19, 20]. WMA 

conceptually estimates the mean of a set of input parameters over a pre-defined time duration, 

whereby different weighting values are assigned to the input data depending on application 

requirements. The underlying idea is to assign greater weight to the recently acquired or current 

data, leaving the past data with less weight. Therefore, the most significant issue is to decide 

the values of weighting factor which reflects the importance of each data point. In particular, 

this issue is highly important in dynamic systems, requiring a careful mechanism for the 

assignment of weighting factors. ITS may face frequent environmental changes when compared 

to other systems, such as solar energy, which exhibits similar characteristics on consecutive 

sunny days in the summer. We therefore conclude that weighting values should be dynamically 

arranged to ensure accurate results in association with the high dynamicity in ITS.  

Pro-Energy (PROfile Energy Prediction Model) is a recently proposed WMA model that 

predicts future energy availability over a short-term period [21]. Pro-Energy makes use of a 

balanced weighting strategy among past energy observations and current energy conditions. To 

achieve this operation, it stores a number of previous days’ profiles to compare the current day 

with the stored profiles, in order to find the most similar day as a reference point. In addition to 

this, when making a prediction in a slot, it considers the observation of the previous slot. 

Therefore, the final prediction is actually a combination of these two values through weighting 

values. The performance evaluations have proven the accuracy of Pro-Energy in frequently 

changing conditions. The principle aim of our study is to exploit the advantages of the Pro-

Energy model and propose enhancements to Pro-Energy for short-term traffic flow prediction. 

We call the new model ITS-Pro-Flow which can be established to accurately predict the 

available traffic flow. Instead of assigning fixed weighting values as in Pro-Energy, ITS-Pro-

Flow provides a dynamic mechanism that adjusts the weighting values in each slot 

independently. Basically, a correlation is defined to derive the relationship between the flow 

value observed in the previous slot and the value obtained from the previous profiles. The 

performance of the ITS-Pro-Flow is evaluated using two datasets obtained from a publicly-

available dataset Caltrans Performance Measurement System (PEMS) [22], in comparison to 

Pro-Energy, IPro-Energy and LSTM. Results clearly confirm the accuracy of ITS-Pro-Flow in 

terms of the overall prediction error ratio.  
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The main contributions of the proposed scheme can be outlined as follows. 

 We propose a new short-term traffic flow prediction approach that improves the main 

mechanisms of Pro-Energy to be adapted to traffic flow characteristics, which is called 

ITS-Pro-Flow. A novel dynamic weighting factor strategy is employed to account for 

the current flow conditions. We also introduce a thresholding strategy to eliminate 

possible previous profiles with high prediction errors from the calculation of the most 

similar previous days.  

 We conducted a series of simulations to test the performance of the proposed scheme in 

comparison to existing studies using real-life traffic flow traces. The prediction 

accuracy as a performance metric proves the superiority of the proposed scheme. 

Further to prior simulations, we investigated the effect of the parameters under different 

settings, in order to explore the optimum parameters resulting in the highest prediction 

accuracy.  

 

The remainder of this paper is organized as follows: section II presents an overview of 

existing studies and their unique properties. The details of the proposed approach along, with 

its underlying features, are described in section III. Section IV provides the performance outputs 

via extensive simulations. Finally, the conclusions of the paper and possible future research 

directions are discussed in section V.  

 

 

2. WMA-BASED PREDICTION APPROACHES 
 

This section reviews the existing WMA-based prediction models from the perspective of 

traffic flow with their operating principles. We systematically select the prediction approaches 

in order to better understand the development of the ITS-Pro-Flow. For this purpose, the 

selected approaches benefit from the diurnal cycle, which partitions a day into equal-length 

slots. The motivation behind the idea of splitting a day into slots is to easily record the traffic 

flow profile of past days on a slot-basis manner. Here, each day is referred to as a traffic flow 

profile upon completion of predictions at the end of the day. This repeating time slots structure 

with the traffic flow value in slot 1 is depicted in fig. 2. In this figure, F represents the traffic 

flow values observed in slot 1 throughout a year. 
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Fig. 1. Example of the repeating slot strategy for a 1-year period 

 

Exponentially Weighted Moving Average (EWMA) is perhaps the most popular and widely 

used approach, which assumes that the traffic flow observed in a particular slot of the current 

day is very similar to the same slot of the previous days [23]. EWMA uses the historical traffic 

flow pattern as a weighted average of the traffic flow of the past day and the estimated flow, 

which is presented in equation 1.  

