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Abstract 

The monitored tomographic reconstruction (MTR) with optimized photon flux technique is a 
pioneering method for X-ray computed tomography (XCT) that reduces the time for data 
acquisition and the radiation dose. The capturing of the projections in the MTR technique is 
guided by a scanning protocol built on similar experiments to reach the predetermined quality of 
the reconstruction. This method allows achieving a similar average reconstruction quality as in 
ordinary tomography while using lower mean numbers of projections. In this paper, we, for the 
first time, systematically study the MTR technique under several conditions: reconstruction 
algorithm (FBP, SIRT, SIRT-TV, and others), type of tomography setup (micro-XCT and nano-
XCT), and objects with different morphology. It was shown that a mean dose reduction for 
reconstruction with a given quality only slightlyvaries with choice of reconstruction algorithm, and 
reach up to 12.5 % in case of micro-XCT and 8.5 % for nano-XCT. The obtained results allow to 
conclude that the monitored tomographic reconstruction approach can be universally combined 
with an algorithm of choice to perform a controlled trade-off between radiation dose and image 
quality. Validation of the protocol on independent common ground truth demonstrated a good 
convergence of all reconstruction algorithms within the MTR protocol. 
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Introduction 

X-ray computed tomography is widely used in 
medicine [1 – 5], industry [6, 7], customs control [8] and 
in research [9 – 11] as a non-destructive method for 
visualizing the internal morphology of objects. 
Tomographic measurements are performed on various 
scales, up to nanometer spatial resolution [12]. Each 
specific application imposes its own limitations on the 
method. Thus, medical applications require to limit the 
radiation dose load on the patient, while in industrial 
application the inspection time is critical. A reduced 
time-to-data is essential for laboratory nano-XCT studies, 
which usually take hours. Both goals of radiation dose 
and measurement time reduction can be achieved by 
reducing the total number of X-ray projections (views). 
However, the number of projections and the quality of the 
reconstruction, including spatial resolution, are tightly 
related to each other [13]. Reducing the number of 
projections inevitably leads to a loss of reconstruction 
quality. At the same time the behavior of image 

degradation with reduction of projection count may 
depend on various factors, such as choice of the 
reconstruction algorithm [14], scanning scheme type, size 
of the region under reconstruction, required spatial 
resolution [15]. While a lot of efforts to reduce the 
number of projection have been made, simultaneously, 
new algorithms are being developed to perform 
reconstruction with fewer projections [16 – 18]. However, 
it is not easy to develop and approve the tomography data 
collection protocol to comply with an “as low as 
reasonably achievable” requirement to the total dose, 
since one has to predict the exact number of angles 
required to obtain an image of such quality as it is 
necessary for a diagnostic conclusion or for defect 
inspection. 

Recently, a new approach to the tomographic process, 
called monitored tomographic reconstruction (MTR), was 
suggested [19]. The ordinary tomographic study can be 
seen as a two-stage process, which includes the data 
collection and the image reconstruction, which is 
performed only after the full dataset has been acquired. It 
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was suggested to replace the classical process with an 
any-time process [19 – 21], in which the acquisition of 
projections is interspersed with image reconstruction. The 
automatic stopping of the scanning process for the 
currently scanned object occurs according to a certain 
rule. The theoretical background for the stopping rule 
construction and the theoretical framework for the 
monitored reconstruction was given in [19]. In this paper, 
for the first time, we systematically apply the MTR 
technique to numerical data from experiments performed 
using XCT technique wiht differences in photon energy 
ranges, geometries as well as fild-of-view and resolution. 
The following reconstruction algorithms were included 
into the MTR protocol within the conducted experiments: 
Filtered Back Projection (FBP) [22], Hough based 
Filtered Back Projection (HFBP) [23], Direct Fourier 
Reconstruction method [24], Simultaneous Iterative 
Reconstruction Technique (SIRT) with Total Variation 
(TV) regularizetion [25] and Hough-based Simultaneous 
Iterative Reconstruction Technique with Total Variation 
(HSIRT-TV) [26]. To estimate the current reconstruction 
error in MTR experiments, we used two types of ground 
truth images. The first one is the image reconstructed 
with the same reconstruction algorithm as used in the 
MTR experiment with a full set of projections. We call it 
an algorithm- dependent ground truth. Its usage is 
justified by the fact that the MTR protocol influences the 
number of projections used for each given object, thus 
effectively only influencing the reconstruction artifacts 
due to absence of a full set of projections. The second 
ground truth image is the reconstruction result obtained 
with SIRT-TV, where the FBP reconstruction result is 
used as the initial approximation for the SIRT iterative 
procedure with an extensive number of iterations. We call 
it independent ground truth. Both ground truth images are 
calculated with a full set of projections collected during 

