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Abstract: An algorithm that modifies the individual experience of mayflies in the mayfly 

algorithm (MA) to enhance its performance, is proposed. The proposed algorithm called 

the Modified Individual Experience Mayfly Algorithm (MIE-MA) calculates the experience 

of a mayfly by finding an average of the positions the mayfly has been to instead of just 

using the best position. A chaotic decreasing gravity coefficient is also employed to 

enhance the balance between the exploitation and exploration of the algorithm. The 

proposed algorithm was compared to the original MA, and two recent variants named, 

PGB-IMA and ModMA, on eight benchmark functions. The parameters used for 

comparison were Mean Absolute Error, Standard Deviation, and convergence rate. The 

results validate the superior performance of the MIE-MA over the other three algorithms. 

The MIE-MA yields better optimal values with minimal iterations. 

 

 

 

1. INTRODUCTION 

 

 Metaheuristic algorithms are a paradigm of computational intelligence helpful in 

solving complex problems. They offer advantages such as easy application to continuous and 

discrete problems, less complex mathematical computations, and efficient search for global 

optimum solutions [1]. Metaheuristic Algorithms are classified into single-solution and 

population-based algorithms [1, 2]. In single solution-based methods, a generated solution is 

improved continuously until a stopping criterion is met [2]. In population-based methods, a 

group of solutions is generated within a search space and is updated at each iteration to find 

an optimal solution [3]. The population-based techniques are divided into evolutionary 

algorithms and Swarm Intelligence optimization algorithms. Evolutionary Algorithms are 
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hinged on natural genetic evolution. Examples are differential evolution and genetic 

algorithm [3, 4]. Swarm Intelligence optimization algorithms (SIOA) are based on the social 

behavior of animal groups. SIOAs are flexible and adaptive to various problems and have 

strong global search ability and robust performance [5]. Examples are the mayfly algorithm, 

particle swarm optimization, whale optimization algorithm, and crow search algorithm [6-8]. 

 MA is one of the very recent SIOAs, inspired by the movement and mating process of 

mayflies [7]. It is a promising algorithm that exhibits enhanced exploration and exploitation 

abilities. Researchers have employed MA in solving complex problems [10-12]. In [8], MA 

was used to solve a 2D path planning problem of agricultural unmanned aerial vehicles 

(UAVs). In [9], MA was used to solve an optimal power flow problem in regulated electricity 

markets. The algorithm has also been used to improve the Maximum Power Point Tracking 

(MPPT) for photovoltaic systems [10]. 

 Even though the MA is quite effective in solving complex problems, it has drawbacks 

such as premature convergence and stagnation. There is, therefore, a need for contributions 

to address these problems. In [7], an improved version of the MA called PGB-IMA was 

introduced. Here, the global best is selected from the whole mayfly population (both males 

and females) to enhance the exploration abilities of the MA. This improvement was effective 

on unimodal functions. However, it was found to converge slower or get stuck at local optima 

points on multimodal functions. In [11], levy flight was used to enhance the exploration 

abilities of the mayflies in the MA. This method, however, causes a mayfly to fly out of a 

search space in smaller search spaces. In [8], researchers adopted the exponent decreasing 

inertia weight, the adaptive Cauchy method, and an enhanced crossover operator to enhance 

the balance between exploitation and exploration of the MA. This variant was named 

ModMA. Although the ModMA improves the convergence rate, it does not eliminate trapping 

at the local optimum. Thus, there is still a need to improve the MA to holistically address the 

entrapment problem in local optimum and premature convergence to enhance its 

performance.  

 This work, therefore, aims at addressing the aforementioned deficiencies of the MA. 

A modified version of the MA is presented. The modification focuses on the individual 

experience of the mayflies and thus is called Modified Individual Experience Mayfly 

Algorithm (MIE-MA). The MIE-MA modifies the experience of the mayflies to enhance the 

movement of the mayflies to improve the convergence rate and move the mayflies out of local 

optima entrapment. This is done by replacing the personal best (pbest) in the MA with 

personal experience (Pexp). Pexp is the mean of all the positions a mayfly has been to.  This 

allows all the positions a mayfly has visited to contribute equally to its experience. This allows 

the mayflies to exploit their search spaces well to avoid premature stagnation and skipping of 

the optimal solution in their search space. Consequently, the approach leads to optimal 

solutions with minimal iterations. Furthermore, a chaotic decreasing gravity coefficient is 

adopted to aid in the balance between the exploration and exploitation of the algorithm. 
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This paper is organized as follows: The original MA is described in Section 2, Section 

3 provides the modified individual experience and the chaotic decreasing gravity coefficient. 