 

                                        E(d, n) = αE(d-1, n) + (1-α)R(d-1, n)                                              (1) 

 

where d shows the current day and n is the slot indicator. The weighting factor, α, decides the 

importance of the last estimated traffic flow (E) and past traffic flow (R). The low values of α 

give high importance of R and vice versa. EWMA sets α value of 0.5 assigning equal 

contribution of E and R which was experimentally proven to be the best choice in the original 

paper. This ensures a high level of robustness in scarce variability environment, adapting well 

to seasonal variations. However, in frequently changing conditions, EWMA starts to provide 

incorrect predictions at an unacceptable level. 

In order to cope with the drawbacks of EWMA mentioned above, Weather-Conditioned 

Moving Average (WCMA) has been proposed with the theme of EWMA [24]. WCMA takes 

the conditions of the current day into consideration, in order to determine the impact of the 

current day’s behaviour. Firstly, it measures the unexpected variation of the current day in 

relation to the past days within the scope of K past slots. Then, instead of using the traffic flow 

value in the same slot of the past day as in EWMA, WCMA uses the traffic flow value of the 

past slot of the current day. Also, it maintains the amount of traffic flow for a specific number 

of past days. When calculating the traffic flow in a slot, the mean value of traffic flow in the 

same slot over the past days is introduced. The final prediction equation is given in equation 2 

below. Here, M indicates the average value of traffic flow values of past days for slot n, H is 

the last traffic flow value and GAP is the measurement of current day behaviour in association 

with past days as described above as a core part of the WCMA approach.  

Day 3 

Day 4 

Day 365 



122 H.I. Kazici, S. Kosunalp, M. Arucu 

 

                                          E(d, n) = αH + (1-α)M(d, n)GAP                                                   (2) 

 

ASEA is another solution to deal with the deficiencies of EWMA [25]. It introduces a simple 

factor to reflect the current day behaviour as in the WCMA. This factor calculates the ratio 

between the real traffic flow value and the estimated value by EWMA in the previous slot. 

ASEA performs a multiplication of the estimated energy by EWMA and the factor for the final 

prediction, which is presented in equation 3 below. Here, Ệ is the predicted value by ASEA for 

a particular slot n. 

 

                                       Ệ(d, n) = E(d, n)*𝟁      where   𝟁= 
𝑅(𝑑,𝑛−1)   

   𝐸(𝑑,𝑛−1)       
                                (3) 

 

Pro-Energy aims to benefit from the previous day’s profile to derive future predictions [22]. 

Similar to WCMA, Pro-Energy keeps track of traffic flow profiles from the past, in order to 

match the most similar day with the current day. Pro-Energy explores the similar profiles based 

on the Mean Absolute Error (MAE) between the current and the past profiles. Profiles with low 

MAE are chosen, rather than taking the mean value as in WCMA. Another similarity between 

Pro-Energy and WCMA is the combination of the last traffic flow value and past profiles, as 

shown in equation 4. Similarly, H represents the traffic flow value in the previous slot and WP 

is the weighted combination of the previous profiles for slot n. WP allows exploring a group of 

previous profiles, instead of using only the most similar profile. Previous profiles are combined 

to find out the nearest value for a particular slot by weighting the previous profiles according 

to their MAE. Further details about the structure of Pro-Energy will be discussed in connection 

with the description of ITS-Pro-Flow in the next section.  

 

                                                            E(d, n) = αH + (1-α)WP                                                         (4) 

 

IPro-Energy has been proposed to enhance prediction accuracy as an improved version of 

Pro-Energy [26]. Pro-Energy has no mechanism to detect the pattern of the current day, which 

may result in high prediction errors in the presence of significant variations on the current day. 