the XCT measurements. The tomography dataset used for 
the MTR properties study was collected from two 
different laboratory XCT setups, nano-XCT and micro-
XCT. The first one has X-ray optics installed in the beam 
path, which makes it possible to carry out the 
measurements with a resolution of several 10 nm. In this 
particular example, the field of view is 65×65 microns, 
and the lateral resolution is about 65 nm [27]. The field 
of view of the second tomography setup is about 1×1 cm, 
and the spatial resolution is 10 microns [28]. 

The following parts of the paper are organized as 
follows. Section “Materials and Methods” contains a 
description of the nano-XCT and micro- XCT setups, the 
description of the measured samples, description of Smart 
Tomo Engine tomography reconstruction tool used in 
MTR experiments, and framework of MTR experiment. 
The next section presents a description of MTR 
experiments in detail. The last section presents the 
discussion of the obtained results. 

1. Materials and Methods 
1.1. Nano-XCT laboratory setup 

The acquisition of the nano-XCT data was performed 
using an Xradia nano-XCT 100 setup (Xradia Inc., 
Pleasanton, CA, USA). The laboratory nano-XCT setup 
consists of the following main components: an X-ray source 
with a rotating anode e mitting CuKa radiation (8 keV 
photon energy), an illumination system consisting of a 
capillary condenser optics with a central beam stop, a 
Fresnel zone plate (FZP) as an objective lens enabling sub-
100 nm resolution and a scintillation detector including a 
CCD camera (1024×1024 pixels). Such setup provides 
nearly parallel-beam imaging, and it allows to obtain X-ray 
computed tomography data within an angular range of 180, 
compared to usually 360. The scheme of the X-ray 
microscope beam path is presented in Fig. 1. 

 
Fig. 1. Optical beam path of nearly parallel-beam geometry for a nano-XCT setup 

1.2. Description of nanostructures on the study 

The sample studied consists of needle-like MoO2 
micro-cuboids as parts of a novel, hierarchically 
structured transition-metal-based electrocatalytic system 
with high electrocatalytic efficiency for hydrogen 
evolution reaction (HER): MoNi4

 /MoO2
 @ Ni) [29]. The 

MoO2 micro cuboids that have a rectangular cross-section 
of 0.5×1 µm2 and a length of 10 to 20 µm were detached 
from the nickel foam and fixed on a tiny needle acting as 
sample holder [12]. High-resolution XCT provides 3D 

information of the hierarchi- cal morphology of the 
MoNi4

 /MoO2
 @Ni material system and particularly of the 

arrangement of the MoO2 cuboids nondestructively. The 
X-ray com- puted tomography scan was performed in 
standard resolution mode (40 FZP magnification 20 optical 
magnification = 800 total magnification). The width and 
height of the field of view (FOV) were 65 µm with 1024 
pixels for each, resulting in a pixel size of 65×65 nm2. The 
X-ray computed tomography data were collected in the 
180 angular range, and they included 801 images which 
were acquired with an exposure of 180 s each. 
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1.3. Micro-XCT laboratory setup 

X-ray computed tomography measurements were 
performed on a “TOMAS” laboratory micro-XCT setup 
Fig. 2 developed and constructed in FSRC 
“Crystallography and Photonics” RAS [28]. The X-ray 
tube with a molybdenum anode (emitting Moka photons 
with a characteristic energy of 17.5 keV ) at the 
accelerating voltage 40 kV and anode current 20 mA was 
used as a radiation source. The measurements were 
performed using a pyrolytic graphite crystal as a 
monochromator. The monochromator-sample distance 
was 1.2 m, and the sample-detector distance was 0.02 m. 
The size of the X-ray beam on the object position was 
about 2 cm. In each experiment, 400 projections were 
taken in the angular range of 0200◦, in 0.5◦ increments 
and 5 seconds per frame exposure. A XIMEA xiRay 11 
high-resolution X-ray detector with 9 µm spatial 
resolution and at a field of view of 36×24 mm was used 
in the measurements. 