The benchmark functions and the test parameters used for testing the algorithms are presented 

in Section 4. Results are presented and analyzed in Section 5. Section 6 concludes the paper. 

 

 

2. MAYFLY ALGORITHM 

 

The MA takes inspiration from the way mayflies fly and mate. It combines the major 

advantages of PSO [3], FA [12], and GA [4]. The MA is comprised of six phases [8]. 

 

2.1. Initialization 

 

In this phase, sets of both male and female mayflies are generated at random. The current 

velocity and position of the ith mayfly are assigned as vi = (vi1, vi2 . . . , vin) and xi = (xi1, xi2 . . . 

, xin), respectively. Positions of the mayflies are modified based on their best ever position 

(pbest) position and the best position in the whole population (gbest). 

 

2.2. Movement of male mayflies 

 

The positions of male mayflies are updated based on the positions of mayflies around 

them and its past positions. 𝒙𝒊
𝒕 denotes the present position of the ith male mayfly at iteration t. 

In order to update the position of a particular mayfly, the velocity 𝒗𝒊
𝒕+𝟏 is added to its current 

position. i.e.  

 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (1) 

 

The male mayfly’s velocity update is obtained from: 

 

 𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑎1𝑒−𝑣𝑑𝑝
2

(𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗
𝑡 ) + 𝑎2𝑒−𝑣𝑑𝑔

2
(𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗

𝑡 ) (1.1) 

 

where: 

v = visibility coefficient. 

a1 and a2 =  positive attraction constants.  

pbestij = Mayfly ith best position in dimension j. 

dp and dg = Euclidean distances between mayfly i and its best position and between mayfly i 

and the best position, respectively.  

g = gravity coefficient, can be a fixed number between 0 and 1, or can be expressed as: 
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 𝑔 = 𝑔𝑚𝑎𝑥 −
𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟 (2) 

where, 

𝑔𝑚𝑎𝑥 𝑎𝑛𝑑 𝑔𝑚𝑖𝑛 = maximum and minimum values of g. 

iter = current iteration. 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = maximum no. of iterations. 

The best position of the mayfly in iteration t+1 is determined as: 

 

 𝑝𝑏𝑒𝑠𝑡𝑖 = {
𝑥𝑖

𝑡+1,  𝑖𝑓 𝑓(𝑥𝑖
𝑡+1) < 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖).

𝑘𝑒𝑝𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  (3) 

 

The top-performing male mayflies continue to execute oscillatory movements at varying 

velocities. These velocities are determined by: 

 

    𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑑 ∗ 𝑟,   (4) 

 

d = nuptial dance coefficient  

r = a random value in the range [-1, 1] 

 

2.3. Movement of female mayflies. 

 

Female mayflies move towards male mayflies. Their positions are updated by the 

following formula: 

 𝑦𝑖
𝑡+1 = 𝑦𝑖

𝑡 + 𝑣𝑖
𝑡+1  (5) 

where: 

𝑦𝑖
𝑡+1= female mayfly i’s position in iteration t+1. 

𝑦𝑖
𝑡    = female mayfly i’s position in iteration t. 

𝑣𝑖
𝑡+1 = female mayfly i’s velocity for iteration t+1. 

For minimization problems, female mayflies’ velocity updates are calculated as: 

 

        𝑣𝑖𝑗
𝑡+1 = {

𝑔 ∗ 𝑣𝑖𝑗
𝑡 + 𝑎2𝑒−𝛽𝑟𝑑

2
(𝑥𝑖𝑗

𝑡 − 𝑦𝑖𝑗
𝑡 ),  𝑖𝑓 𝑓(𝑦𝑖) > 𝑓(𝑥𝑖).

𝑔 ∗ 𝑣𝑖𝑗
𝑡 + 𝑤 ∗ 𝑛,  𝑖𝑓𝑓(𝑦𝑖) ≤ 𝑓(𝑥𝑖).

      (6) 

 

where, 

𝑣𝑖𝑗
𝑡  and 𝑦𝑖𝑗

𝑡  = The velocity and position of female mayfly i in dimension j during iteration t. 