IPro-Energy targets addressing this shortcoming with the introduction of a new factor, namely 

the smarting factor (S). Equation 5 presents the prediction formula, which is actually the same 

as Pro-Energy except for the factor S.  

 

                                                            E(d, n) = αH + (1-α)WP+S                                                   (5) 

 

IPro-Energy assigns more importance to H by setting α value of 0.7. The factor S is 

calculated based on the average change rate of the last two observations. The fundamental 

working principles of the prediction strategies described are listed in table 1, pointing out the 

main advantages and disadvantages of the schemes.  

ITS-Pro-Flow aims to extend the properties of the WMA-based approach to short-term 

traffic flow prediction with the purpose of addressing the drawbacks outlined in table 1. To 

handle these disadvantages, ITS-Pro-Flow transforms the constant value of the weighting factor 

into a dynamic nature that accounts for time-varying traffic conditions. The most significant 

focus point is placed on the more efficient and intelligent detection of temporary environment 

conditions to avoid the predictions based on inaccurate calculations. As a result, the proposed 

approach has its basics in the weighted moving-average property to combine the past experience 

obtained with the current ongoing conditions. 
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Tab. 1 

Basic properties of state-of-the-art approaches with comparisons 

 

Prediction 

scheme 
Property Advantage Disadvantage 

EWMA Weighted average of 

historical and past day 

information as an 

exponential feature 

Simplicity for 

implementation and good 

prediction accuracy in 

rarely changing-

conditions  

Inaccurate predictions 

due to frequently-

varying conditions 

WCMA Weighted average of 

status of the current day 

and past day observations 

Simplicity for 

implementation and 

limited enhancements 

over EWMA with GAP 

factor    

Inaccurate predictions 

due to giving more 

weights to the previous 

observation 

ASEA Considering the 

condition in the previous 

slot only to reflect the 

current day behaviour  

Simplicity for 

implementation and 

limited enhancements 

over EWMA with 𝟁 

factor    

Inaccurate predictions 

due to temporary 

environment changes 

Pro-

Energy 

Weighted previous 

profile combination and 

observation in the 

previous slot as in 

WCMA 

High accuracy 

predictions through MAE 

of the previous profiles    

High complexity with 

inaccurate predictions 

due to constant 

weighting factor 

IPro-

Energy 

Utilization of a smarting 

factor to reflect the 

current day behaviour  

Reduced computational 

complexity over Pro-

Energy with improved 

performance    

Inaccurate predictions 

with only considering 

the condition in the last 

two slots  

    

 

 

3. ITS-PRO-FLOW: A SHORT-TERM TRAFFIC FLOW PREDICTION APPROACH 

 

This section describes the principal properties of ITS-Pro-Flow, a short-term traffic flow 

prediction approach in intelligent transportation systems. It splits each day into equal-size time 

slots to allow a separate prediction in each slot. The total required number of slots per day is an 

application-dependent property, which necessitates sufficient time duration for slot length. A 

slot duration for short-term traffic flow prediction is typically set to 15 minutes, composing 96 

slots per day. The main purpose of the proposed prediction model is to forecast traffic flow at 

the onset of each slot with the help of past traffic flow observations. ITS-Pro-Flow employs a 

pool to accumulate previous observations. The pool includes N slots of D typical days forming 

a matrix of size DxN. The main mechanism of ITS-Pro-Flow inspired by Pro-Energy comprises 

three core components. The first part of the mechanism is responsible for selecting the most 

similar profile stored in the pool. The second part computes the prediction. Upon completing a 

day, the final part runs a refreshment operation to decide whether the pool should be updated 

with the current day.  
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3.1. Profile analyzer 

 

This core module explores the similarity level between the current day and the stored 

profiles. This is achieved by calculating the mean absolute error (MAE) up to last K slots as 

presented in equation 6. The previous profile with the lowest MAE stored in vector F (size of 

DxN) is selected as reference one. The traffic flow values of current day are stored in a vector, 

C with size of N. The profile analyzer estimates the MAE over C and F to pick the most similar 

day(s). MAE of a particular previous day and slot, d and s, is computed as follow. 