 
Fig. 2. Picture of the laboratory micro-XCT setup with nearly 
parallel-beam geometry and monochromatic X-ray radiation 

1.4. Description of objects on the study with micro-XCT 

For testing the MTR technique, we collect a dataset of 
the objects with different morphology (biological 
samples, plastic, and calcium). Here is a description of 
the samples on the study: 

• The top part of the toothbrush (Fig. 3а) is a rubber 
and plastic sample, contains many plastic fibers, and 
has many contrast edges. 

• The shell (Fig. 3b) is a simple hollow sample 
consisting mainly of calcium oxalate. 

• The larch cone (Fig. 3c) is an organic object with 
complex geometry. 

• The raspberry fixed on a plastic base (Fig. 3d) is an 
organic sample containing a lot of liquid. Sample 
fixed on the plastic tube to keep the form during 
measurements. 

• The apple seed (Fig. 3e) is a small organic sample 
with a relatively homogeneous structure. 

1.5. Smart Tomo Engine tomography reconstruction tool 

The Smart Tomo Engine (STE) is a tomography data 
processing, reconstruction and visualization software 
solution developed by Smart Engines Service LLC [30]. 

STE is a cross-platform software that implements fast and 
precise reconstruction algorithms, artifacts reduction 
methods and data 2D and 3D visualization. The typical 
STE tomography reconstruction workflow consists of the 
following steps: loading the source data, correcting 
geometry parameters (like rotation axis position search 
and correction), tomography reconstruction, artifacts 
reduction and visualization. The input set of projections 
can be loaded from different types of format – TIFF 
(float32, uint16, uint32), PNG (uint16, uint32), DICOM 
[31], DICOMDIR, Nexus [32]. At the first stage of 
loaded data processing, the flat field correction is 
performed: the dark current is taken in to account if such 
frames are present in the in- put dataset; then the images 
are normalized to frames of the empty beam and, if 
necessary, the logarithm is taken. Additionally, the STE 
can automatically search for the axis of object rotation, 
perform correction of ring artifacts and automatically 
correct data in order to suppress artifacts caused by 
polychromatic radiation. 

 
Fig. 3. Picture of objects in micro-CT dataset: A – toothbrush, 

B – shell, C – larch cone, D – raspberry, E – apple seed 

Reconstruction algorithms for layer-by-layer 2D 
and/or true 3D reconstruction of received data with a 
circular scan path are also available in the Smart Tomo 
Engine. In STE we use classical reconstruction 
algorithms, such as Filtered Back Projection (FBP) [22], 
Feldkamp, Davis and Kres algorithm (FDK) [33], Direct 
Fourier Reconstruction method (DFR) [24], Simultaneous 
Iterative Reconstruction Technique (SIRT) with Total 
Variation (TV) regularization [25], the fastest and the 
most modern algorithm reconstruction algorithm - Hough 
based Filtered Back Projection (HFBP) [23] and the 
fastest iterative reconstruction algorithm – Hough based 
Simultaneous Iterative Reconstruction Technique 
(HSIRT) [26]. STE implements x64 compatible CPU, 
ARM processors, and GPU accelerators (CUDA). 

The result of the reconstruction can be viewed layer 
by layer, in different color palettes or in a 3D visualizer. 
The 3D visualizer presents three types of visualization of 
the reconstructed volume: monochrome, translucent color 
and solid visualization. A monochrome rendering type is 
a grayscale rendering of an image. Type translucent color 
displays a three-dimensional reconstruction in the form of 
a translucent volume, according to the laws of light 
absorption. The solid type renders a 3D continuous iso 
surface, while the brightness level is set by the user 
himself in the graphical interface. The reconstruction 
result can be saved layer by layer in TIFF, PNG, DICOM 
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formats, as well as in a two-dimensional image of three-
dimensional visualization. 

The result of the 3D reconstruction from the set of 
projections for all objects is presented in Fig. 4. A 
Filtered Back Projection algorithm was used for 
reconstruction to produce illustrations. 