𝑎2 and β = constants which represent attraction and visibility, respectively. 

rd = Euclidean distance between female mayfly i and male mayfly i.  

w= coefficient for random walk. Used when no attraction between male and female. 

n= random number between −1 to 1. 
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2.4. Mating Phase 

 

The crossover operator is used to represent this phase. Each mayfly pair produces two 

offspring. This is expressed as:  

 

          off1 = R·m + (1-R)·f       (7) 

 

    off2 = R·f +(1-R)·m                  (8) 

 

R = random value. 

f and m= female and male respectively. 

 

2.5. Mutation phase 

 

This phase aims to enhance the exploitation abilities of the MA. This is done by mutating 

chosen offspring. This is expressed as: 

 

     𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑛 = 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑛 +  𝜎𝑁𝑛(0,1)      (9) 

 

where,  

σ and Nn= standard deviation and the standard normal distribution, respectively. 

 

2.6. Reduction of Nuptial Dance and Random Walk 

 

The random walk and nuptial dance are reduced through a geometric progression over 

the iterations in this phase. This is to aid the balance between exploration and exploitation of 

the MA. This is expressed as: 

 

    𝑑𝑡 = 𝑑𝑜𝛿𝑡,  0 < 𝛿 < 1       (10) 

 

   𝑓𝑙𝑡 = 𝑓𝑙𝑜𝛿𝑡,  0 < 𝛿 < 1               (11) 

 

where, t = iteration and 𝛿= a value between 0 and 1. 

 

2.7. The process is summarized in the pseudocode below: 

 

Objective function 𝑓(𝑥), 𝑥 = (𝑥1, . . . , 𝑥𝑑)𝑇 

Initialize the positions and velocities of the male mayfly and female mayfly population 
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Evaluate the solutions and find gbest 

Do while iteration < maximum iterations 

                Update the velocities and solutions of both male and female mayflies 

                Assess the solutions 

                Sort and rank the mayflies 

                Mate the mayflies 

                Evaluate the resulting offspring 

                Randomly assign offspring to male and female categories 

                Substitute inferior solutions with superior solutions 

                Update the individual best (pbest) and global best (gbest) solutions 

End while 

Display Results 

 

 

3. PROPOSED MODIFIED INDIVIDUAL EXPERIENCE MA 

 

In the original MA, the position of each mayfly is adjusted according to its individual 

experience and the experience of its neighbors. The individual experience is represented as 

pbest which is the best position the mayfly ever visited. The deficiency with this approach is 

that mayflies which are averagely moving at a better rate than the gbest might not be given 

adequate opportunities to contribute to the global best. This approach may lead to a situation 

where the gbest is provided by mayflies stuck in a local optimum and hence may cause 

stagnation of the whole MA. 

In this modification, the experience of the mayfly is represented as the mean of the 

positions the mayfly has been to in the search space. This provides a better representation of 

the experience and also provides a better picture of how the mayflies are approaching the global 

optimum and consequently provide the optimum value in the search space. This is formulated 

as: 

     𝑃𝑒𝑥𝑝,𝑖
𝑡 =

∑ 𝑥𝑖
𝑡𝑖𝑡𝑒𝑟

𝑡=1

𝑖𝑡𝑒𝑟
                    (12) 

where; 

𝑃𝑒𝑥𝑝,𝑖
𝑡  = The experience of mayfly i at step t. 

iter     = Current iteration. 

𝑥𝑖
𝑡       = Position of mayfly i at step t. 

Also, a chaotic random decreasing gravity coefficient strategy is adopted to enhance the 

balance between the exploration and exploitation abilities of the MA. This is motivated by a 

study in [13], where different weight strategies were applied to PSO to determine their 

influence. This is due to its ability to rough search and minute search alternately in all its 
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evolutionary processes [14].  A slightly modified version is used in this work and is formulated 

as: 

      𝑔 = (𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) ∗ (
𝑀𝑎𝑥𝐼𝑡−𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡
) + gmin ∗ z                 (13) 

𝑧 = 4 ∗ 𝑧 ∗ (1 − 𝑧) 

 

where: gmax & gmin are the maximum and minimum inertia weights respectively and z  = 

random number between 0 and 1. 