 

                                                      𝑀𝐴𝐸 = ∑
1

𝐾
(Ci − Fi)                                             (6) 

𝑠

𝑖=𝑠−𝐾+1
 

 

The Similarity level is calculated using the previous K slots, instead of all previous slots. 

High values of K reduce the likelihood of selecting the wrong profile, incurring at the expense 

of higher complexity and overheads. The appropriate choice of K value is required to satisfy 

the overhead requirements and avoid the case of frequent changes in the present day. For 

example, the predictions for slots in the evening should not consider slots in the afternoon, as 

the traffic flow will be relatively low after rush hours in the evening.  

 

3.2. Predictor 

 

This core module explores the similarity level between the current day and the stored 

profiles. This is achieved by calculating the mean absolute error (MAE) up to the last K slots 

as presented in equation 6. 

 

                                                              PTF = αH + (1-α)WP                                                             (7) 

 

Here, PTF is the predicted traffic flow in slot t, H represents the traffic flow observed in the 

previous slot t-1 and α is the weighting parameter ranging from 0 to 1. To further improve the 

prediction performance, the weighted profile (WP) technique is implemented, which picks a 

group of profiles instead of exploring only the most similar profile. To prevent a possible 

problem of choosing the wrong profile leading to low prediction accuracy, the idea of WP 

accounts for the more recent flow variations. A specific number (P) of previous profiles is 

combined to calculate the WP based on their MAEs. Let F1, F2,…, FP be the sorted profiles 

by having the least MAE which are the most similar profiles to the current day C. The WP for 

a particular slot can be computed as: 

 

𝑃 =
1

𝑃 − 1
∑ 𝑤𝑖 . 𝐹𝑖                                                    (8) 

𝑃

𝑖=1

 

 

Where 𝑤𝑖 is another weighting factor that assigns different weights for each profile, which 

is given as: 

 

                                               𝑤𝑖 = 1 − 
𝑀𝐴𝐸(Fi,C)

∑   𝑀𝐴𝐸(Fi,C) 𝑃
𝑖=1

                                                             (9) 
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The value of P is set to a constant value regardless of the MAE of P profiles, which motivates 

us to raise a possible issue encountered in practice. If one or even more profile has a high overall 

MAE, it can react as a wrong profile. ITS-Pro-Flow solves this shortcoming by applying a 

thresholding strategy. When calculating the WP, the MAE of each profile is compared with a 

threshold value. If the MAE of an associated profile is bigger than the threshold, the profile is 

ignored for the calculation of WP. Practical observations have given us an insight into selecting 

the threshold value as two times the average prediction error ratio.  

In all prediction schemes, the weighting factor, α is assigned a fixed value, meaning that the 

weights of H and WP remain unchanged. This is, however, not efficient in time-varying 

environmental conditions. There is also no mechanism to observe the status of the current 

conditions. To deal with these issues, we propose a new weighting modification strategy that 

arranges the weights of H and WP dynamically. This strategy intends to change the magnitude 

of the weight values based on the contributions of H and WP to the predicted value in the 

previous slot. We define this relationship as the differences between the H, WP and the actual 

traffic flow value (R), which are given below. 

 

D1 = ⎸H - R ⎸                                                                   (10)  

 

D2 = ⎸WP - R ⎸                                                                (11)  

 

These differences account for the most recent temporary environmental condition that likely 

impacts on the prediction of the current slot. In order to better depict this situation in the 

previous slot, we give an example case where H is 100, WP is 150 and R is 160. In this 

prediction, with a weighting factor of 0.5, the prediction will be the average of H and WP which 

is equal to 125. It is obvious that giving a high weight to the WP would ensure a more accurate 

prediction. Therefore, our new strategy reformulates the numerical value of the weighting factor 

by the values of D1 and D2 as: 

 

                                                                             𝑎 =
D2

D1 + D2
                                                           (12) 

 

We present a real example taken from the 124th day of dataset 1 in table 2 below. In this 

example, the real traffic flow values of the relevant slots are very close to the WP. Pro-Energy 

results in high prediction errors due to assigning equal weighting values. The prediction 

accuracy is significantly improved by the new weighting modification scheme in ITS-Pro-Flow. 