 
Fig. 4. Reconstructed volumes from all collected projections. 
Objects for Micro-XCT setup: A – toothbrush, B – shell, C – 
larch cone, D – raspberry, E – apple seed. Object for Nano-

XCT setup: F – needle-like MoO2 

1.6. Description of used tomographic reconstruction 
algorithms 

For our experiments, we choose four different 
reconstruction algorithms, each having an 
implementation in STE, namely: commonly used Filtered 

Back Projection (FBP) [22], Hough based Filtered 
Back Projection (HFBP) [23], Direct Fourier 
Reconstruction method (DFR) [24], Simultaneous 
Iterative Reconstruction Technique (SIRT) with Total 
Variation (TV) regularization [25] and Hough based 
Simultaneous Iterative Reconstruction Technique 
(HSIRT) [26]. Since all the data is acquired in parallel 
geometry, all of the further discussed implementations 
are also meant in terms of the parallel geometry of the 
experiment. Also, reconstructions of a single layer as a 
2D image are discussed, and all the complexity should be 
understood in terms of reconstructing a single layer and 
not an entire volume. The complexity of the algorithms 
given below is calculated in the assumption that detector 
size n reconstructed image width number of projections 
number of reconstructed layers. 

Here we want to explain the choice of these 
algorithms together with their key features. FBP 
algorithm implements Fourier filtration of obtained 
projections by the Ramp filter with the following 
backprojection of filtered data. The FBP algorithm offers 
a good tradeoff between speed (O (n4) complexity) and 
quality of reconstruction, which makes it an algorithm of 
choice for a wide range of tomographic tasks. FBP also 
provides a good baseline for comparing different 
algorithms. The HFBP algorithm utilizes the Transposed 
Fast Hough transform of an image to significantly speed 
up the Back Projection part of FBP, resulting in 

O (n3log (n)) complexity. It should be noted that in HFBP 
all the lines are approximated by pixel patterns on an 
image, which usually results in slightly worse quality of 
an image in comparison with HFBP. However, the high 
speed of this algorithm makes it quite a good candidate 
for use during the monitoring reconstruction process. 
DFR algorithm is making use of Fourier slice theorem 
[34] by creating a full 2D Fourier image from filtered 
data with the following 2D Inverse Fourier Transform to 
produce reconstruction. The image quality of the DFR 
method com- pared to FBP usually suffers from an 
irregular sampling of points in Fourier space. Although 
DFR is another algorithm with O (n3log (n)) complexity 
which makes it worth studying its properties in the 
framework of monitored reconstruction. Algebraic 
algorithms such as SIRT or HSIRT aim to minimize the 
reprojection error by performing an iterative search. Each 
iteration of such an algorithm requires 2 to 3 operations 
of forward and backward projections, which makes if 2×k 
times (where k is the number of SIRT iterations) slower 
than the corresponding Filtered Back Projection 
algorithm and makes it impractical to use such algorithms 
in monitoring reconstruction. Although algebraic 
algorithms such as SIRT and HSIRT provide relatively 
fast convergence in terms of projections count, which 
may (or may not) be an important property considering 
monitoring reconstruction protocol and the other 
considered algorithms do not possess such a property. 

1.7. Monitored reconstruction 

The MTR technique relies on analyzing intermediate 
reconstructions of an object during CT measurement to 
achieve dose reduction for a predetermined 
reconstruction quality. The detailed description of the 
framework may be found elsewhere [19, 27], here we 
will only briefly discuss the most general aspects of this 
approach and the details specific for the present 
experiments. The task for MTR is formulating as 
minimizing the loss function in the space of number of 
acquired projections. Loss function L may be written in 
form L = E (err (N )) + cost (N ). Here E (err (N )) is an 
expected value of an error calculated by some chosen metric 
between reconstruction from N projections and ground truth 
image; cost (N ) is the cost function of acquiring N 
projections, which is usually chosen to be a linear function 
cN , where c is the cost of obtaining one projection. Solving 
this optimization task is significantly complicated by the fact 
that the error should be calculated relative to an ideal 
reconstruction which in practice will not be available during 
the MTR process. This means value E (err (N )) should be 
calculated only on the base of preceding history of partial 
reconstructions. In the fair assumption of derivative of 
E (err (N ) being monotonous by N and considering two 
neighboring points i and i + 1 the stopping rule may be 
formulated as err (Ni) E (err (Ni+1))  c. 

In the framework we chose a simple approach for 
calculating d (err (N )) / dN function estimating it as the ℓ2 
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norm of a difference between two neighboured partial 
reconstructions. To compare the effectiveness of the 
stopping rule one can calculate different metrics, even the 
ones calculated from ideal reconstructions or 
reconstructions from full projection data. 

2. Description of numerical experiments 

Most numerical experiments were reproduced 
following the paper [27]. 