 

3.1. The pseudocode of the proposed modification is shown below: 

 

Objective function 𝑓(𝑥), 𝑥 = (𝑥1, . . . , 𝑥𝑑)𝑇 

Initialize the positions and velocities of the male and female mayfly population 

Evaluate solutions and find gbest 

Do while iteration<maximum iterations 

                Update the velocities and solutions of both male and female mayflies 

                Sort and rank the mayflies 

                Mate the mayflies 

                Evaluate the resulting offspring 

                Randomly assign offspring to male and female categories 

                Substitute inferior solutions with superior solutions 

                Update mayfly experience, update pbest using modified formula in equation 12 

     Update gbest 

     Apply chaotic decreasing gravity coefficient in equation 13 

End while 

Display Results 

 

 

4. TESTING OF THE PROPOSED MODIFICATION 

 

The modified MA (MIE-MA) was tested on eight benchmark functions. The benchmark 

functions were obtained from [7]. The test results were compared to the original MA [7], the 

PGB-IMA version [7], and a modified MA named ModMA[8]. The benchmark functions were 

picked from the various types of benchmark functions i.e unimodal (1&2), multimodal (3&4), 

and fixed dimensions (5 & 6- Multimodal, 7 & 8- Unimodal) and thus provide varied levels of 

difficulty.  

The details of the functions are shown below: 
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Table 1. Benchmark Functions 

No. Name Search Range Optimal Value Dimensions Error Limit 

1 Sphere [-10,10] 0 30 1.0E-05 

2 Zakharov [-5,10] 0 30 1.0E-05 

3 Rastrigin [-5.12,5.12] 0 2 1.0E-05 

4 Ackley [-1,1] 0 30 1.0E-05 

5 Leon [0,10] 0 2 1.0E-05 

6 Colville [-10,10] 0 4 1.0E-05 

7 Beale [-4.5,4.5] 0 2 1.0E-05 

8 Michalewicz [0,∏] -9.6602 10 1.0E-05 

 

The parameters used to compare the algorithms are shown below. The same was used 

in [7]. 

Number of iterations = 2000. 

Number of runs          = 50. 

Male Population         = 20. 

Female Population     = 20. 

gmax=0.9, gmin=0.2. 

𝑎1 = 1, 𝑎2 = 1.5, 𝛽 = 2, d = 0.1, fl = 0.1, g = 0.8, 𝛿 = 0.77 

All four algorithms were run on the same computer, an Intel® Core™ i7-7500U with 

CPU @ 2.70 GHz  2.90GHz and 12GB RAM. 

The comparative analysis parameters used were the Mean Absolute Error (MAE) and 

the Standard Deviation (SD). These were calculated as. 

 

   𝑀𝐴𝐸 =
1

𝑆
∑ |𝑋𝑜𝑖 − 𝑋𝑖|

𝑆
𝑖=1       (13) 

 

where: S is the number of cost samples, 𝑋𝑜𝑖 is the benchmark value of the test function and 𝑋𝑖 

is the computed optimum value. 

     𝑆𝐷 = √∑(𝑋𝑖−𝜇)
2

𝑆
         (14) 

 

𝜇 is the mean of the total number of cost samples. 

 

 

5 RESULTS AND DISCUSSIONS 

 

5.1. Mean absolute error and standard deviation 

 

Table 1 below shows the MAEs and the Standard Deviations of the optimal values of 

the MA, PGB-IMA, ModMA, and MIE-MA on the eight test functions. The MIE-MA achieved 
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zero MAEs on five of eight test functions (Sphere, Rastrigin, Leon, Colville, and Beale), 

compared to ModMA’s two, MA and PGB-IMA’s one. Compared to the benchmark error limit 

of 1E-05, MIE-MA achieved lower values for 7 of eight test functions. 

The MIE-MA achieved zero SDs in 7 of eight test functions compared to ModMA’s 

two, MA and PGB-IMA’s one. Hence, the MIE-MA had the overall best performance. 