The weighting values are reduced by equation 12 to give more weights to the WP, confirming 

a high level of adaptation to temporary changes. 

 

Tab. 2 

Prediction errors in day 124 for Pro-Energy and ITS-Pro-Flow 

 

Slo

t 
H WP R α Error  

α Erro

r 

16 29

4 

351.5

1 

36

1 

0.5 11.8

4 

0.10 4.43 

17 36

1 

481.6

1 

47

7 

0.5 13.2

1 

0.12 2.21 
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18 47

7 

586.7

9 

59

8 

0.5 12.4

2 

0.03 2.64 

19 

20 

59

8 

66

8 

666.0

7 

710.2

1 

66

8 

70

0 

0.5 

0.5 

5.69 

1.58 

0.08 

0.02 

1.17 

1.27 

        

 

3.3. Profile updater 

 

In order to explore the most efficient days in the pool successfully, the pool has to be 

refreshed based on the completion of a day. The key objective of this process is to keep the 

pool as fresh as possible, with each of the profile having a different condition ideally. To 

maintain such a pool, two replacement rules are applied by the end of the current day. The 

first rule checks the pool to find out if an obsolete profile has been in the pool for more than 

x days. The pool is updated with the profile of the current day in to replace to the obsolete 

profile, if one is detected. The value of X is required to be carefully arranged to maintain the 

pool as fresh as possible. A high value of X may result in a stored profile staying longer days 

in the pool. With the purpose of keeping the pool fresh, the value of X is set to a 30-day length, 

allowing a profile to stay in the pool for a maximum of 30 days. The second update strategy 

searches all profiles in the pool to detect two similar profiles. Then, the current profile is added 

to the pool by removing one of the similar days. The similarity is determined by the difference 

between the MAE of two profiles, F1 and F2. If the difference is below a pre-defined threshold 

Ts as shown below, the replacement is performed. We set Ts as the average prediction error 

ratio in all simulations.  

 

                                  
1

𝑁
∑  ⎸𝐹1𝑖 − 𝐹2𝑖 ⎸ < 𝑇𝑠                                                                    (13)

𝑁

𝑖=1
 

 

 

4. PERFORMANCE EVALUATION 

 

This section presents the performance evaluations of ITS-Pro-Flow in comparison to Pro-

Energy and IPro-Energy through extensive experiments using two datasets of traces of traffic 

flow. The datasets are widely used in traffic flow prediction tasks and were extracted from the 

Caltrans Performance Measurement System (PeMS). PeMS records the real-time traffic flow 

information of a variety of individual detectors that cover the freeway system across the main 

parts of California. PeMS aggregates the flow data into 5-minute intervals on a daily basis. In 

this study, we collect one-year data from two detectors (No. 316808 and No. 314004), selecting 

the slot duration as 15 minutes by increasing the range of data to 15 minutes. The main reason 

for using the two diverse datasets is to test the performance of ITS-Pro-Flow under different 

characteristics, which is depicted in fig. 2 below.  

The performance criterion to test the prediction accuracy that represents the overall error of 

the prediction algorithm is the Mean Absolute Percentage Error (MAPE) which is calculated 

as: 

 

                                           MAPE =
1

𝑇
∑ ⎹

et−ēt
et

⎸                                                             (14)  
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where et indicates the actual traffic flow value and ēt is the predicted value within slot t. T is 

the total number of repeating slots which is equivalent to one year’s data of 35.040 slots in our 

experiment. To enable all prediction schemes to achieve the optimum performance, we 

carefully set the experiment parameters. The total required number of slots with a slot length of 