The experiments consist of 4 main stages: 
1. Preparing dataset and ground truth images. 
2. Choosing a reconstruction algorithm and collecting 

partial reconstruction data. 
3. Estimating baseline average error across all the 

objects for every stopping point. 
Estimating average error across all the objects for 

each threshold value using the monitoring rule. 
Further, we should consider these stages more closely. 

Two real data datasets were prepared. The first dataset 
was created from different slices of a single object, 
collected on nano-XCT setup (NanoCT dataset), the 
second dataset was created from from different objects, 
collected on micro-XCT setup (MicroCT dataset). The 
monitoring rules cannot have any knowledge about target 
ground truth (GT) in the process of acquisition, although 
to conveniently plot the error for all the algorithms, we 
would still need GT images. Following the paper [19] we 
reproduce the experiments using as GT the last, full-dose 
image. We will also compare different algorithms against 
a common GT to validate the convergence of algorithms. 
The common GT images are constructed from full 
projection data using the FBP algorithm as the initial 

solution for 150 iterations of SIRT with TV 
regularization. 

This way the results of our experiments are going to 
be an average error plots for naive and monitoring rules 
each for a fixed algorithm, dataset and GT images set. 

3. Results and discussion 

The main result of the experiments described in the 
previous part is an average reconstruction error 
corresponding to a different mean number of projections. 
Although it is convenient to start the discussion by 
considering the derivative data which is responsible for 
choosing a stopping point for each of the different objects 
in the dataset. On Fig. 5 ℓ2 norm of the difference 
between two consecutive reconstructions is represented. 
Any horizontal line on these plots would correspond to a 
fixed threshold c, and the first intersection of such a line 
with a plot would correspond to a stopping point for a 
particular object. It is worth noting that the general 
behavior for all of the algorithm /object pairs is common 
and may be described as a monotonous decay. The 
behavior of the integral algorithms (FBP, HFBP, DFR) is 
similar between themselves even quantitatively, although 
the algebraic algorithms (SIRT, HSIRT) differ quite a bit, 
which is most likely due to a better stability of these 
methods at smaller projections count. From Fig. 5 one 
can deduct that at a fixed c value all algorithms would in 
fact stop at different numbers of projections for different 
objects. While this is an essential and required property 
for monitored reconstruction to be able to demonstrate 
dose savings in comparison to a trivial stopping rule, this 
alone is not enough to guarantee that. 

 
Fig. 5. ℓ2 norm of the difference between two consecutive reconstructions for all of the investigated algorithms 

To find out if there is a possibility to achieve a dose 
reduction while producing a predetermined average 

quality we need to estimate these values for all possible 
thresholds c. Considering the GT to be a full dose 
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reconstructions with the same algorithm, mean quality 
can be plotted against mean projection count in a way 
similar to [19] (Fig. 6), exampled graphs represent the 
results of MTR implemented on FBP and HSIRT 
algorithms on NanoCT and MicroCT datasets. In the high 
projection count region these plots demonstrate 
significant gain by both average dose and quality of 
monitored rule over the baseline (where non-monitored 
baseline is the stopping by the fixed number of 
projections). To estimate the maximum gain a close to 
optimal values of c are chosen for each individual graph. 
These points are circled on the plots on Fig. 6, and the 
gain here can be estimated as the difference between 
optimal point and baseline by either average projection 
count or reconstruction quality. Similar procedure was 

conducted for for all algorithms on both datasets and the 
results are brought together in Table 1. Since the dose is 
proportional to the projection count an average dose re- 
duction may be calculated as the relation of difference in 
projection count to a total projection number. These 
results may be understood as in average a lower 
projection count is needed for the same quality across 
investigated objects or the better quality may be achieved 
for the same projection count. The values of dose 
reduction under the condition of the same average qual- 
ity are only slightly varies in case of NanoCT dataset 
(5.0 – 10.0 %) and in case of MicroCT dataset (11.2 –
 12.5 %). Since such payoff is achieved for all studied 
reconstruction algorithms, general stability of MTR 
protocol may be concluded. 