 

Table 2. MAEs and SDs of the algorithms on the test functions 

Function Algorithm MAE SD 

Sphere MA 4.87967E-20 1.08699E-19 

PGB-IMA 4.6517E-20 1.10929E-19 

ModMA 7.59804E-34 1.06227E-34 

MIE-MA 0 0 

Zakharov MA 0.08919371 0.636970303 

PGB-IMA 6.76556E-10 4.6853E-09 

ModMA 7.7838E-16 2.92148E-17 

MIE-MA 4.0552E-223 0 

Rastrigin MA 2.38967 1.61645 

PGB-IMA 2.45849 2.39099 

ModMA 1.19371E-12 3.80069E-14 

MIE-MA 0 0 

Ackley MA 6.06933E-11 1.20174E-10 

PGB-IMA 8.81819E-11 1.10305E-10 

ModMA 8.89955E-13 4.28014E-15 

MIE-MA 8.70763E-16 0 

Leon MA 0 0 

PGB-IMA 0 0 

ModMA 0 0 

MIE-MA 0 0 

Colville MA 2.46273E-30 4.2634E-30 

PGB-IMA 2.23259E-30 3.91469E-30 

ModMA 7.03319E-29 3.95904E-30 

MIE-MA 0 0 

Beale MA 2.989E-02 1.494E-01 

PGB-IMA 7.471E-02 2.289E-01 

ModMA 0 0 

MIE-MA 0 0 

Michalewicz MA 0.1390 1.567E-01 

PGB-IMA 0.1065 1.161E-01 

ModMA 0.5407 1.371E-01 

MIE-MA 9.414E-02 1.115E-01 
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5.2. Optimum Values 

 

Table 2 compares the optimum values of the four algorithms to the benchmark optimum 

values on the test functions. The values in (brackets) indicate the iteration number on which 

zero was achieved. MIE-MA achieved benchmark optimum values in six of eight functions 

(Sphere, Rastrigin, Leon, Beale, Colville, and Michalewicz), compared to modMA’s four, 

PGB-IMA and MA’s two. This is a testament to the superior performance of the MIE-MA to 

the other three algorithms. MIE-MA also achieved better optimum values in five of eight 

functions (Sphere, Zakharov, Rastrigin, Ackley, and Michalewicz) compared to the other three 

algorithms. The table, therefore confirms the overall superior performance of the MIE-MA. 

 

Table 3. Comparison of optimum values 

No. Function Benchmark 

Value 

MA PGB-IMA ModMA MIE-MA 

1 Sphere 0 1.93924E-23 
 

7.01756E-25 
 

2.62277E-37 
 

0 

2 Zakharov 0 2.81062E-11 
 

6.66323E-17 
 

2.7536E-18 
 

3.0885E-296 
 

3 Rastrigin 0 2.9849 
 

1.9899 
 

0(250) 0(50) 

4 Ackley 0 3.39258E-11 
 

3.09982E-10 
 

2.22045E-14 
 

8.88178E-16 
 

5 Leon 0 0(98) 0(92) 0(255) 0(264) 

6 Beale 0 0(58) 0(55) 0(225) 0(229) 

7 Colville 0 1.91471E-29 
 

4.43734E-30 
 

0(253) 0(268) 

8 Michalewicz -9.6602 -8.9052 
 

-9.4513 
 

-9.4684 
 

-9.6602 

 

5.3. Convergence Rate 

 

Figures 1 to 8 show the convergence curves of the four algorithms for the eight test 

functions. It can be observed that MIE-MA has better convergence rates for five of eight test 

functions (Sphere, Zakharov, Rastrigin & Ackley). For test functions Leon and Beale, PGB-

IMA had the best convergence rate. ModMA had the best convergence rate for the Colville test 
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function. Even though MIE-MA did not achieve the best convergence rate for Leon, Beale, and 

Colville, optimum values were still achieved before the 300th iteration. 

 

 

   

Fig. 1. Convergence Curve for Sphere   Fig. 2. Convergence Curve for Zakharov 

 

 

   

Fig. 3. Convergence Curve for Ackley   Fig. 4. Convergence Curve for Rastrigin 
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Fig.5. Convergence Curve for Leon   Fig. 6. Convergence Curve for Beale 

 

   

Fig. 7. Convergence Curve for Colville  Fig. 8. Convergence Curve for Michalewicz 

 

 

6. CONCLUSION 

 

An improved mayfly algorithm called Modified Individual Experience Mayfly 

Algorithm (MIE-MA) has been made. This algorithm modifies the individual experience of 

each mayfly and also enhances the balance between exploitation and exploration. The MIE-

MA achieved benchmark optimum values in six of eight test functions and also outperformed 

two other improvements in five out of eight functions in terms of convergence rate. The MIE-
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MA also had the best MAE and SD in all eight test functions compared to the other two 

improvements. The results also indicated the ability of the MIE-MA to avoid local Stagnation. 
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