15 minutes per day is 96. The important settings in Pro-Energy, D (the number of previous 

profiles accumulated in the pool), K (the number of past slots to compare D stored profiles), 

and P (the number of weighted profiles among D profiles) are adjusted to 10, 7, 5 respectively, 

which are recommended in its original paper. IPro-Energy intends to reduce the computational 

complexity of Pro-Energy by decreasing the K and P values to 2 while increasing the D value 

to 30. In order to set the optimum parameters in ITS-Pro-Flow, we observe the prediction 

accuracy of the ITS-Pro-Flow under different parameter settings. We vary the parameters (D, 

K, P) and present the prediction errors (MAPE) in table 3 below. The results reveal that ITS-

Pro-Flow has the same parameter settings as Pro-Energy with the exception of the D value, 

which is set to 20. This is because in such settings, ITS-Pro-Flow achieves the best prediction 

performance.  

 

 
 

Fig. 2. Traffic flow values of 2 datasets for a 5-day period 
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The first experiments reveal the impact of the weighting factor on prediction accuracy. To 

highlight its influence on the performance of Pro-Energy and IPro-Energy, Fig. 3 and Fig. 4 

demonstrate the prediction accuracy of the schemes with respect to varying weighting factor 

(α) values. It may be noted that the performances of Pro-Energy and IPro-Energy depend highly 

on the selection of α, whereas α has no effect on the performance of ITS-Pro-Flow due to the 

dynamic weighting strategy outlined in the previous section. In both figures, Pro-Energy and 

IPro-Energy exhibit a noticeable trend, as both schemes implement a constant value of α. It is 

ranged from 0 to 0.5 as the values beyond 0.5 provide similar results. Therefore, in all 

evaluations of this paper, α for Pro-energy and IPro-Energy is assigned to 0.5 and 0.7 

respectively, as these values are recommended to give the best performance in the original 

papers. In two datasets, the low values of α result in more inaccurate predictions due to the fact 

that the contributions of H and WP should be arranged closely. Therefore, middle values of α 

potentially supply more accurate predictions in both Pro-Energy and IPro-Energy. With such α 

settings, the prediction error ratios of ITS-Pro-Flow, IPro-Energy and Pro-Energy are observed 

as 6.16%, 8.60% and 11.18% respectively. Therefore, ITS-Pro-Flow is 28% and 44% 

approximately better than IPro-Energy and Pro-Energy. For dataset 2, ITS-Pro-Flow achieves 

an error ratio of 9.71% that outperforms the performance of Pro-Energy and Ipro-Energy with 

error ratios of 15.10% and 17.01%. Similarly, ITS-Pro-Flow offers superior performance, 

declaring nearly 35% and %43 performance enhancements over Pro-Energy and IPro-Energy. 

This consistent behaviour of the prediction structure gives ITS-Pro-Flow a high level of 

flexibility to be implemented in traffic management systems.  

To further analyze the distribution of prediction error ratios for both datasets, we obtain the 

Cumulative Density Fucntion (CDF) of the prediction errors in fig. 5 below. The results prove 

that the distribution of prediction error ratios matches the average prediction error ratios shown 

in fig. 3 and fig. 4.  In dataset 1, nearly 80% of the prediction error ratios is less than an error 

ratio of 10%. This percentage is almost 70% in dataset 2 since the overall prediction error ratio 

is higher. For both datasets, high prediction error ratios beyond 30% are rarely seen, which 

ensures a robust level of confidence level against unexpected events like traffic accidents. 

 

 
Fig. 3. Prediction accuracy for all schemes in dataset 1 
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Fig. 4. Prediction accuracy for all schemes in dataset 2 

 

 
Fig. 5. CDF of prediction error ratios for ITS-Pro-Flow 

 

 

A critical feature of the traffic flow volume is the density depending on the active hours of 

human flow during the day, which is actually illustrated in fig. 2 above. In general, the traffic 

flow starts with a slow density at the beginning of the day, increasing from morning to 

afternoon. For the rest of the day, the flow density reduces and completes its daily cycle. It can 

be clearly seen from the fig. 5 that the traffic flow density is significantly lower during the slots 

before and after midnight. In these slots, a small probable increase or decrease may report 

inefficient predictions. This case can be denoted with an example prediction in slot 17 of day 