 
Fig. 6. An example of average error (ℓ2 norm of a difference from recon- struction by the same algorithm at full projection data) and 
mean number of projections for four of the investigated algorithms on NanoCT dataset. Dash lines represent trivial stopping rules 
(by the fixed number of projections), dots represent monitored stopping rules. A circled points represent close to optimal stopping 

points with an expected gain over baseline rule 

Tab. 1. The gain in dose and quality achieved by MTR 
 over baseline protocol 

Algorithm NanoCT dataset MicroCT dataset 
Quality Dose, % Quality Dose, % 

FBP 0.05 8.75 0.02 11.2 
HFBP 0.045 8.75 0.017 12.5 
DFR 0.030 5.0 0.018 12.5 
HSIRT50 0.030 10.0 0.011 12.5 
SIRT50 0.030 10.0 0.011 12.5 

We also aim to study the convergence of algorithms 
to an independent GT images described in previous 
section. Using a common GT for different reconstruction 

algorithms allows to plot the results of application of the 
MTR rules in a single scale (Fig. 7). The plots 
demonstrate that the algorithms reasonably converge to 
the common GT images although the gain in this case is 
much less significant. It is also should be noted that two 
different regions exist on the plots, nominally divided by 
the vertical dash line. Left region here correspond to 
undesirable image quality, and the stopping in this region 
is undesired under optimal conditions, even if there 
would be a gain in image quality or dose. The right 
region corresponds to a meaningful part of the curve, 
where some stopping point is expected. The difference 
between these regions is also illustrated on Fig. 8, where 
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a partial reconstructions by FBP algorithm are 
represented for example objects from both datasets. Fig. 8 
(b) and (e) demonstrate a borderline image quality below 
which an MTR algorithm should not be calibrated to stop 
in real experiments. 

It should be noted that in all experiments each algorithm 
is compared against its own baseline, due to the chosen 
framework in which the same algorithm is applied for 
estimating the stopping point and for evaluating the final 
error. This shouldn’t be the case for the practical 
applications since after the data was acquired one does not 
have time restrictions and is free to use algorithms providing 
the best quality. Although from a theoretical point of view 
the algorithm used for monitoring reconstruction is aimed to 
minimize its own average error and in general does not 
guarantee that an average error/projection count for another 
reconstruction algorithm would also decrease. 

 
Fig. 7. Average error (ℓ2 norm of a difference from common GT 

images) and mean number of projections for all of the 
investigated algorithms on NanoCT dataset and (b) MicroCT 

dataset. Dash lines represent trivial stopping rules (by the fixed 
number of projections), dotted curves represent monitored 

stopping rules 

 
Fig. 8. Example partial reconstructions of objects taken from MicroCT dataset (upper row) and NanoCT dataset (lower row). 

Figures (b) and (e) corresponds to a vertical dash lines positions on Fig. 7 
 

Conclusions 

In this paper we conducted a series of studies of the 
effect of monitored tomographic reconstruction (MTR) 
with respect to different XCT setups, reconstruction 
algorithms, and approaches for quality estimation. It was 
shown that the reduction of the mean number of 
projections with retaining of the mean quality when 
stopping the reconstruction process according to the MTR 
protocol happens in every setup and reconstruction 
algorithm combination. The conducted experiments 
demonstrate that dose reduction properties are sustained 
between the different reconstruction algorithms in- 
cluded into MTR framework, while the algorithms still 
reasonably converge to the common GT reconstruction. 

We were able to reproduce the result of [19] and 
generalize it to the case of different reconstruction 
algorithms included within the MTR protocol. The results 
represented in Table 1 demonstrate the significant gain in 
dose reduction for all algorithms on both datasets, and the 

dose reduction values reaches 12.5 % on MicroCT dataset 
and 10.0 % on NanoCT dataset. 

Although several implementation tasks have to be 
performed for the MTR implementation to a real 
hardware setup being connected with “calibration” 
procedure of the MTR protocol, the approach as 
described id formulated. During a “calibration” procedure 
a threshold c should be set in advance for an expectation 
of the reconstruction quality, which should then be 
converted to a stopping threshold. This stopping 
threshold in general is not guaranteed to be transferable 
between protocols (whether between setups or between 
re- construction algorithms), and as evident from the 
performed evaluation, the “calibration” will have to be 
based on the same reconstruction method as the one used 
during the scan. We rely on the existing methods of 
reconstruction and image quality estimation, common for 
the CT field, although these methods are limited in terms 
of applying to partial data. The reconstruction time 
emerges as a particular critical issue for this task, due to 
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the real time nature of the protocol. Even though the 
technique MTR already demonstrates a success in dose 
reduction and acquisition time reduction, the research and 
development of new reconstruction approaches both fast 
and adequate to MTR tasks would be necessary to utilize 
these results in real XCT setups. 
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