359. In this case, the predicted flow was around 50 with a real flow of 75, that the prediction 

error ratio was almost 33%. However, during slot 35 of day 236, a tiny prediction error was 

obtained between the predicted flow of 1297 and the actual flow of 1272. The average traffic 

flow values of the two datasets with a diverse range of hours are presented in fig. 6.  
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Fig. 6. Traffic volumes in different hours 

 

 

We now present the average prediction error ratios for diverse hour ranges, each of which 

corresponds to a slot range. We can see from the tables below that the maximum prediction 

errors are generated in the first hour range (00:00-06:00). To explain this performance 

degradation within the early slots of the day, one of the main rationales for all prediction 

algorithms is indeed the aforementioned low traffic flow density issue. The other important 

explanation is the lack of sufficient knowledge of previous slots for comparison when exploring 

the most similar profiles. For example, ITS-Pro-Flow begins to produce more accurate 

predictions in slot 8 as the K is set to 7. Afterwards, all schemes improve the prediction accuracy 

for the rest of the day, except for the last hour range, which again suffers from low flow density. 

Nevertheless, the prediction accuracy is better in the last hour range when compared with the 

first hour range due to the sufficient experience of previous slots for comparison. During the 

ranges of 10:00-16:00 and 16:00-20:00 with the highest flow density, each prediction scheme 

reaches the best performance. It should be noted that ITS-Pro-Flow experiences the best 

prediction performance in all ranges, which deeply confirms the effectiveness of ITS-Pro-Flow 

in practical scenarios. 

It is also important to observe the prediction performance at some slot levels, which would 

give more confidence in the accuracy of the prediction performance. For this goal, we 

systematically selected a particular slot in each hour horizon from the tables above. The 

rationale behind this slot selection strategy is to cover the whole day. Table 6 presents the 

prediction error ratios in each selected slot in dataset 1. The results exhibit a good match with 

the results presented in table 4. ITS-Pro-Flow, as expected, achieves the best performance 

output in all slots presented below. We claim that the mean of the prediction error ratios in the 

selected slots should closely match the overall prediction error ratio. For example, the average 

error ratio of the selected slots in ITS-Pro-Flow is 6.204% while the overall prediction error 

ratio was presented as 6.16%. 
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Tab. 4 

Prediction errors with 5-hour ranges for dataset 1 

 

Hours 
Pro-

Energy 

IPro-

Energy 
ITS-Pro-Flow 

00:00-

06:00 

17.55 16.44 8.75 

06:00-

10:00 

11.45 7.44 5.18 

10:00-

16:00 

7.11 5.79 4.06 

16:00-

20:00 

20:00-

24:00 

7.84 

10.89 

6.74 

9.34 

5.40 

7.51 

    

 

Tab. 5 

Prediction errors with 5-hour ranges for dataset 2 

 

Hours 
Pro-

Energy 

IPro-

Energy 
ITS-Pro-Flow 

00:00-

06:00 

23.22 38.81 17.64 

06:00-

10:00 

11.78 9.07 7.45 

10:00-

16:00 

9.64 7.26 5.42 

16:00-

20:00 

20:00-

24:00 

12.01 

17.34 

9.07 

17.16 

7.03 

11.17 

    

 

Tab. 6 

Prediction errors for specific slots in dataset 1 

 

Slot 

Number 

Pro-

Energy 

IPro-

Energy 
ITS-Pro-Flow 

10 15.77 15.04 8.51 

30 12.59 7.68 6.20 

50 6.19 5.50 3.66 

70 

90 

8.08 

10.70 

5.92 

9.70 

4.87 

7.78 
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We finally compare the performance of ITS-Pro-Flow with LSTM and nonlinear 

autoregressive (NAR) models, which were recently proposed and used the same dataset 1 [10]. 

Long-short-term memory (LSTM) is a popular artificial neural network model, which is 

referred to as a type of recurrent neural network with the capability of learning order 

dependence in prediction problems. This work splits the dataset into 12 sections representing 

different flow characteristics, each of which indicates traffic flow values for a month over the 

year. The first half of each data section (the first 15 days of the month) was used to train the 

models. Then, the prediction was performed on the rest of the data. The prediction error ratios 

for each month for the both LSTM and NAR models were calculated. To make a fair 

comparison, we obtain the performance of ITS-Pro-Flow on a monthly basis. The details of the 

training parts of the LSTM and NAR models can be found in [10] which are summarized as 

follows: 

 LSTM: Determination of parameters of the LSTM model is highly important and should 

be adjusted using well-known models available in the literature. In particular, the 

number of hidden units (NHU) that specifies the amount of LSTM units to remember 

data of pastime steps is decided with the equation 15. Here, n indicates the total number 

of data samples, Ni is the number of inputs, No is the number of outputs, and α is an 

integer value to be adjusted arbitrarily by users. For short-term traffic flow prediction, 

LSTM is assigned to perform one-step prediction, so that the values of Ni and No are 

set to a constant value of 1. Adam optimization model was employed, appointing the 

maximum number of epochs to 250 [27]. Another issue associated with LSTM training 

is the exploding gradients and it is overcome by setting the gradient threshold to 1. The 

learning rate starts initially at 0.005 gradually decreases in each 125 epochs. 

 

                                                      𝑁HU =
𝑛

𝛼(𝑁𝑖+𝑁𝑜)
                                                           (15) 

 

 NAR: A trial-and-error strategy is used to determine a proper number of hidden layer 

neurons. At the onset of the training operation, a random selection is applied to assign 

the weights of models, allowing 5 times model training process with different weight 

values. The tangent hyperbolic function is chosen in the hidden layers to ensure stronger 

gradients. A linear type of function is used in the output layer. Due to the availability of 

all data at the beginning, an open loop mechanism is selected. 

 

Fig. 7 presents the prediction error ratios (MAPE) for all schemes starting from January to 

December. It can be clearly seen that all schemes exhibit similar behaviour. The results 

comfortably prove that ITS-Pro-Flow ensures better predictions each month due to its 

lightweight and intelligent mechanism. It is also worth noting that ITS-Pro-Flow has a more 

robust and stable performance than other schemes. The performances of LSTM and NAR 

models may easily be reduced with respect to the data characteristics. For instance, in 

December, LSTM and NAR models face significant performance degradation while ITS-Pro-

Flow stabilises on around its overall performance level.  

 

https://en.wikipedia.org/wiki/Artificial_neural_network
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Fig. 7. Performance comparisons for dataset 1 on month basis 

 

 

5. CONCLUSIONS  

 

A successful development, deployment, and implementation of an intelligent transportation 

system (ITS) often requires a careful prediction of current traffic conditions. The nature of 

traffic status on a particular main road usually relies on uncontrollable behaviour, that is 

predictable with acceptable prediction accuracy. Therefore, a lot of effort is currently being 

placed on the development of efficient prediction schemes to be incorporated into the ITS 

applications. This paper presents a new short-term traffic flow prediction approach that can be 

successfully implemented in ITS. The proposed approach has its basics in the weighted moving 

average property to combine the past experience obtained with the current ongoing conditions. 

It makes use of past profiles by weighting them with their mean absolute errors, thereby calling 

the proposed idea ITS-Pro-Flow. The performance of the ITS-Pro-Flow in comparison to well-

known approaches was examined using real datasets provided by the Caltrans Performance 

Measurement System (PeMS). The performance outputs prove the efficiency of ITS-Pro-Flow 

in short-term evaluations. The future work of this study will focus on the sustainable 

management of traffic flows at signalized intersections, which is an important part of traffic 

engineering. Currently, most traffic signal control algorithms are based on the optimization 

techniques to design a more intelligent signal phase plan, thereby achieving low waiting times, 

emissions and noise pollution. We aim to apply ITS-Pro-Flow to develop a new perspective for 

improving average vehicle delays. The applicability of ITS-Pro-Flow will hopefully be proven 

at either isolated or coordinated intersections.  
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